[dev.boringcrypto] all: merge master (5b76343) into dev.boringcrypto

Change-Id: I52c5b317a97c7723a7c077ae3cdfdc756fd3a1cf
This commit is contained in:
Filippo Valsorda 2021-02-24 15:49:21 +01:00
commit 03cd666173
778 changed files with 60650 additions and 5384 deletions

View File

@ -1,6 +1,6 @@
<!--{
"Title": "The Go Programming Language Specification",
"Subtitle": "Version of Feb 10, 2021",
"Subtitle": "Version of Feb 19, 2021",
"Path": "/ref/spec"
}-->
@ -830,7 +830,7 @@ The underlying type of <code>[]B1</code>, <code>B3</code>, and <code>B4</code> i
<h3 id="Method_sets">Method sets</h3>
<p>
A type may have a <i>method set</i> associated with it.
A type has a (possibly empty) <i>method set</i> associated with it.
The method set of an <a href="#Interface_types">interface type</a> is its interface.
The method set of any other type <code>T</code> consists of all
<a href="#Method_declarations">methods</a> declared with receiver type <code>T</code>.

View File

@ -182,7 +182,7 @@ func testCallbackCallers(t *testing.T) {
"runtime.cgocallbackg1",
"runtime.cgocallbackg",
"runtime.cgocallback",
"runtime.asmcgocall",
"runtime.systemstack_switch",
"runtime.cgocall",
"test._Cfunc_callback",
"test.nestedCall.func1",

View File

@ -36,6 +36,7 @@ func testEndToEnd(t *testing.T, goarch, file string) {
var ok bool
testOut = new(bytes.Buffer) // The assembler writes test output to this buffer.
ctxt.Bso = bufio.NewWriter(os.Stdout)
ctxt.IsAsm = true
defer ctxt.Bso.Flush()
failed := false
ctxt.DiagFunc = func(format string, args ...interface{}) {
@ -278,6 +279,7 @@ func testErrors(t *testing.T, goarch, file string) {
var ok bool
testOut = new(bytes.Buffer) // The assembler writes test output to this buffer.
ctxt.Bso = bufio.NewWriter(os.Stdout)
ctxt.IsAsm = true
defer ctxt.Bso.Flush()
failed := false
var errBuf bytes.Buffer

View File

@ -32,11 +32,13 @@ var (
D MultiFlag
I MultiFlag
PrintOut int
DebugV bool
)
func init() {
flag.Var(&D, "D", "predefined symbol with optional simple value -D=identifier=value; can be set multiple times")
flag.Var(&I, "I", "include directory; can be set multiple times")
flag.BoolVar(&DebugV, "v", false, "print debug output")
objabi.AddVersionFlag() // -V
objabi.Flagcount("S", "print assembly and machine code", &PrintOut)
}

View File

@ -36,6 +36,7 @@ func main() {
ctxt := obj.Linknew(architecture.LinkArch)
ctxt.Debugasm = flags.PrintOut
ctxt.Debugvlog = flags.DebugV
ctxt.Flag_dynlink = *flags.Dynlink
ctxt.Flag_linkshared = *flags.Linkshared
ctxt.Flag_shared = *flags.Shared || *flags.Dynlink

View File

@ -54,6 +54,7 @@ type CmdFlags struct {
C CountFlag "help:\"disable printing of columns in error messages\""
D string "help:\"set relative `path` for local imports\""
E CountFlag "help:\"debug symbol export\""
G CountFlag "help:\"accept generic code\""
I func(string) "help:\"add `directory` to import search path\""
K CountFlag "help:\"debug missing line numbers\""
L CountFlag "help:\"show full file names in error messages\""

View File

@ -271,8 +271,7 @@ func createSimpleVar(fnsym *obj.LSym, n *ir.Name) *dwarf.Var {
if base.Ctxt.FixedFrameSize() == 0 {
offs -= int64(types.PtrSize)
}
if objabi.Framepointer_enabled || objabi.GOARCH == "arm64" {
// There is a word space for FP on ARM64 even if the frame pointer is disabled
if objabi.Framepointer_enabled {
offs -= int64(types.PtrSize)
}

View File

@ -37,7 +37,9 @@ func assembleScopes(fnsym *obj.LSym, fn *ir.Func, dwarfVars []*dwarf.Var, varSco
}
scopeVariables(dwarfVars, varScopes, dwarfScopes)
scopePCs(fnsym, fn.Marks, dwarfScopes)
if fnsym.Func().Text != nil {
scopePCs(fnsym, fn.Marks, dwarfScopes)
}
return compactScopes(dwarfScopes)
}

View File

@ -25,6 +25,11 @@ func exportf(bout *bio.Writer, format string, args ...interface{}) {
func dumpexport(bout *bio.Writer) {
p := &exporter{marked: make(map[*types.Type]bool)}
for _, n := range typecheck.Target.Exports {
// Must catch it here rather than Export(), because the type can be
// not fully set (still TFORW) when Export() is called.
if n.Type() != nil && n.Type().HasTParam() {
base.Fatalf("Cannot (yet) export a generic type: %v", n)
}
p.markObject(n)
}

View File

@ -0,0 +1,92 @@
// UNREVIEWED
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements FindExportData.
package importer
import (
"bufio"
"fmt"
"io"
"strconv"
"strings"
)
func readGopackHeader(r *bufio.Reader) (name string, size int, err error) {
// See $GOROOT/include/ar.h.
hdr := make([]byte, 16+12+6+6+8+10+2)
_, err = io.ReadFull(r, hdr)
if err != nil {
return
}
// leave for debugging
if false {
fmt.Printf("header: %s", hdr)
}
s := strings.TrimSpace(string(hdr[16+12+6+6+8:][:10]))
size, err = strconv.Atoi(s)
if err != nil || hdr[len(hdr)-2] != '`' || hdr[len(hdr)-1] != '\n' {
err = fmt.Errorf("invalid archive header")
return
}
name = strings.TrimSpace(string(hdr[:16]))
return
}
// FindExportData positions the reader r at the beginning of the
// export data section of an underlying GC-created object/archive
// file by reading from it. The reader must be positioned at the
// start of the file before calling this function. The hdr result
// is the string before the export data, either "$$" or "$$B".
//
func FindExportData(r *bufio.Reader) (hdr string, err error) {
// Read first line to make sure this is an object file.
line, err := r.ReadSlice('\n')
if err != nil {
err = fmt.Errorf("can't find export data (%v)", err)
return
}
if string(line) == "!<arch>\n" {
// Archive file. Scan to __.PKGDEF.
var name string
if name, _, err = readGopackHeader(r); err != nil {
return
}
// First entry should be __.PKGDEF.
if name != "__.PKGDEF" {
err = fmt.Errorf("go archive is missing __.PKGDEF")
return
}
// Read first line of __.PKGDEF data, so that line
// is once again the first line of the input.
if line, err = r.ReadSlice('\n'); err != nil {
err = fmt.Errorf("can't find export data (%v)", err)
return
}
}
// Now at __.PKGDEF in archive or still at beginning of file.
// Either way, line should begin with "go object ".
if !strings.HasPrefix(string(line), "go object ") {
err = fmt.Errorf("not a Go object file")
return
}
// Skip over object header to export data.
// Begins after first line starting with $$.
for line[0] != '$' {
if line, err = r.ReadSlice('\n'); err != nil {
err = fmt.Errorf("can't find export data (%v)", err)
return
}
}
hdr = string(line)
return
}

View File

@ -0,0 +1,175 @@
// UNREVIEWED
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// package importer implements Import for gc-generated object files.
package importer
import (
"bufio"
"cmd/compile/internal/types2"
"fmt"
"go/build"
"io"
"io/ioutil"
"os"
"path/filepath"
"strings"
)
// debugging/development support
const debug = false
var pkgExts = [...]string{".a", ".o"}
// FindPkg returns the filename and unique package id for an import
// path based on package information provided by build.Import (using
// the build.Default build.Context). A relative srcDir is interpreted
// relative to the current working directory.
// If no file was found, an empty filename is returned.
//
func FindPkg(path, srcDir string) (filename, id string) {
if path == "" {
return
}
var noext string
switch {
default:
// "x" -> "$GOPATH/pkg/$GOOS_$GOARCH/x.ext", "x"
// Don't require the source files to be present.
if abs, err := filepath.Abs(srcDir); err == nil { // see issue 14282
srcDir = abs
}
bp, _ := build.Import(path, srcDir, build.FindOnly|build.AllowBinary)
if bp.PkgObj == "" {
id = path // make sure we have an id to print in error message
return
}
noext = strings.TrimSuffix(bp.PkgObj, ".a")
id = bp.ImportPath
case build.IsLocalImport(path):
// "./x" -> "/this/directory/x.ext", "/this/directory/x"
noext = filepath.Join(srcDir, path)
id = noext
case filepath.IsAbs(path):
// for completeness only - go/build.Import
// does not support absolute imports
// "/x" -> "/x.ext", "/x"
noext = path
id = path
}
if false { // for debugging
if path != id {
fmt.Printf("%s -> %s\n", path, id)
}
}
// try extensions
for _, ext := range pkgExts {
filename = noext + ext
if f, err := os.Stat(filename); err == nil && !f.IsDir() {
return
}
}
filename = "" // not found
return
}
// Import imports a gc-generated package given its import path and srcDir, adds
// the corresponding package object to the packages map, and returns the object.
// The packages map must contain all packages already imported.
//
func Import(packages map[string]*types2.Package, path, srcDir string, lookup func(path string) (io.ReadCloser, error)) (pkg *types2.Package, err error) {
var rc io.ReadCloser
var id string
if lookup != nil {
// With custom lookup specified, assume that caller has
// converted path to a canonical import path for use in the map.
if path == "unsafe" {
return types2.Unsafe, nil
}
id = path
// No need to re-import if the package was imported completely before.
if pkg = packages[id]; pkg != nil && pkg.Complete() {
return
}
f, err := lookup(path)
if err != nil {
return nil, err
}
rc = f
} else {
var filename string
filename, id = FindPkg(path, srcDir)
if filename == "" {
if path == "unsafe" {
return types2.Unsafe, nil
}
return nil, fmt.Errorf("can't find import: %q", id)
}
// no need to re-import if the package was imported completely before
if pkg = packages[id]; pkg != nil && pkg.Complete() {
return
}
// open file
f, err := os.Open(filename)
if err != nil {
return nil, err
}
defer func() {
if err != nil {
// add file name to error
err = fmt.Errorf("%s: %v", filename, err)
}
}()
rc = f
}
defer rc.Close()
var hdr string
buf := bufio.NewReader(rc)
if hdr, err = FindExportData(buf); err != nil {
return
}
switch hdr {
case "$$\n":
err = fmt.Errorf("import %q: old textual export format no longer supported (recompile library)", path)
case "$$B\n":
var data []byte
data, err = ioutil.ReadAll(buf)
if err != nil {
break
}
// The indexed export format starts with an 'i'; the older
// binary export format starts with a 'c', 'd', or 'v'
// (from "version"). Select appropriate importer.
if len(data) > 0 && data[0] == 'i' {
_, pkg, err = iImportData(packages, data[1:], id)
} else {
err = fmt.Errorf("import %q: old binary export format no longer supported (recompile library)", path)
}
default:
err = fmt.Errorf("import %q: unknown export data header: %q", path, hdr)
}
return
}
type byPath []*types2.Package
func (a byPath) Len() int { return len(a) }
func (a byPath) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a byPath) Less(i, j int) bool { return a[i].Path() < a[j].Path() }

View File

@ -0,0 +1,611 @@
// UNREVIEWED
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package importer
import (
"bytes"
"cmd/compile/internal/types2"
"fmt"
"internal/testenv"
"io/ioutil"
"os"
"os/exec"
"path/filepath"
"runtime"
"strings"
"testing"
"time"
)
// skipSpecialPlatforms causes the test to be skipped for platforms where
// builders (build.golang.org) don't have access to compiled packages for
// import.
func skipSpecialPlatforms(t *testing.T) {
switch platform := runtime.GOOS + "-" + runtime.GOARCH; platform {
case "darwin-arm64":
t.Skipf("no compiled packages available for import on %s", platform)
}
}
// compile runs the compiler on filename, with dirname as the working directory,
// and writes the output file to outdirname.
func compile(t *testing.T, dirname, filename, outdirname string) string {
// filename must end with ".go"
if !strings.HasSuffix(filename, ".go") {
t.Fatalf("filename doesn't end in .go: %s", filename)
}
basename := filepath.Base(filename)
outname := filepath.Join(outdirname, basename[:len(basename)-2]+"o")
cmd := exec.Command(testenv.GoToolPath(t), "tool", "compile", "-o", outname, filename)
cmd.Dir = dirname
out, err := cmd.CombinedOutput()
if err != nil {
t.Logf("%s", out)
t.Fatalf("go tool compile %s failed: %s", filename, err)
}
return outname
}
func testPath(t *testing.T, path, srcDir string) *types2.Package {
t0 := time.Now()
pkg, err := Import(make(map[string]*types2.Package), path, srcDir, nil)
if err != nil {
t.Errorf("testPath(%s): %s", path, err)
return nil
}
t.Logf("testPath(%s): %v", path, time.Since(t0))
return pkg
}
const maxTime = 30 * time.Second
func testDir(t *testing.T, dir string, endTime time.Time) (nimports int) {
dirname := filepath.Join(runtime.GOROOT(), "pkg", runtime.GOOS+"_"+runtime.GOARCH, dir)
list, err := ioutil.ReadDir(dirname)
if err != nil {
t.Fatalf("testDir(%s): %s", dirname, err)
}
for _, f := range list {
if time.Now().After(endTime) {
t.Log("testing time used up")
return
}
switch {
case !f.IsDir():
// try extensions
for _, ext := range pkgExts {
if strings.HasSuffix(f.Name(), ext) {
name := f.Name()[0 : len(f.Name())-len(ext)] // remove extension
if testPath(t, filepath.Join(dir, name), dir) != nil {
nimports++
}
}
}
case f.IsDir():
nimports += testDir(t, filepath.Join(dir, f.Name()), endTime)
}
}
return
}
func mktmpdir(t *testing.T) string {
tmpdir, err := ioutil.TempDir("", "gcimporter_test")
if err != nil {
t.Fatal("mktmpdir:", err)
}
if err := os.Mkdir(filepath.Join(tmpdir, "testdata"), 0700); err != nil {
os.RemoveAll(tmpdir)
t.Fatal("mktmpdir:", err)
}
return tmpdir
}
func TestImportTestdata(t *testing.T) {
// This package only handles gc export data.
if runtime.Compiler != "gc" {
t.Skipf("gc-built packages not available (compiler = %s)", runtime.Compiler)
}
tmpdir := mktmpdir(t)
defer os.RemoveAll(tmpdir)
compile(t, "testdata", "exports.go", filepath.Join(tmpdir, "testdata"))
if pkg := testPath(t, "./testdata/exports", tmpdir); pkg != nil {
// The package's Imports list must include all packages
// explicitly imported by exports.go, plus all packages
// referenced indirectly via exported objects in exports.go.
// With the textual export format, the list may also include
// additional packages that are not strictly required for
// import processing alone (they are exported to err "on
// the safe side").
// TODO(gri) update the want list to be precise, now that
// the textual export data is gone.
got := fmt.Sprint(pkg.Imports())
for _, want := range []string{"go/ast", "go/token"} {
if !strings.Contains(got, want) {
t.Errorf(`Package("exports").Imports() = %s, does not contain %s`, got, want)
}
}
}
}
func TestVersionHandling(t *testing.T) {
skipSpecialPlatforms(t)
// This package only handles gc export data.
if runtime.Compiler != "gc" {
t.Skipf("gc-built packages not available (compiler = %s)", runtime.Compiler)
}
const dir = "./testdata/versions"
list, err := ioutil.ReadDir(dir)
if err != nil {
t.Fatal(err)
}
tmpdir := mktmpdir(t)
defer os.RemoveAll(tmpdir)
corruptdir := filepath.Join(tmpdir, "testdata", "versions")
if err := os.Mkdir(corruptdir, 0700); err != nil {
t.Fatal(err)
}
for _, f := range list {
name := f.Name()
if !strings.HasSuffix(name, ".a") {
continue // not a package file
}
if strings.Contains(name, "corrupted") {
continue // don't process a leftover corrupted file
}
pkgpath := "./" + name[:len(name)-2]
if testing.Verbose() {
t.Logf("importing %s", name)
}
// test that export data can be imported
_, err := Import(make(map[string]*types2.Package), pkgpath, dir, nil)
if err != nil {
// ok to fail if it fails with a no longer supported error for select files
if strings.Contains(err.Error(), "no longer supported") {
switch name {
case "test_go1.7_0.a", "test_go1.7_1.a",
"test_go1.8_4.a", "test_go1.8_5.a",
"test_go1.11_6b.a", "test_go1.11_999b.a":
continue
}
// fall through
}
// ok to fail if it fails with a newer version error for select files
if strings.Contains(err.Error(), "newer version") {
switch name {
case "test_go1.11_999i.a":
continue
}
// fall through
}
t.Errorf("import %q failed: %v", pkgpath, err)
continue
}
// create file with corrupted export data
// 1) read file
data, err := ioutil.ReadFile(filepath.Join(dir, name))
if err != nil {
t.Fatal(err)
}
// 2) find export data
i := bytes.Index(data, []byte("\n$$B\n")) + 5
j := bytes.Index(data[i:], []byte("\n$$\n")) + i
if i < 0 || j < 0 || i > j {
t.Fatalf("export data section not found (i = %d, j = %d)", i, j)
}
// 3) corrupt the data (increment every 7th byte)
for k := j - 13; k >= i; k -= 7 {
data[k]++
}
// 4) write the file
pkgpath += "_corrupted"
filename := filepath.Join(corruptdir, pkgpath) + ".a"
ioutil.WriteFile(filename, data, 0666)
// test that importing the corrupted file results in an error
_, err = Import(make(map[string]*types2.Package), pkgpath, corruptdir, nil)
if err == nil {
t.Errorf("import corrupted %q succeeded", pkgpath)
} else if msg := err.Error(); !strings.Contains(msg, "version skew") {
t.Errorf("import %q error incorrect (%s)", pkgpath, msg)
}
}
}
func TestImportStdLib(t *testing.T) {
skipSpecialPlatforms(t)
// This package only handles gc export data.
if runtime.Compiler != "gc" {
t.Skipf("gc-built packages not available (compiler = %s)", runtime.Compiler)
}
dt := maxTime
if testing.Short() && testenv.Builder() == "" {
dt = 10 * time.Millisecond
}
nimports := testDir(t, "", time.Now().Add(dt)) // installed packages
t.Logf("tested %d imports", nimports)
}
var importedObjectTests = []struct {
name string
want string
}{
// non-interfaces
{"crypto.Hash", "type Hash uint"},
{"go/ast.ObjKind", "type ObjKind int"},
{"go/types.Qualifier", "type Qualifier func(*Package) string"},
{"go/types.Comparable", "func Comparable(T Type) bool"},
{"math.Pi", "const Pi untyped float"},
{"math.Sin", "func Sin(x float64) float64"},
{"go/ast.NotNilFilter", "func NotNilFilter(_ string, v reflect.Value) bool"},
{"go/internal/gcimporter.FindPkg", "func FindPkg(path string, srcDir string) (filename string, id string)"},
// interfaces
{"context.Context", "type Context interface{Deadline() (deadline time.Time, ok bool); Done() <-chan struct{}; Err() error; Value(key interface{}) interface{}}"},
{"crypto.Decrypter", "type Decrypter interface{Decrypt(rand io.Reader, msg []byte, opts DecrypterOpts) (plaintext []byte, err error); Public() PublicKey}"},
{"encoding.BinaryMarshaler", "type BinaryMarshaler interface{MarshalBinary() (data []byte, err error)}"},
{"io.Reader", "type Reader interface{Read(p []byte) (n int, err error)}"},
{"io.ReadWriter", "type ReadWriter interface{Reader; Writer}"},
{"go/ast.Node", "type Node interface{End() go/token.Pos; Pos() go/token.Pos}"},
// go/types.Type has grown much larger - excluded for now
// {"go/types.Type", "type Type interface{String() string; Underlying() Type}"},
}
func TestImportedTypes(t *testing.T) {
skipSpecialPlatforms(t)
// This package only handles gc export data.
if runtime.Compiler != "gc" {
t.Skipf("gc-built packages not available (compiler = %s)", runtime.Compiler)
}
for _, test := range importedObjectTests {
s := strings.Split(test.name, ".")
if len(s) != 2 {
t.Fatal("inconsistent test data")
}
importPath := s[0]
objName := s[1]
pkg, err := Import(make(map[string]*types2.Package), importPath, ".", nil)
if err != nil {
t.Error(err)
continue
}
obj := pkg.Scope().Lookup(objName)
if obj == nil {
t.Errorf("%s: object not found", test.name)
continue
}
got := types2.ObjectString(obj, types2.RelativeTo(pkg))
if got != test.want {
t.Errorf("%s: got %q; want %q", test.name, got, test.want)
}
if named, _ := obj.Type().(*types2.Named); named != nil {
verifyInterfaceMethodRecvs(t, named, 0)
}
}
}
// verifyInterfaceMethodRecvs verifies that method receiver types
// are named if the methods belong to a named interface type.
func verifyInterfaceMethodRecvs(t *testing.T, named *types2.Named, level int) {
// avoid endless recursion in case of an embedding bug that lead to a cycle
if level > 10 {
t.Errorf("%s: embeds itself", named)
return
}
iface, _ := named.Underlying().(*types2.Interface)
if iface == nil {
return // not an interface
}
// check explicitly declared methods
for i := 0; i < iface.NumExplicitMethods(); i++ {
m := iface.ExplicitMethod(i)
recv := m.Type().(*types2.Signature).Recv()
if recv == nil {
t.Errorf("%s: missing receiver type", m)
continue
}
if recv.Type() != named {
t.Errorf("%s: got recv type %s; want %s", m, recv.Type(), named)
}
}
// check embedded interfaces (if they are named, too)
for i := 0; i < iface.NumEmbeddeds(); i++ {
// embedding of interfaces cannot have cycles; recursion will terminate
if etype, _ := iface.EmbeddedType(i).(*types2.Named); etype != nil {
verifyInterfaceMethodRecvs(t, etype, level+1)
}
}
}
func TestIssue5815(t *testing.T) {
skipSpecialPlatforms(t)
// This package only handles gc export data.
if runtime.Compiler != "gc" {
t.Skipf("gc-built packages not available (compiler = %s)", runtime.Compiler)
}
pkg := importPkg(t, "strings", ".")
scope := pkg.Scope()
for _, name := range scope.Names() {
obj := scope.Lookup(name)
if obj.Pkg() == nil {
t.Errorf("no pkg for %s", obj)
}
if tname, _ := obj.(*types2.TypeName); tname != nil {
named := tname.Type().(*types2.Named)
for i := 0; i < named.NumMethods(); i++ {
m := named.Method(i)
if m.Pkg() == nil {
t.Errorf("no pkg for %s", m)
}
}
}
}
}
// Smoke test to ensure that imported methods get the correct package.
func TestCorrectMethodPackage(t *testing.T) {
skipSpecialPlatforms(t)
// This package only handles gc export data.
if runtime.Compiler != "gc" {
t.Skipf("gc-built packages not available (compiler = %s)", runtime.Compiler)
}
imports := make(map[string]*types2.Package)
_, err := Import(imports, "net/http", ".", nil)
if err != nil {
t.Fatal(err)
}
mutex := imports["sync"].Scope().Lookup("Mutex").(*types2.TypeName).Type()
obj, _, _ := types2.LookupFieldOrMethod(types2.NewPointer(mutex), false, nil, "Lock")
lock := obj.(*types2.Func)
if got, want := lock.Pkg().Path(), "sync"; got != want {
t.Errorf("got package path %q; want %q", got, want)
}
}
func TestIssue13566(t *testing.T) {
skipSpecialPlatforms(t)
// This package only handles gc export data.
if runtime.Compiler != "gc" {
t.Skipf("gc-built packages not available (compiler = %s)", runtime.Compiler)
}
// On windows, we have to set the -D option for the compiler to avoid having a drive
// letter and an illegal ':' in the import path - just skip it (see also issue #3483).
if runtime.GOOS == "windows" {
t.Skip("avoid dealing with relative paths/drive letters on windows")
}
tmpdir := mktmpdir(t)
defer os.RemoveAll(tmpdir)
testoutdir := filepath.Join(tmpdir, "testdata")
// b.go needs to be compiled from the output directory so that the compiler can
// find the compiled package a. We pass the full path to compile() so that we
// don't have to copy the file to that directory.
bpath, err := filepath.Abs(filepath.Join("testdata", "b.go"))
if err != nil {
t.Fatal(err)
}
compile(t, "testdata", "a.go", testoutdir)
compile(t, testoutdir, bpath, testoutdir)
// import must succeed (test for issue at hand)
pkg := importPkg(t, "./testdata/b", tmpdir)
// make sure all indirectly imported packages have names
for _, imp := range pkg.Imports() {
if imp.Name() == "" {
t.Errorf("no name for %s package", imp.Path())
}
}
}
func TestIssue13898(t *testing.T) {
skipSpecialPlatforms(t)
// This package only handles gc export data.
if runtime.Compiler != "gc" {
t.Skipf("gc-built packages not available (compiler = %s)", runtime.Compiler)
}
// import go/internal/gcimporter which imports go/types partially
imports := make(map[string]*types2.Package)
_, err := Import(imports, "go/internal/gcimporter", ".", nil)
if err != nil {
t.Fatal(err)
}
// look for go/types package
var goTypesPkg *types2.Package
for path, pkg := range imports {
if path == "go/types" {
goTypesPkg = pkg
break
}
}
if goTypesPkg == nil {
t.Fatal("go/types not found")
}
// look for go/types2.Object type
obj := lookupObj(t, goTypesPkg.Scope(), "Object")
typ, ok := obj.Type().(*types2.Named)
if !ok {
t.Fatalf("go/types2.Object type is %v; wanted named type", typ)
}
// lookup go/types2.Object.Pkg method
m, index, indirect := types2.LookupFieldOrMethod(typ, false, nil, "Pkg")
if m == nil {
t.Fatalf("go/types2.Object.Pkg not found (index = %v, indirect = %v)", index, indirect)
}
// the method must belong to go/types
if m.Pkg().Path() != "go/types" {
t.Fatalf("found %v; want go/types", m.Pkg())
}
}
func TestIssue15517(t *testing.T) {
skipSpecialPlatforms(t)
// This package only handles gc export data.
if runtime.Compiler != "gc" {
t.Skipf("gc-built packages not available (compiler = %s)", runtime.Compiler)
}
// On windows, we have to set the -D option for the compiler to avoid having a drive
// letter and an illegal ':' in the import path - just skip it (see also issue #3483).
if runtime.GOOS == "windows" {
t.Skip("avoid dealing with relative paths/drive letters on windows")
}
tmpdir := mktmpdir(t)
defer os.RemoveAll(tmpdir)
compile(t, "testdata", "p.go", filepath.Join(tmpdir, "testdata"))
// Multiple imports of p must succeed without redeclaration errors.
// We use an import path that's not cleaned up so that the eventual
// file path for the package is different from the package path; this
// will expose the error if it is present.
//
// (Issue: Both the textual and the binary importer used the file path
// of the package to be imported as key into the shared packages map.
// However, the binary importer then used the package path to identify
// the imported package to mark it as complete; effectively marking the
// wrong package as complete. By using an "unclean" package path, the
// file and package path are different, exposing the problem if present.
// The same issue occurs with vendoring.)
imports := make(map[string]*types2.Package)
for i := 0; i < 3; i++ {
if _, err := Import(imports, "./././testdata/p", tmpdir, nil); err != nil {
t.Fatal(err)
}
}
}
func TestIssue15920(t *testing.T) {
skipSpecialPlatforms(t)
// This package only handles gc export data.
if runtime.Compiler != "gc" {
t.Skipf("gc-built packages not available (compiler = %s)", runtime.Compiler)
}
// On windows, we have to set the -D option for the compiler to avoid having a drive
// letter and an illegal ':' in the import path - just skip it (see also issue #3483).
if runtime.GOOS == "windows" {
t.Skip("avoid dealing with relative paths/drive letters on windows")
}
compileAndImportPkg(t, "issue15920")
}
func TestIssue20046(t *testing.T) {
skipSpecialPlatforms(t)
// This package only handles gc export data.
if runtime.Compiler != "gc" {
t.Skipf("gc-built packages not available (compiler = %s)", runtime.Compiler)
}
// On windows, we have to set the -D option for the compiler to avoid having a drive
// letter and an illegal ':' in the import path - just skip it (see also issue #3483).
if runtime.GOOS == "windows" {
t.Skip("avoid dealing with relative paths/drive letters on windows")
}
// "./issue20046".V.M must exist
pkg := compileAndImportPkg(t, "issue20046")
obj := lookupObj(t, pkg.Scope(), "V")
if m, index, indirect := types2.LookupFieldOrMethod(obj.Type(), false, nil, "M"); m == nil {
t.Fatalf("V.M not found (index = %v, indirect = %v)", index, indirect)
}
}
func TestIssue25301(t *testing.T) {
skipSpecialPlatforms(t)
// This package only handles gc export data.
if runtime.Compiler != "gc" {
t.Skipf("gc-built packages not available (compiler = %s)", runtime.Compiler)
}
// On windows, we have to set the -D option for the compiler to avoid having a drive
// letter and an illegal ':' in the import path - just skip it (see also issue #3483).
if runtime.GOOS == "windows" {
t.Skip("avoid dealing with relative paths/drive letters on windows")
}
compileAndImportPkg(t, "issue25301")
}
func TestIssue25596(t *testing.T) {
skipSpecialPlatforms(t)
// This package only handles gc export data.
if runtime.Compiler != "gc" {
t.Skipf("gc-built packages not available (compiler = %s)", runtime.Compiler)
}
// On windows, we have to set the -D option for the compiler to avoid having a drive
// letter and an illegal ':' in the import path - just skip it (see also issue #3483).
if runtime.GOOS == "windows" {
t.Skip("avoid dealing with relative paths/drive letters on windows")
}
compileAndImportPkg(t, "issue25596")
}
func importPkg(t *testing.T, path, srcDir string) *types2.Package {
pkg, err := Import(make(map[string]*types2.Package), path, srcDir, nil)
if err != nil {
t.Fatal(err)
}
return pkg
}
func compileAndImportPkg(t *testing.T, name string) *types2.Package {
tmpdir := mktmpdir(t)
defer os.RemoveAll(tmpdir)
compile(t, "testdata", name+".go", filepath.Join(tmpdir, "testdata"))
return importPkg(t, "./testdata/"+name, tmpdir)
}
func lookupObj(t *testing.T, scope *types2.Scope, name string) types2.Object {
if obj := scope.Lookup(name); obj != nil {
return obj
}
t.Fatalf("%s not found", name)
return nil
}

View File

@ -0,0 +1,612 @@
// UNREVIEWED
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Indexed package import.
// See cmd/compile/internal/gc/iexport.go for the export data format.
package importer
import (
"bytes"
"cmd/compile/internal/syntax"
"cmd/compile/internal/types2"
"encoding/binary"
"fmt"
"go/constant"
"go/token"
"io"
"math/big"
"sort"
)
type intReader struct {
*bytes.Reader
path string
}
func (r *intReader) int64() int64 {
i, err := binary.ReadVarint(r.Reader)
if err != nil {
errorf("import %q: read varint error: %v", r.path, err)
}
return i
}
func (r *intReader) uint64() uint64 {
i, err := binary.ReadUvarint(r.Reader)
if err != nil {
errorf("import %q: read varint error: %v", r.path, err)
}
return i
}
const predeclReserved = 32
type itag uint64
const (
// Types
definedType itag = iota
pointerType
sliceType
arrayType
chanType
mapType
signatureType
structType
interfaceType
)
const io_SeekCurrent = 1 // io.SeekCurrent (not defined in Go 1.4)
// iImportData imports a package from the serialized package data
// and returns the number of bytes consumed and a reference to the package.
// If the export data version is not recognized or the format is otherwise
// compromised, an error is returned.
func iImportData(imports map[string]*types2.Package, data []byte, path string) (_ int, pkg *types2.Package, err error) {
const currentVersion = 1
version := int64(-1)
defer func() {
if e := recover(); e != nil {
if version > currentVersion {
err = fmt.Errorf("cannot import %q (%v), export data is newer version - update tool", path, e)
} else {
err = fmt.Errorf("cannot import %q (%v), possibly version skew - reinstall package", path, e)
}
}
}()
r := &intReader{bytes.NewReader(data), path}
version = int64(r.uint64())
switch version {
case currentVersion, 0:
default:
errorf("unknown iexport format version %d", version)
}
sLen := int64(r.uint64())
dLen := int64(r.uint64())
whence, _ := r.Seek(0, io_SeekCurrent)
stringData := data[whence : whence+sLen]
declData := data[whence+sLen : whence+sLen+dLen]
r.Seek(sLen+dLen, io_SeekCurrent)
p := iimporter{
ipath: path,
version: int(version),
stringData: stringData,
stringCache: make(map[uint64]string),
pkgCache: make(map[uint64]*types2.Package),
declData: declData,
pkgIndex: make(map[*types2.Package]map[string]uint64),
typCache: make(map[uint64]types2.Type),
}
for i, pt := range predeclared {
p.typCache[uint64(i)] = pt
}
pkgList := make([]*types2.Package, r.uint64())
for i := range pkgList {
pkgPathOff := r.uint64()
pkgPath := p.stringAt(pkgPathOff)
pkgName := p.stringAt(r.uint64())
_ = r.uint64() // package height; unused by go/types
if pkgPath == "" {
pkgPath = path
}
pkg := imports[pkgPath]
if pkg == nil {
pkg = types2.NewPackage(pkgPath, pkgName)
imports[pkgPath] = pkg
} else if pkg.Name() != pkgName {
errorf("conflicting names %s and %s for package %q", pkg.Name(), pkgName, path)
}
p.pkgCache[pkgPathOff] = pkg
nameIndex := make(map[string]uint64)
for nSyms := r.uint64(); nSyms > 0; nSyms-- {
name := p.stringAt(r.uint64())
nameIndex[name] = r.uint64()
}
p.pkgIndex[pkg] = nameIndex
pkgList[i] = pkg
}
localpkg := pkgList[0]
names := make([]string, 0, len(p.pkgIndex[localpkg]))
for name := range p.pkgIndex[localpkg] {
names = append(names, name)
}
sort.Strings(names)
for _, name := range names {
p.doDecl(localpkg, name)
}
for _, typ := range p.interfaceList {
typ.Complete()
}
// record all referenced packages as imports
list := append(([]*types2.Package)(nil), pkgList[1:]...)
sort.Sort(byPath(list))
localpkg.SetImports(list)
// package was imported completely and without errors
localpkg.MarkComplete()
consumed, _ := r.Seek(0, io_SeekCurrent)
return int(consumed), localpkg, nil
}
type iimporter struct {
ipath string
version int
stringData []byte
stringCache map[uint64]string
pkgCache map[uint64]*types2.Package
declData []byte
pkgIndex map[*types2.Package]map[string]uint64
typCache map[uint64]types2.Type
interfaceList []*types2.Interface
}
func (p *iimporter) doDecl(pkg *types2.Package, name string) {
// See if we've already imported this declaration.
if obj := pkg.Scope().Lookup(name); obj != nil {
return
}
off, ok := p.pkgIndex[pkg][name]
if !ok {
errorf("%v.%v not in index", pkg, name)
}
r := &importReader{p: p, currPkg: pkg}
// Reader.Reset is not available in Go 1.4.
// Use bytes.NewReader for now.
// r.declReader.Reset(p.declData[off:])
r.declReader = *bytes.NewReader(p.declData[off:])
r.obj(name)
}
func (p *iimporter) stringAt(off uint64) string {
if s, ok := p.stringCache[off]; ok {
return s
}
slen, n := binary.Uvarint(p.stringData[off:])
if n <= 0 {
errorf("varint failed")
}
spos := off + uint64(n)
s := string(p.stringData[spos : spos+slen])
p.stringCache[off] = s
return s
}
func (p *iimporter) pkgAt(off uint64) *types2.Package {
if pkg, ok := p.pkgCache[off]; ok {
return pkg
}
path := p.stringAt(off)
errorf("missing package %q in %q", path, p.ipath)
return nil
}
func (p *iimporter) typAt(off uint64, base *types2.Named) types2.Type {
if t, ok := p.typCache[off]; ok && (base == nil || !isInterface(t)) {
return t
}
if off < predeclReserved {
errorf("predeclared type missing from cache: %v", off)
}
r := &importReader{p: p}
// Reader.Reset is not available in Go 1.4.
// Use bytes.NewReader for now.
// r.declReader.Reset(p.declData[off-predeclReserved:])
r.declReader = *bytes.NewReader(p.declData[off-predeclReserved:])
t := r.doType(base)
if base == nil || !isInterface(t) {
p.typCache[off] = t
}
return t
}
type importReader struct {
p *iimporter
declReader bytes.Reader
currPkg *types2.Package
prevFile string
prevLine int64
prevColumn int64
}
func (r *importReader) obj(name string) {
tag := r.byte()
pos := r.pos()
switch tag {
case 'A':
typ := r.typ()
r.declare(types2.NewTypeName(pos, r.currPkg, name, typ))
case 'C':
typ, val := r.value()
r.declare(types2.NewConst(pos, r.currPkg, name, typ, val))
case 'F':
sig := r.signature(nil)
r.declare(types2.NewFunc(pos, r.currPkg, name, sig))
case 'T':
// Types can be recursive. We need to setup a stub
// declaration before recursing.
obj := types2.NewTypeName(pos, r.currPkg, name, nil)
named := types2.NewNamed(obj, nil, nil)
r.declare(obj)
underlying := r.p.typAt(r.uint64(), named).Underlying()
named.SetUnderlying(underlying)
if !isInterface(underlying) {
for n := r.uint64(); n > 0; n-- {
mpos := r.pos()
mname := r.ident()
recv := r.param()
msig := r.signature(recv)
named.AddMethod(types2.NewFunc(mpos, r.currPkg, mname, msig))
}
}
case 'V':
typ := r.typ()
r.declare(types2.NewVar(pos, r.currPkg, name, typ))
default:
errorf("unexpected tag: %v", tag)
}
}
func (r *importReader) declare(obj types2.Object) {
obj.Pkg().Scope().Insert(obj)
}
func (r *importReader) value() (typ types2.Type, val constant.Value) {
typ = r.typ()
switch b := typ.Underlying().(*types2.Basic); b.Info() & types2.IsConstType {
case types2.IsBoolean:
val = constant.MakeBool(r.bool())
case types2.IsString:
val = constant.MakeString(r.string())
case types2.IsInteger:
var x big.Int
r.mpint(&x, b)
val = constant.Make(&x)
case types2.IsFloat:
val = r.mpfloat(b)
case types2.IsComplex:
re := r.mpfloat(b)
im := r.mpfloat(b)
val = constant.BinaryOp(re, token.ADD, constant.MakeImag(im))
default:
errorf("unexpected type %v", typ) // panics
panic("unreachable")
}
return
}
func intSize(b *types2.Basic) (signed bool, maxBytes uint) {
if (b.Info() & types2.IsUntyped) != 0 {
return true, 64
}
switch b.Kind() {
case types2.Float32, types2.Complex64:
return true, 3
case types2.Float64, types2.Complex128:
return true, 7
}
signed = (b.Info() & types2.IsUnsigned) == 0
switch b.Kind() {
case types2.Int8, types2.Uint8:
maxBytes = 1
case types2.Int16, types2.Uint16:
maxBytes = 2
case types2.Int32, types2.Uint32:
maxBytes = 4
default:
maxBytes = 8
}
return
}
func (r *importReader) mpint(x *big.Int, typ *types2.Basic) {
signed, maxBytes := intSize(typ)
maxSmall := 256 - maxBytes
if signed {
maxSmall = 256 - 2*maxBytes
}
if maxBytes == 1 {
maxSmall = 256
}
n, _ := r.declReader.ReadByte()
if uint(n) < maxSmall {
v := int64(n)
if signed {
v >>= 1
if n&1 != 0 {
v = ^v
}
}
x.SetInt64(v)
return
}
v := -n
if signed {
v = -(n &^ 1) >> 1
}
if v < 1 || uint(v) > maxBytes {
errorf("weird decoding: %v, %v => %v", n, signed, v)
}
b := make([]byte, v)
io.ReadFull(&r.declReader, b)
x.SetBytes(b)
if signed && n&1 != 0 {
x.Neg(x)
}
}
func (r *importReader) mpfloat(typ *types2.Basic) constant.Value {
var mant big.Int
r.mpint(&mant, typ)
var f big.Float
f.SetInt(&mant)
if f.Sign() != 0 {
f.SetMantExp(&f, int(r.int64()))
}
return constant.Make(&f)
}
func (r *importReader) ident() string {
return r.string()
}
func (r *importReader) qualifiedIdent() (*types2.Package, string) {
name := r.string()
pkg := r.pkg()
return pkg, name
}
func (r *importReader) pos() syntax.Pos {
if r.p.version >= 1 {
r.posv1()
} else {
r.posv0()
}
if r.prevFile == "" && r.prevLine == 0 && r.prevColumn == 0 {
return syntax.Pos{}
}
// TODO(gri) fix this
// return r.p.fake.pos(r.prevFile, int(r.prevLine), int(r.prevColumn))
return syntax.Pos{}
}
func (r *importReader) posv0() {
delta := r.int64()
if delta != deltaNewFile {
r.prevLine += delta
} else if l := r.int64(); l == -1 {
r.prevLine += deltaNewFile
} else {
r.prevFile = r.string()
r.prevLine = l
}
}
func (r *importReader) posv1() {
delta := r.int64()
r.prevColumn += delta >> 1
if delta&1 != 0 {
delta = r.int64()
r.prevLine += delta >> 1
if delta&1 != 0 {
r.prevFile = r.string()
}
}
}
func (r *importReader) typ() types2.Type {
return r.p.typAt(r.uint64(), nil)
}
func isInterface(t types2.Type) bool {
_, ok := t.(*types2.Interface)
return ok
}
func (r *importReader) pkg() *types2.Package { return r.p.pkgAt(r.uint64()) }
func (r *importReader) string() string { return r.p.stringAt(r.uint64()) }
func (r *importReader) doType(base *types2.Named) types2.Type {
switch k := r.kind(); k {
default:
errorf("unexpected kind tag in %q: %v", r.p.ipath, k)
return nil
case definedType:
pkg, name := r.qualifiedIdent()
r.p.doDecl(pkg, name)
return pkg.Scope().Lookup(name).(*types2.TypeName).Type()
case pointerType:
return types2.NewPointer(r.typ())
case sliceType:
return types2.NewSlice(r.typ())
case arrayType:
n := r.uint64()
return types2.NewArray(r.typ(), int64(n))
case chanType:
dir := chanDir(int(r.uint64()))
return types2.NewChan(dir, r.typ())
case mapType:
return types2.NewMap(r.typ(), r.typ())
case signatureType:
r.currPkg = r.pkg()
return r.signature(nil)
case structType:
r.currPkg = r.pkg()
fields := make([]*types2.Var, r.uint64())
tags := make([]string, len(fields))
for i := range fields {
fpos := r.pos()
fname := r.ident()
ftyp := r.typ()
emb := r.bool()
tag := r.string()
fields[i] = types2.NewField(fpos, r.currPkg, fname, ftyp, emb)
tags[i] = tag
}
return types2.NewStruct(fields, tags)
case interfaceType:
r.currPkg = r.pkg()
embeddeds := make([]types2.Type, r.uint64())
for i := range embeddeds {
_ = r.pos()
embeddeds[i] = r.typ()
}
methods := make([]*types2.Func, r.uint64())
for i := range methods {
mpos := r.pos()
mname := r.ident()
// TODO(mdempsky): Matches bimport.go, but I
// don't agree with this.
var recv *types2.Var
if base != nil {
recv = types2.NewVar(syntax.Pos{}, r.currPkg, "", base)
}
msig := r.signature(recv)
methods[i] = types2.NewFunc(mpos, r.currPkg, mname, msig)
}
typ := types2.NewInterfaceType(methods, embeddeds)
r.p.interfaceList = append(r.p.interfaceList, typ)
return typ
}
}
func (r *importReader) kind() itag {
return itag(r.uint64())
}
func (r *importReader) signature(recv *types2.Var) *types2.Signature {
params := r.paramList()
results := r.paramList()
variadic := params.Len() > 0 && r.bool()
return types2.NewSignature(recv, params, results, variadic)
}
func (r *importReader) paramList() *types2.Tuple {
xs := make([]*types2.Var, r.uint64())
for i := range xs {
xs[i] = r.param()
}
return types2.NewTuple(xs...)
}
func (r *importReader) param() *types2.Var {
pos := r.pos()
name := r.ident()
typ := r.typ()
return types2.NewParam(pos, r.currPkg, name, typ)
}
func (r *importReader) bool() bool {
return r.uint64() != 0
}
func (r *importReader) int64() int64 {
n, err := binary.ReadVarint(&r.declReader)
if err != nil {
errorf("readVarint: %v", err)
}
return n
}
func (r *importReader) uint64() uint64 {
n, err := binary.ReadUvarint(&r.declReader)
if err != nil {
errorf("readUvarint: %v", err)
}
return n
}
func (r *importReader) byte() byte {
x, err := r.declReader.ReadByte()
if err != nil {
errorf("declReader.ReadByte: %v", err)
}
return x
}

View File

@ -0,0 +1,128 @@
// UNREVIEWED
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements support functionality for iimport.go.
package importer
import (
"cmd/compile/internal/types2"
"fmt"
"go/token"
"sync"
)
func errorf(format string, args ...interface{}) {
panic(fmt.Sprintf(format, args...))
}
const deltaNewFile = -64 // see cmd/compile/internal/gc/bexport.go
// Synthesize a token.Pos
type fakeFileSet struct {
fset *token.FileSet
files map[string]*token.File
}
func (s *fakeFileSet) pos(file string, line, column int) token.Pos {
// TODO(mdempsky): Make use of column.
// Since we don't know the set of needed file positions, we
// reserve maxlines positions per file.
const maxlines = 64 * 1024
f := s.files[file]
if f == nil {
f = s.fset.AddFile(file, -1, maxlines)
s.files[file] = f
// Allocate the fake linebreak indices on first use.
// TODO(adonovan): opt: save ~512KB using a more complex scheme?
fakeLinesOnce.Do(func() {
fakeLines = make([]int, maxlines)
for i := range fakeLines {
fakeLines[i] = i
}
})
f.SetLines(fakeLines)
}
if line > maxlines {
line = 1
}
// Treat the file as if it contained only newlines
// and column=1: use the line number as the offset.
return f.Pos(line - 1)
}
var (
fakeLines []int
fakeLinesOnce sync.Once
)
func chanDir(d int) types2.ChanDir {
// tag values must match the constants in cmd/compile/internal/gc/go.go
switch d {
case 1 /* Crecv */ :
return types2.RecvOnly
case 2 /* Csend */ :
return types2.SendOnly
case 3 /* Cboth */ :
return types2.SendRecv
default:
errorf("unexpected channel dir %d", d)
return 0
}
}
var predeclared = []types2.Type{
// basic types
types2.Typ[types2.Bool],
types2.Typ[types2.Int],
types2.Typ[types2.Int8],
types2.Typ[types2.Int16],
types2.Typ[types2.Int32],
types2.Typ[types2.Int64],
types2.Typ[types2.Uint],
types2.Typ[types2.Uint8],
types2.Typ[types2.Uint16],
types2.Typ[types2.Uint32],
types2.Typ[types2.Uint64],
types2.Typ[types2.Uintptr],
types2.Typ[types2.Float32],
types2.Typ[types2.Float64],
types2.Typ[types2.Complex64],
types2.Typ[types2.Complex128],
types2.Typ[types2.String],
// basic type aliases
types2.Universe.Lookup("byte").Type(),
types2.Universe.Lookup("rune").Type(),
// error
types2.Universe.Lookup("error").Type(),
// untyped types
types2.Typ[types2.UntypedBool],
types2.Typ[types2.UntypedInt],
types2.Typ[types2.UntypedRune],
types2.Typ[types2.UntypedFloat],
types2.Typ[types2.UntypedComplex],
types2.Typ[types2.UntypedString],
types2.Typ[types2.UntypedNil],
// package unsafe
types2.Typ[types2.UnsafePointer],
// invalid type
types2.Typ[types2.Invalid], // only appears in packages with errors
// used internally by gc; never used by this package or in .a files
anyType{},
}
type anyType struct{}
func (t anyType) Underlying() types2.Type { return t }
func (t anyType) String() string { return "any" }

View File

@ -0,0 +1,15 @@
// UNREVIEWED
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Input for TestIssue13566
package a
import "encoding/json"
type A struct {
a *A
json json.RawMessage
}

View File

@ -0,0 +1,12 @@
// UNREVIEWED
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Input for TestIssue13566
package b
import "./a"
type A a.A

View File

@ -0,0 +1,89 @@
// UNREVIEWED
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file is used to generate an object file which
// serves as test file for gcimporter_test.go.
package exports
import "go/ast"
// Issue 3682: Correctly read dotted identifiers from export data.
const init1 = 0
func init() {}
const (
C0 int = 0
C1 = 3.14159265
C2 = 2.718281828i
C3 = -123.456e-789
C4 = +123.456e+789
C5 = 1234i
C6 = "foo\n"
C7 = `bar\n`
)
type (
T1 int
T2 [10]int
T3 []int
T4 *int
T5 chan int
T6a chan<- int
T6b chan (<-chan int)
T6c chan<- (chan int)
T7 <-chan *ast.File
T8 struct{}
T9 struct {
a int
b, c float32
d []string `go:"tag"`
}
T10 struct {
T8
T9
_ *T10
}
T11 map[int]string
T12 interface{}
T13 interface {
m1()
m2(int) float32
}
T14 interface {
T12
T13
m3(x ...struct{}) []T9
}
T15 func()
T16 func(int)
T17 func(x int)
T18 func() float32
T19 func() (x float32)
T20 func(...interface{})
T21 struct{ next *T21 }
T22 struct{ link *T23 }
T23 struct{ link *T22 }
T24 *T24
T25 *T26
T26 *T27
T27 *T25
T28 func(T28) T28
)
var (
V0 int
V1 = -991.0
V2 float32 = 1.2
)
func F1() {}
func F2(x int) {}
func F3() int { return 0 }
func F4() float32 { return 0 }
func F5(a, b, c int, u, v, w struct{ x, y T1 }, more ...interface{}) (p, q, r chan<- T10)
func (p *T1) M1()

View File

@ -0,0 +1,12 @@
// UNREVIEWED
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package p
// The underlying type of Error is the underlying type of error.
// Make sure we can import this again without problems.
type Error error
func F() Error { return nil }

View File

@ -1,5 +1,10 @@
// Copyright 2011 The Go Authors. All rights reserved.
// UNREVIEWED
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package syscall
package p
var V interface {
M()
}

View File

@ -0,0 +1,18 @@
// UNREVIEWED
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package issue25301
type (
A = interface {
M()
}
T interface {
A
}
S struct{}
)
func (S) M() { println("m") }

View File

@ -0,0 +1,14 @@
// UNREVIEWED
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package issue25596
type E interface {
M() T
}
type T interface {
E
}

View File

@ -0,0 +1,14 @@
// UNREVIEWED
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Input for TestIssue15517
package p
const C = 0
var V int
func F() {}

View File

@ -0,0 +1,29 @@
// UNREVIEWED
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// To create a test case for a new export format version,
// build this package with the latest compiler and store
// the resulting .a file appropriately named in the versions
// directory. The VersionHandling test will pick it up.
//
// In the testdata/versions:
//
// go build -o test_go1.$X_$Y.a test.go
//
// with $X = Go version and $Y = export format version
// (add 'b' or 'i' to distinguish between binary and
// indexed format starting with 1.11 as long as both
// formats are supported).
//
// Make sure this source is extended such that it exercises
// whatever export format change has taken place.
package test
// Any release before and including Go 1.7 didn't encode
// the package for a blank struct field.
type BlankField struct {
_ int
}

View File

@ -354,6 +354,13 @@ func (v *hairyVisitor) doNode(n ir.Node) bool {
return true
case ir.OCLOSURE:
// TODO(danscales,mdempsky): Get working with -G.
// Probably after #43818 is fixed.
if base.Flag.G > 0 {
v.reason = "inlining closures not yet working with -G"
return true
}
// TODO(danscales) - fix some bugs when budget is lowered below 15
// Maybe make budget proportional to number of closure variables, e.g.:
//v.budget -= int32(len(n.(*ir.ClosureExpr).Func.ClosureVars) * 3)
@ -1221,7 +1228,7 @@ func (subst *inlsubst) closure(n *ir.ClosureExpr) ir.Node {
newrecv = newrecvs[0]
}
newt := types.NewSignature(oldt.Pkg(), newrecv,
subst.fields(oldt.Params()), subst.fields(oldt.Results()))
nil, subst.fields(oldt.Params()), subst.fields(oldt.Results()))
newfn.Nname.SetType(newt)
newfn.Body = subst.list(oldfn.Body)

View File

@ -14,12 +14,13 @@ func _() {
_ = x[PAUTOHEAP-3]
_ = x[PPARAM-4]
_ = x[PPARAMOUT-5]
_ = x[PFUNC-6]
_ = x[PTYPEPARAM-6]
_ = x[PFUNC-7]
}
const _Class_name = "PxxxPEXTERNPAUTOPAUTOHEAPPPARAMPPARAMOUTPFUNC"
const _Class_name = "PxxxPEXTERNPAUTOPAUTOHEAPPPARAMPPARAMOUTPTYPEPARAMPFUNC"
var _Class_index = [...]uint8{0, 4, 11, 16, 25, 31, 40, 45}
var _Class_index = [...]uint8{0, 4, 11, 16, 25, 31, 40, 50, 55}
func (i Class) String() string {
if i >= Class(len(_Class_index)-1) {

View File

@ -670,6 +670,20 @@ func (n *UnaryExpr) SetOp(op Op) {
}
}
// An InstExpr is a generic function or type instantiation.
type InstExpr struct {
miniExpr
X Node
Targs []Node
}
func NewInstExpr(pos src.XPos, op Op, x Node, targs []Node) *InstExpr {
n := &InstExpr{X: x, Targs: targs}
n.pos = pos
n.op = op
return n
}
func IsZero(n Node) bool {
switch n.Op() {
case ONIL:

View File

@ -473,13 +473,14 @@ type Class uint8
//go:generate stringer -type=Class name.go
const (
Pxxx Class = iota // no class; used during ssa conversion to indicate pseudo-variables
PEXTERN // global variables
PAUTO // local variables
PAUTOHEAP // local variables or parameters moved to heap
PPARAM // input arguments
PPARAMOUT // output results
PFUNC // global functions
Pxxx Class = iota // no class; used during ssa conversion to indicate pseudo-variables
PEXTERN // global variables
PAUTO // local variables
PAUTOHEAP // local variables or parameters moved to heap
PPARAM // input arguments
PPARAMOUT // output results
PTYPEPARAM // type params
PFUNC // global functions
// Careful: Class is stored in three bits in Node.flags.
_ = uint((1 << 3) - iota) // static assert for iota <= (1 << 3)

View File

@ -278,6 +278,8 @@ const (
// OTYPESW: Left := Right.(type) (appears as .Left of OSWITCH)
// Left is nil if there is no type-switch variable
OTYPESW
OFUNCINST // instantiation of a generic function
OTYPEINST // instantiation of a generic type
// types
OTCHAN // chan int

View File

@ -669,6 +669,33 @@ func (n *InlinedCallExpr) editChildren(edit func(Node) Node) {
editNodes(n.ReturnVars, edit)
}
func (n *InstExpr) Format(s fmt.State, verb rune) { fmtNode(n, s, verb) }
func (n *InstExpr) copy() Node {
c := *n
c.init = copyNodes(c.init)
c.Targs = copyNodes(c.Targs)
return &c
}
func (n *InstExpr) doChildren(do func(Node) bool) bool {
if doNodes(n.init, do) {
return true
}
if n.X != nil && do(n.X) {
return true
}
if doNodes(n.Targs, do) {
return true
}
return false
}
func (n *InstExpr) editChildren(edit func(Node) Node) {
editNodes(n.init, edit)
if n.X != nil {
n.X = edit(n.X).(Node)
}
editNodes(n.Targs, edit)
}
func (n *InterfaceType) Format(s fmt.State, verb rune) { fmtNode(n, s, verb) }
func (n *InterfaceType) copy() Node {
c := *n

View File

@ -137,34 +137,36 @@ func _() {
_ = x[OSELECT-126]
_ = x[OSWITCH-127]
_ = x[OTYPESW-128]
_ = x[OTCHAN-129]
_ = x[OTMAP-130]
_ = x[OTSTRUCT-131]
_ = x[OTINTER-132]
_ = x[OTFUNC-133]
_ = x[OTARRAY-134]
_ = x[OTSLICE-135]
_ = x[OINLCALL-136]
_ = x[OEFACE-137]
_ = x[OITAB-138]
_ = x[OIDATA-139]
_ = x[OSPTR-140]
_ = x[OCFUNC-141]
_ = x[OCHECKNIL-142]
_ = x[OVARDEF-143]
_ = x[OVARKILL-144]
_ = x[OVARLIVE-145]
_ = x[ORESULT-146]
_ = x[OINLMARK-147]
_ = x[OLINKSYMOFFSET-148]
_ = x[OTAILCALL-149]
_ = x[OGETG-150]
_ = x[OEND-151]
_ = x[OFUNCINST-129]
_ = x[OTYPEINST-130]
_ = x[OTCHAN-131]
_ = x[OTMAP-132]
_ = x[OTSTRUCT-133]
_ = x[OTINTER-134]
_ = x[OTFUNC-135]
_ = x[OTARRAY-136]
_ = x[OTSLICE-137]
_ = x[OINLCALL-138]
_ = x[OEFACE-139]
_ = x[OITAB-140]
_ = x[OIDATA-141]
_ = x[OSPTR-142]
_ = x[OCFUNC-143]
_ = x[OCHECKNIL-144]
_ = x[OVARDEF-145]
_ = x[OVARKILL-146]
_ = x[OVARLIVE-147]
_ = x[ORESULT-148]
_ = x[OINLMARK-149]
_ = x[OLINKSYMOFFSET-150]
_ = x[OTAILCALL-151]
_ = x[OGETG-152]
_ = x[OEND-153]
}
const _Op_name = "XXXNAMENONAMETYPEPACKLITERALNILADDSUBORXORADDSTRADDRANDANDAPPENDBYTES2STRBYTES2STRTMPRUNES2STRSTR2BYTESSTR2BYTESTMPSTR2RUNESASAS2AS2DOTTYPEAS2FUNCAS2MAPRAS2RECVASOPCALLCALLFUNCCALLMETHCALLINTERCALLPARTCAPCLOSECLOSURECOMPLITMAPLITSTRUCTLITARRAYLITSLICELITPTRLITCONVCONVIFACECONVNOPCOPYDCLDCLFUNCDCLCONSTDCLTYPEDELETEDOTDOTPTRDOTMETHDOTINTERXDOTDOTTYPEDOTTYPE2EQNELTLEGEGTDEREFINDEXINDEXMAPKEYSTRUCTKEYLENMAKEMAKECHANMAKEMAPMAKESLICEMAKESLICECOPYMULDIVMODLSHRSHANDANDNOTNEWNOTBITNOTPLUSNEGORORPANICPRINTPRINTNPARENSENDSLICESLICEARRSLICESTRSLICE3SLICE3ARRSLICEHEADERRECOVERRECVRUNESTRSELRECV2IOTAREALIMAGCOMPLEXALIGNOFOFFSETOFSIZEOFMETHEXPRSTMTEXPRBLOCKBREAKCASECONTINUEDEFERFALLFORFORUNTILGOTOIFLABELGORANGERETURNSELECTSWITCHTYPESWTCHANTMAPTSTRUCTTINTERTFUNCTARRAYTSLICEINLCALLEFACEITABIDATASPTRCFUNCCHECKNILVARDEFVARKILLVARLIVERESULTINLMARKLINKSYMOFFSETTAILCALLGETGEND"
const _Op_name = "XXXNAMENONAMETYPEPACKLITERALNILADDSUBORXORADDSTRADDRANDANDAPPENDBYTES2STRBYTES2STRTMPRUNES2STRSTR2BYTESSTR2BYTESTMPSTR2RUNESASAS2AS2DOTTYPEAS2FUNCAS2MAPRAS2RECVASOPCALLCALLFUNCCALLMETHCALLINTERCALLPARTCAPCLOSECLOSURECOMPLITMAPLITSTRUCTLITARRAYLITSLICELITPTRLITCONVCONVIFACECONVNOPCOPYDCLDCLFUNCDCLCONSTDCLTYPEDELETEDOTDOTPTRDOTMETHDOTINTERXDOTDOTTYPEDOTTYPE2EQNELTLEGEGTDEREFINDEXINDEXMAPKEYSTRUCTKEYLENMAKEMAKECHANMAKEMAPMAKESLICEMAKESLICECOPYMULDIVMODLSHRSHANDANDNOTNEWNOTBITNOTPLUSNEGORORPANICPRINTPRINTNPARENSENDSLICESLICEARRSLICESTRSLICE3SLICE3ARRSLICEHEADERRECOVERRECVRUNESTRSELRECV2IOTAREALIMAGCOMPLEXALIGNOFOFFSETOFSIZEOFMETHEXPRSTMTEXPRBLOCKBREAKCASECONTINUEDEFERFALLFORFORUNTILGOTOIFLABELGORANGERETURNSELECTSWITCHTYPESWFUNCINSTTYPEINSTTCHANTMAPTSTRUCTTINTERTFUNCTARRAYTSLICEINLCALLEFACEITABIDATASPTRCFUNCCHECKNILVARDEFVARKILLVARLIVERESULTINLMARKLINKSYMOFFSETTAILCALLGETGEND"
var _Op_index = [...]uint16{0, 3, 7, 13, 17, 21, 28, 31, 34, 37, 39, 42, 48, 52, 58, 64, 73, 85, 94, 103, 115, 124, 126, 129, 139, 146, 153, 160, 164, 168, 176, 184, 193, 201, 204, 209, 216, 223, 229, 238, 246, 254, 260, 264, 273, 280, 284, 287, 294, 302, 309, 315, 318, 324, 331, 339, 343, 350, 358, 360, 362, 364, 366, 368, 370, 375, 380, 388, 391, 400, 403, 407, 415, 422, 431, 444, 447, 450, 453, 456, 459, 462, 468, 471, 474, 480, 484, 487, 491, 496, 501, 507, 512, 516, 521, 529, 537, 543, 552, 563, 570, 574, 581, 589, 593, 597, 601, 608, 615, 623, 629, 637, 645, 650, 655, 659, 667, 672, 676, 679, 687, 691, 693, 698, 700, 705, 711, 717, 723, 729, 734, 738, 745, 751, 756, 762, 768, 775, 780, 784, 789, 793, 798, 806, 812, 819, 826, 832, 839, 852, 860, 864, 867}
var _Op_index = [...]uint16{0, 3, 7, 13, 17, 21, 28, 31, 34, 37, 39, 42, 48, 52, 58, 64, 73, 85, 94, 103, 115, 124, 126, 129, 139, 146, 153, 160, 164, 168, 176, 184, 193, 201, 204, 209, 216, 223, 229, 238, 246, 254, 260, 264, 273, 280, 284, 287, 294, 302, 309, 315, 318, 324, 331, 339, 343, 350, 358, 360, 362, 364, 366, 368, 370, 375, 380, 388, 391, 400, 403, 407, 415, 422, 431, 444, 447, 450, 453, 456, 459, 462, 468, 471, 474, 480, 484, 487, 491, 496, 501, 507, 512, 516, 521, 529, 537, 543, 552, 563, 570, 574, 581, 589, 593, 597, 601, 608, 615, 623, 629, 637, 645, 650, 655, 659, 667, 672, 676, 679, 687, 691, 693, 698, 700, 705, 711, 717, 723, 729, 737, 745, 750, 754, 761, 767, 772, 778, 784, 791, 796, 800, 805, 809, 814, 822, 828, 835, 842, 848, 855, 868, 876, 880, 883}
func (i Op) String() string {
if i >= Op(len(_Op_index)-1) {

View File

@ -32,4 +32,7 @@ type Package struct {
// Exported (or re-exported) symbols.
Exports []*Name
// Map from function names of stencils to already-created stencils.
Stencils map[*types.Sym]*Func
}

View File

@ -0,0 +1,241 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"go/constant"
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/syntax"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/compile/internal/types2"
)
// TODO(mdempsky): Skip blank declarations? Probably only safe
// for declarations without pragmas.
func (g *irgen) decls(decls []syntax.Decl) []ir.Node {
var res ir.Nodes
for _, decl := range decls {
switch decl := decl.(type) {
case *syntax.ConstDecl:
g.constDecl(&res, decl)
case *syntax.FuncDecl:
g.funcDecl(&res, decl)
case *syntax.TypeDecl:
if ir.CurFunc == nil {
continue // already handled in irgen.generate
}
g.typeDecl(&res, decl)
case *syntax.VarDecl:
g.varDecl(&res, decl)
default:
g.unhandled("declaration", decl)
}
}
return res
}
func (g *irgen) importDecl(p *noder, decl *syntax.ImportDecl) {
// TODO(mdempsky): Merge with gcimports so we don't have to import
// packages twice.
g.pragmaFlags(decl.Pragma, 0)
ipkg := importfile(decl)
if ipkg == ir.Pkgs.Unsafe {
p.importedUnsafe = true
}
if ipkg.Path == "embed" {
p.importedEmbed = true
}
}
func (g *irgen) constDecl(out *ir.Nodes, decl *syntax.ConstDecl) {
g.pragmaFlags(decl.Pragma, 0)
for _, name := range decl.NameList {
name, obj := g.def(name)
// For untyped numeric constants, make sure the value
// representation matches what the rest of the
// compiler (really just iexport) expects.
// TODO(mdempsky): Revisit after #43891 is resolved.
val := obj.(*types2.Const).Val()
switch name.Type() {
case types.UntypedInt, types.UntypedRune:
val = constant.ToInt(val)
case types.UntypedFloat:
val = constant.ToFloat(val)
case types.UntypedComplex:
val = constant.ToComplex(val)
}
name.SetVal(val)
out.Append(ir.NewDecl(g.pos(decl), ir.ODCLCONST, name))
}
}
func (g *irgen) funcDecl(out *ir.Nodes, decl *syntax.FuncDecl) {
fn := ir.NewFunc(g.pos(decl))
fn.Nname, _ = g.def(decl.Name)
fn.Nname.Func = fn
fn.Nname.Defn = fn
fn.Pragma = g.pragmaFlags(decl.Pragma, funcPragmas)
if fn.Pragma&ir.Systemstack != 0 && fn.Pragma&ir.Nosplit != 0 {
base.ErrorfAt(fn.Pos(), "go:nosplit and go:systemstack cannot be combined")
}
if decl.Name.Value == "init" && decl.Recv == nil {
g.target.Inits = append(g.target.Inits, fn)
}
g.funcBody(fn, decl.Recv, decl.Type, decl.Body)
out.Append(fn)
}
func (g *irgen) typeDecl(out *ir.Nodes, decl *syntax.TypeDecl) {
if decl.Alias {
name, _ := g.def(decl.Name)
g.pragmaFlags(decl.Pragma, 0)
// TODO(mdempsky): This matches how typecheckdef marks aliases for
// export, but this won't generalize to exporting function-scoped
// type aliases. We should maybe just use n.Alias() instead.
if ir.CurFunc == nil {
name.Sym().Def = ir.TypeNode(name.Type())
}
out.Append(ir.NewDecl(g.pos(decl), ir.ODCLTYPE, name))
return
}
// Prevent size calculations until we set the underlying type.
types.DeferCheckSize()
name, obj := g.def(decl.Name)
ntyp, otyp := name.Type(), obj.Type()
if ir.CurFunc != nil {
typecheck.TypeGen++
ntyp.Vargen = typecheck.TypeGen
}
pragmas := g.pragmaFlags(decl.Pragma, typePragmas)
name.SetPragma(pragmas) // TODO(mdempsky): Is this still needed?
if pragmas&ir.NotInHeap != 0 {
ntyp.SetNotInHeap(true)
}
// We need to use g.typeExpr(decl.Type) here to ensure that for
// chained, defined-type declarations like
//
// type T U
//
// //go:notinheap
// type U struct { … }
//
// that we mark both T and U as NotInHeap. If we instead used just
// g.typ(otyp.Underlying()), then we'd instead set T's underlying
// type directly to the struct type (which is not marked NotInHeap)
// and fail to mark T as NotInHeap.
//
// Also, we rely here on Type.SetUnderlying allowing passing a
// defined type and handling forward references like from T to U
// above. Contrast with go/types's Named.SetUnderlying, which
// disallows this.
//
// [mdempsky: Subtleties like these are why I always vehemently
// object to new type pragmas.]
ntyp.SetUnderlying(g.typeExpr(decl.Type))
types.ResumeCheckSize()
if otyp, ok := otyp.(*types2.Named); ok && otyp.NumMethods() != 0 {
methods := make([]*types.Field, otyp.NumMethods())
for i := range methods {
m := otyp.Method(i)
meth := g.obj(m)
methods[i] = types.NewField(meth.Pos(), g.selector(m), meth.Type())
methods[i].Nname = meth
}
ntyp.Methods().Set(methods)
}
out.Append(ir.NewDecl(g.pos(decl), ir.ODCLTYPE, name))
}
func (g *irgen) varDecl(out *ir.Nodes, decl *syntax.VarDecl) {
pos := g.pos(decl)
names := make([]*ir.Name, len(decl.NameList))
for i, name := range decl.NameList {
names[i], _ = g.def(name)
}
values := g.exprList(decl.Values)
if decl.Pragma != nil {
pragma := decl.Pragma.(*pragmas)
// TODO(mdempsky): Plumb noder.importedEmbed through to here.
varEmbed(g.makeXPos, names[0], decl, pragma, true)
g.reportUnused(pragma)
}
var as2 *ir.AssignListStmt
if len(values) != 0 && len(names) != len(values) {
as2 = ir.NewAssignListStmt(pos, ir.OAS2, make([]ir.Node, len(names)), values)
}
for i, name := range names {
if ir.CurFunc != nil {
out.Append(ir.NewDecl(pos, ir.ODCL, name))
}
if as2 != nil {
as2.Lhs[i] = name
name.Defn = as2
} else {
as := ir.NewAssignStmt(pos, name, nil)
if len(values) != 0 {
as.Y = values[i]
name.Defn = as
} else if ir.CurFunc == nil {
name.Defn = as
}
out.Append(typecheck.Stmt(as))
}
}
if as2 != nil {
out.Append(typecheck.Stmt(as2))
}
}
// pragmaFlags returns any specified pragma flags included in allowed,
// and reports errors about any other, unexpected pragmas.
func (g *irgen) pragmaFlags(pragma syntax.Pragma, allowed ir.PragmaFlag) ir.PragmaFlag {
if pragma == nil {
return 0
}
p := pragma.(*pragmas)
present := p.Flag & allowed
p.Flag &^= allowed
g.reportUnused(p)
return present
}
// reportUnused reports errors about any unused pragmas.
func (g *irgen) reportUnused(pragma *pragmas) {
for _, pos := range pragma.Pos {
if pos.Flag&pragma.Flag != 0 {
base.ErrorfAt(g.makeXPos(pos.Pos), "misplaced compiler directive")
}
}
if len(pragma.Embeds) > 0 {
for _, e := range pragma.Embeds {
base.ErrorfAt(g.makeXPos(e.Pos), "misplaced go:embed directive")
}
}
}

View File

@ -0,0 +1,365 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/syntax"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/compile/internal/types2"
"cmd/internal/src"
)
func (g *irgen) expr(expr syntax.Expr) ir.Node {
// TODO(mdempsky): Change callers to not call on nil?
if expr == nil {
return nil
}
if expr, ok := expr.(*syntax.Name); ok && expr.Value == "_" {
return ir.BlankNode
}
tv, ok := g.info.Types[expr]
if !ok {
base.FatalfAt(g.pos(expr), "missing type for %v (%T)", expr, expr)
}
switch {
case tv.IsBuiltin():
// TODO(mdempsky): Handle in CallExpr?
return g.use(expr.(*syntax.Name))
case tv.IsType():
return ir.TypeNode(g.typ(tv.Type))
case tv.IsValue(), tv.IsVoid():
// ok
default:
base.FatalfAt(g.pos(expr), "unrecognized type-checker result")
}
// The gc backend expects all expressions to have a concrete type, and
// types2 mostly satisfies this expectation already. But there are a few
// cases where the Go spec doesn't require converting to concrete type,
// and so types2 leaves them untyped. So we need to fix those up here.
typ := tv.Type
if basic, ok := typ.(*types2.Basic); ok && basic.Info()&types2.IsUntyped != 0 {
switch basic.Kind() {
case types2.UntypedNil:
// ok; can appear in type switch case clauses
// TODO(mdempsky): Handle as part of type switches instead?
case types2.UntypedBool:
typ = types2.Typ[types2.Bool] // expression in "if" or "for" condition
case types2.UntypedString:
typ = types2.Typ[types2.String] // argument to "append" or "copy" calls
default:
base.FatalfAt(g.pos(expr), "unexpected untyped type: %v", basic)
}
}
// Constant expression.
if tv.Value != nil {
return Const(g.pos(expr), g.typ(typ), tv.Value)
}
n := g.expr0(typ, expr)
if n.Typecheck() != 1 {
base.FatalfAt(g.pos(expr), "missed typecheck: %+v", n)
}
if !g.match(n.Type(), typ, tv.HasOk()) {
base.FatalfAt(g.pos(expr), "expected %L to have type %v", n, typ)
}
return n
}
func (g *irgen) expr0(typ types2.Type, expr syntax.Expr) ir.Node {
pos := g.pos(expr)
switch expr := expr.(type) {
case *syntax.Name:
if _, isNil := g.info.Uses[expr].(*types2.Nil); isNil {
return Nil(pos, g.typ(typ))
}
// TODO(mdempsky): Remove dependency on typecheck.Expr.
return typecheck.Expr(g.use(expr))
case *syntax.CompositeLit:
return g.compLit(typ, expr)
case *syntax.FuncLit:
return g.funcLit(typ, expr)
case *syntax.AssertExpr:
return Assert(pos, g.expr(expr.X), g.typeExpr(expr.Type))
case *syntax.CallExpr:
fun := g.expr(expr.Fun)
if inferred, ok := g.info.Inferred[expr]; ok && len(inferred.Targs) > 0 {
targs := make([]ir.Node, len(inferred.Targs))
for i, targ := range inferred.Targs {
targs[i] = ir.TypeNode(g.typ(targ))
}
if fun.Op() == ir.OFUNCINST {
// Replace explicit type args with the full list that
// includes the additional inferred type args
fun.(*ir.InstExpr).Targs = targs
} else {
// Create a function instantiation here, given
// there are only inferred type args (e.g.
// min(5,6), where min is a generic function)
inst := ir.NewInstExpr(pos, ir.OFUNCINST, fun, targs)
typed(fun.Type(), inst)
fun = inst
}
}
return Call(pos, g.typ(typ), fun, g.exprs(expr.ArgList), expr.HasDots)
case *syntax.IndexExpr:
var targs []ir.Node
if _, ok := expr.Index.(*syntax.ListExpr); ok {
targs = g.exprList(expr.Index)
} else {
index := g.expr(expr.Index)
if index.Op() != ir.OTYPE {
// This is just a normal index expression
return Index(pos, g.expr(expr.X), index)
}
// This is generic function instantiation with a single type
targs = []ir.Node{index}
}
// This is a generic function instantiation (e.g. min[int])
x := g.expr(expr.X)
if x.Op() != ir.ONAME || x.Type().Kind() != types.TFUNC {
panic("Incorrect argument for generic func instantiation")
}
// This could also be an OTYPEINST once we can handle those examples.
n := ir.NewInstExpr(pos, ir.OFUNCINST, x, targs)
typed(g.typ(typ), n)
return n
case *syntax.ParenExpr:
return g.expr(expr.X) // skip parens; unneeded after parse+typecheck
case *syntax.SelectorExpr:
// Qualified identifier.
if name, ok := expr.X.(*syntax.Name); ok {
if _, ok := g.info.Uses[name].(*types2.PkgName); ok {
// TODO(mdempsky): Remove dependency on typecheck.Expr.
return typecheck.Expr(g.use(expr.Sel))
}
}
return g.selectorExpr(pos, typ, expr)
case *syntax.SliceExpr:
return Slice(pos, g.expr(expr.X), g.expr(expr.Index[0]), g.expr(expr.Index[1]), g.expr(expr.Index[2]))
case *syntax.Operation:
if expr.Y == nil {
return Unary(pos, g.op(expr.Op, unOps[:]), g.expr(expr.X))
}
switch op := g.op(expr.Op, binOps[:]); op {
case ir.OEQ, ir.ONE, ir.OLT, ir.OLE, ir.OGT, ir.OGE:
return Compare(pos, g.typ(typ), op, g.expr(expr.X), g.expr(expr.Y))
default:
return Binary(pos, op, g.expr(expr.X), g.expr(expr.Y))
}
default:
g.unhandled("expression", expr)
panic("unreachable")
}
}
// selectorExpr resolves the choice of ODOT, ODOTPTR, OCALLPART (eventually
// ODOTMETH & ODOTINTER), and OMETHEXPR and deals with embedded fields here rather
// than in typecheck.go.
func (g *irgen) selectorExpr(pos src.XPos, typ types2.Type, expr *syntax.SelectorExpr) ir.Node {
x := g.expr(expr.X)
if x.Type().Kind() == types.TTYPEPARAM {
// Leave a method call on a type param as an OXDOT, since it can
// only be fully transformed once it has an instantiated type.
n := ir.NewSelectorExpr(pos, ir.OXDOT, x, typecheck.Lookup(expr.Sel.Value))
typed(g.typ(typ), n)
return n
}
selinfo := g.info.Selections[expr]
// Everything up to the last selection is an implicit embedded field access,
// and the last selection is determined by selinfo.Kind().
index := selinfo.Index()
embeds, last := index[:len(index)-1], index[len(index)-1]
origx := x
for _, ix := range embeds {
x = Implicit(DotField(pos, x, ix))
}
kind := selinfo.Kind()
if kind == types2.FieldVal {
return DotField(pos, x, last)
}
// TODO(danscales,mdempsky): Interface method sets are not sorted the
// same between types and types2. In particular, using "last" here
// without conversion will likely fail if an interface contains
// unexported methods from two different packages (due to cross-package
// interface embedding).
var n ir.Node
method2 := selinfo.Obj().(*types2.Func)
if kind == types2.MethodExpr {
// OMETHEXPR is unusual in using directly the node and type of the
// original OTYPE node (origx) before passing through embedded
// fields, even though the method is selected from the type
// (x.Type()) reached after following the embedded fields. We will
// actually drop any ODOT nodes we created due to the embedded
// fields.
n = MethodExpr(pos, origx, x.Type(), last)
} else {
// Add implicit addr/deref for method values, if needed.
if x.Type().IsInterface() {
n = DotMethod(pos, x, last)
} else {
recvType2 := method2.Type().(*types2.Signature).Recv().Type()
_, wantPtr := recvType2.(*types2.Pointer)
havePtr := x.Type().IsPtr()
if havePtr != wantPtr {
if havePtr {
x = Implicit(Deref(pos, x))
} else {
x = Implicit(Addr(pos, x))
}
}
recvType2Base := recvType2
if wantPtr {
recvType2Base = types2.AsPointer(recvType2).Elem()
}
if len(types2.AsNamed(recvType2Base).TParams()) > 0 {
// recvType2 is the original generic type that is
// instantiated for this method call.
// selinfo.Recv() is the instantiated type
recvType2 = recvType2Base
// method is the generic method associated with the gen type
method := g.obj(types2.AsNamed(recvType2).Method(last))
n = ir.NewSelectorExpr(pos, ir.OCALLPART, x, method.Sym())
n.(*ir.SelectorExpr).Selection = types.NewField(pos, method.Sym(), method.Type())
n.(*ir.SelectorExpr).Selection.Nname = method
typed(method.Type(), n)
// selinfo.Targs() are the types used to
// instantiate the type of receiver
targs2 := selinfo.TArgs()
targs := make([]ir.Node, len(targs2))
for i, targ2 := range targs2 {
targs[i] = ir.TypeNode(g.typ(targ2))
}
// Create function instantiation with the type
// args for the receiver type for the method call.
n = ir.NewInstExpr(pos, ir.OFUNCINST, n, targs)
typed(g.typ(typ), n)
return n
}
if !g.match(x.Type(), recvType2, false) {
base.FatalfAt(pos, "expected %L to have type %v", x, recvType2)
} else {
n = DotMethod(pos, x, last)
}
}
}
if have, want := n.Sym(), g.selector(method2); have != want {
base.FatalfAt(pos, "bad Sym: have %v, want %v", have, want)
}
return n
}
func (g *irgen) exprList(expr syntax.Expr) []ir.Node {
switch expr := expr.(type) {
case nil:
return nil
case *syntax.ListExpr:
return g.exprs(expr.ElemList)
default:
return []ir.Node{g.expr(expr)}
}
}
func (g *irgen) exprs(exprs []syntax.Expr) []ir.Node {
nodes := make([]ir.Node, len(exprs))
for i, expr := range exprs {
nodes[i] = g.expr(expr)
}
return nodes
}
func (g *irgen) compLit(typ types2.Type, lit *syntax.CompositeLit) ir.Node {
if ptr, ok := typ.Underlying().(*types2.Pointer); ok {
n := ir.NewAddrExpr(g.pos(lit), g.compLit(ptr.Elem(), lit))
n.SetOp(ir.OPTRLIT)
return typed(g.typ(typ), n)
}
_, isStruct := typ.Underlying().(*types2.Struct)
exprs := make([]ir.Node, len(lit.ElemList))
for i, elem := range lit.ElemList {
switch elem := elem.(type) {
case *syntax.KeyValueExpr:
if isStruct {
exprs[i] = ir.NewStructKeyExpr(g.pos(elem), g.name(elem.Key.(*syntax.Name)), g.expr(elem.Value))
} else {
exprs[i] = ir.NewKeyExpr(g.pos(elem), g.expr(elem.Key), g.expr(elem.Value))
}
default:
exprs[i] = g.expr(elem)
}
}
// TODO(mdempsky): Remove dependency on typecheck.Expr.
return typecheck.Expr(ir.NewCompLitExpr(g.pos(lit), ir.OCOMPLIT, ir.TypeNode(g.typ(typ)), exprs))
}
func (g *irgen) funcLit(typ types2.Type, expr *syntax.FuncLit) ir.Node {
fn := ir.NewFunc(g.pos(expr))
fn.SetIsHiddenClosure(ir.CurFunc != nil)
fn.Nname = ir.NewNameAt(g.pos(expr), typecheck.ClosureName(ir.CurFunc))
ir.MarkFunc(fn.Nname)
fn.Nname.SetType(g.typ(typ))
fn.Nname.Func = fn
fn.Nname.Defn = fn
fn.OClosure = ir.NewClosureExpr(g.pos(expr), fn)
fn.OClosure.SetType(fn.Nname.Type())
fn.OClosure.SetTypecheck(1)
g.funcBody(fn, nil, expr.Type, expr.Body)
ir.FinishCaptureNames(fn.Pos(), ir.CurFunc, fn)
// TODO(mdempsky): ir.CaptureName should probably handle
// copying these fields from the canonical variable.
for _, cv := range fn.ClosureVars {
cv.SetType(cv.Canonical().Type())
cv.SetTypecheck(1)
cv.SetWalkdef(1)
}
g.target.Decls = append(g.target.Decls, fn)
return fn.OClosure
}
func (g *irgen) typeExpr(typ syntax.Expr) *types.Type {
n := g.expr(typ)
if n.Op() != ir.OTYPE {
base.FatalfAt(g.pos(typ), "expected type: %L", n)
}
return n.Type()
}

View File

@ -0,0 +1,74 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/syntax"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/internal/src"
)
func (g *irgen) funcBody(fn *ir.Func, recv *syntax.Field, sig *syntax.FuncType, block *syntax.BlockStmt) {
typecheck.Func(fn)
// TODO(mdempsky): Remove uses of ir.CurFunc and
// typecheck.DeclContext after we stop relying on typecheck
// for desugaring.
outerfn, outerctxt := ir.CurFunc, typecheck.DeclContext
ir.CurFunc = fn
typ := fn.Type()
if param := typ.Recv(); param != nil {
g.defParam(param, recv, ir.PPARAM)
}
for i, param := range typ.Params().FieldSlice() {
g.defParam(param, sig.ParamList[i], ir.PPARAM)
}
for i, result := range typ.Results().FieldSlice() {
g.defParam(result, sig.ResultList[i], ir.PPARAMOUT)
}
// We may have type-checked a call to this function already and
// calculated its size, including parameter offsets. Now that we've
// created the parameter Names, force a recalculation to ensure
// their offsets are correct.
typ.Align = 0
types.CalcSize(typ)
if block != nil {
typecheck.DeclContext = ir.PAUTO
fn.Body = g.stmts(block.List)
if fn.Body == nil {
fn.Body = []ir.Node{ir.NewBlockStmt(src.NoXPos, nil)}
}
fn.Endlineno = g.makeXPos(block.Rbrace)
if base.Flag.Dwarf {
g.recordScopes(fn, sig)
}
}
ir.CurFunc, typecheck.DeclContext = outerfn, outerctxt
}
func (g *irgen) defParam(param *types.Field, decl *syntax.Field, class ir.Class) {
typecheck.DeclContext = class
var name *ir.Name
if decl.Name != nil {
name, _ = g.def(decl.Name)
} else if class == ir.PPARAMOUT {
name = g.obj(g.info.Implicits[decl])
}
if name != nil {
param.Nname = name
param.Sym = name.Sym() // in case it was renamed
}
}

View File

@ -0,0 +1,277 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"go/constant"
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/internal/src"
)
// Helpers for constructing typed IR nodes.
//
// TODO(mdempsky): Move into their own package so they can be easily
// reused by iimport and frontend optimizations.
//
// TODO(mdempsky): Update to consistently return already typechecked
// results, rather than leaving the caller responsible for using
// typecheck.Expr or typecheck.Stmt.
type ImplicitNode interface {
ir.Node
SetImplicit(x bool)
}
// Implicit returns n after marking it as Implicit.
func Implicit(n ImplicitNode) ImplicitNode {
n.SetImplicit(true)
return n
}
// typed returns n after setting its type to typ.
func typed(typ *types.Type, n ir.Node) ir.Node {
n.SetType(typ)
n.SetTypecheck(1)
return n
}
// Values
func Const(pos src.XPos, typ *types.Type, val constant.Value) ir.Node {
return typed(typ, ir.NewBasicLit(pos, val))
}
func Nil(pos src.XPos, typ *types.Type) ir.Node {
return typed(typ, ir.NewNilExpr(pos))
}
// Expressions
func Addr(pos src.XPos, x ir.Node) *ir.AddrExpr {
// TODO(mdempsky): Avoid typecheck.Expr. Probably just need to set OPTRLIT when appropriate.
n := typecheck.Expr(typecheck.NodAddrAt(pos, x)).(*ir.AddrExpr)
typed(types.NewPtr(x.Type()), n)
return n
}
func Assert(pos src.XPos, x ir.Node, typ *types.Type) ir.Node {
return typed(typ, ir.NewTypeAssertExpr(pos, x, nil))
}
func Binary(pos src.XPos, op ir.Op, x, y ir.Node) ir.Node {
switch op {
case ir.OANDAND, ir.OOROR:
return typed(x.Type(), ir.NewLogicalExpr(pos, op, x, y))
case ir.OADD:
if x.Type().IsString() {
// TODO(mdempsky): Construct OADDSTR directly.
return typecheck.Expr(ir.NewBinaryExpr(pos, op, x, y))
}
fallthrough
default:
return typed(x.Type(), ir.NewBinaryExpr(pos, op, x, y))
}
}
func Call(pos src.XPos, typ *types.Type, fun ir.Node, args []ir.Node, dots bool) ir.Node {
// TODO(mdempsky): This should not be so difficult.
if fun.Op() == ir.OTYPE {
// Actually a type conversion, not a function call.
n := ir.NewCallExpr(pos, ir.OCALL, fun, args)
if fun.Type().Kind() == types.TTYPEPARAM {
// For type params, don't typecheck until we actually know
// the type.
return typed(typ, n)
}
return typecheck.Expr(n)
}
if fun, ok := fun.(*ir.Name); ok && fun.BuiltinOp != 0 {
// Call to a builtin function.
n := ir.NewCallExpr(pos, ir.OCALL, fun, args)
n.IsDDD = dots
switch fun.BuiltinOp {
case ir.OCLOSE, ir.ODELETE, ir.OPANIC, ir.OPRINT, ir.OPRINTN:
return typecheck.Stmt(n)
default:
return typecheck.Expr(n)
}
}
// Add information, now that we know that fun is actually being called.
switch fun := fun.(type) {
case *ir.ClosureExpr:
fun.Func.SetClosureCalled(true)
case *ir.SelectorExpr:
if fun.Op() == ir.OCALLPART {
op := ir.ODOTMETH
if fun.X.Type().IsInterface() {
op = ir.ODOTINTER
}
fun.SetOp(op)
// Set the type to include the receiver, since that's what
// later parts of the compiler expect
fun.SetType(fun.Selection.Type)
}
}
n := ir.NewCallExpr(pos, ir.OCALL, fun, args)
n.IsDDD = dots
if fun.Op() == ir.OXDOT {
if fun.(*ir.SelectorExpr).X.Type().Kind() != types.TTYPEPARAM {
base.FatalfAt(pos, "Expecting type param receiver in %v", fun)
}
// For methods called in a generic function, don't do any extra
// transformations. We will do those later when we create the
// instantiated function and have the correct receiver type.
typed(typ, n)
return n
}
if fun.Op() != ir.OFUNCINST {
// If no type params, still do normal typechecking, since we're
// still missing some things done by tcCall below (mainly
// typecheckargs and typecheckaste).
typecheck.Call(n)
return n
}
n.Use = ir.CallUseExpr
if fun.Type().NumResults() == 0 {
n.Use = ir.CallUseStmt
}
// Rewrite call node depending on use.
switch fun.Op() {
case ir.ODOTINTER:
n.SetOp(ir.OCALLINTER)
case ir.ODOTMETH:
n.SetOp(ir.OCALLMETH)
default:
n.SetOp(ir.OCALLFUNC)
}
typed(typ, n)
return n
}
func Compare(pos src.XPos, typ *types.Type, op ir.Op, x, y ir.Node) ir.Node {
n := ir.NewBinaryExpr(pos, op, x, y)
if !types.Identical(x.Type(), y.Type()) {
// TODO(mdempsky): Handle subtleties of constructing mixed-typed comparisons.
n = typecheck.Expr(n).(*ir.BinaryExpr)
}
return typed(typ, n)
}
func Deref(pos src.XPos, x ir.Node) *ir.StarExpr {
n := ir.NewStarExpr(pos, x)
typed(x.Type().Elem(), n)
return n
}
func DotField(pos src.XPos, x ir.Node, index int) *ir.SelectorExpr {
op, typ := ir.ODOT, x.Type()
if typ.IsPtr() {
op, typ = ir.ODOTPTR, typ.Elem()
}
if !typ.IsStruct() {
base.FatalfAt(pos, "DotField of non-struct: %L", x)
}
// TODO(mdempsky): This is the backend's responsibility.
types.CalcSize(typ)
field := typ.Field(index)
return dot(pos, field.Type, op, x, field)
}
func DotMethod(pos src.XPos, x ir.Node, index int) *ir.SelectorExpr {
method := method(x.Type(), index)
// Method value.
typ := typecheck.NewMethodType(method.Type, nil)
return dot(pos, typ, ir.OCALLPART, x, method)
}
// MethodExpr returns a OMETHEXPR node with the indicated index into the methods
// of typ. The receiver type is set from recv, which is different from typ if the
// method was accessed via embedded fields. Similarly, the X value of the
// ir.SelectorExpr is recv, the original OTYPE node before passing through the
// embedded fields.
func MethodExpr(pos src.XPos, recv ir.Node, embed *types.Type, index int) *ir.SelectorExpr {
method := method(embed, index)
typ := typecheck.NewMethodType(method.Type, recv.Type())
// The method expression T.m requires a wrapper when T
// is different from m's declared receiver type. We
// normally generate these wrappers while writing out
// runtime type descriptors, which is always done for
// types declared at package scope. However, we need
// to make sure to generate wrappers for anonymous
// receiver types too.
if recv.Sym() == nil {
typecheck.NeedRuntimeType(recv.Type())
}
return dot(pos, typ, ir.OMETHEXPR, recv, method)
}
func dot(pos src.XPos, typ *types.Type, op ir.Op, x ir.Node, selection *types.Field) *ir.SelectorExpr {
n := ir.NewSelectorExpr(pos, op, x, selection.Sym)
n.Selection = selection
typed(typ, n)
return n
}
// TODO(mdempsky): Move to package types.
func method(typ *types.Type, index int) *types.Field {
if typ.IsInterface() {
return typ.Field(index)
}
return types.ReceiverBaseType(typ).Methods().Index(index)
}
func Index(pos src.XPos, x, index ir.Node) ir.Node {
// TODO(mdempsky): Avoid typecheck.Expr (which will call tcIndex)
return typecheck.Expr(ir.NewIndexExpr(pos, x, index))
}
func Slice(pos src.XPos, x, low, high, max ir.Node) ir.Node {
op := ir.OSLICE
if max != nil {
op = ir.OSLICE3
}
// TODO(mdempsky): Avoid typecheck.Expr.
return typecheck.Expr(ir.NewSliceExpr(pos, op, x, low, high, max))
}
func Unary(pos src.XPos, op ir.Op, x ir.Node) ir.Node {
switch op {
case ir.OADDR:
return Addr(pos, x)
case ir.ODEREF:
return Deref(pos, x)
}
typ := x.Type()
if op == ir.ORECV {
typ = typ.Elem()
}
return typed(typ, ir.NewUnaryExpr(pos, op, x))
}
// Statements
var one = constant.MakeInt64(1)
func IncDec(pos src.XPos, op ir.Op, x ir.Node) ir.Node {
x = typecheck.AssignExpr(x)
return ir.NewAssignOpStmt(pos, op, x, typecheck.DefaultLit(ir.NewBasicLit(pos, one), x.Type()))
}

View File

@ -7,6 +7,7 @@ package noder
import (
"errors"
"fmt"
"io"
"os"
pathpkg "path"
"runtime"
@ -17,10 +18,12 @@ import (
"unicode/utf8"
"cmd/compile/internal/base"
"cmd/compile/internal/importer"
"cmd/compile/internal/ir"
"cmd/compile/internal/syntax"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/compile/internal/types2"
"cmd/internal/archive"
"cmd/internal/bio"
"cmd/internal/goobj"
@ -28,6 +31,29 @@ import (
"cmd/internal/src"
)
// Temporary import helper to get type2-based type-checking going.
type gcimports struct {
packages map[string]*types2.Package
}
func (m *gcimports) Import(path string) (*types2.Package, error) {
return m.ImportFrom(path, "" /* no vendoring */, 0)
}
func (m *gcimports) ImportFrom(path, srcDir string, mode types2.ImportMode) (*types2.Package, error) {
if mode != 0 {
panic("mode must be 0")
}
path, err := resolveImportPath(path)
if err != nil {
return nil, err
}
lookup := func(path string) (io.ReadCloser, error) { return openPackage(path) }
return importer.Import(m.packages, path, srcDir, lookup)
}
func isDriveLetter(b byte) bool {
return 'a' <= b && b <= 'z' || 'A' <= b && b <= 'Z'
}

View File

@ -0,0 +1,209 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"fmt"
"os"
"cmd/compile/internal/base"
"cmd/compile/internal/dwarfgen"
"cmd/compile/internal/ir"
"cmd/compile/internal/syntax"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/compile/internal/types2"
"cmd/internal/src"
)
// check2 type checks a Go package using types2, and then generates IR
// using the results.
func check2(noders []*noder) {
if base.SyntaxErrors() != 0 {
base.ErrorExit()
}
// setup and syntax error reporting
var m posMap
files := make([]*syntax.File, len(noders))
for i, p := range noders {
m.join(&p.posMap)
files[i] = p.file
}
// typechecking
conf := types2.Config{
GoVersion: base.Flag.Lang,
InferFromConstraints: true,
IgnoreLabels: true, // parser already checked via syntax.CheckBranches mode
CompilerErrorMessages: true, // use error strings matching existing compiler errors
Error: func(err error) {
terr := err.(types2.Error)
if len(terr.Msg) > 0 && terr.Msg[0] == '\t' {
// types2 reports error clarifications via separate
// error messages which are indented with a tab.
// Ignore them to satisfy tools and tests that expect
// only one error in such cases.
// TODO(gri) Need to adjust error reporting in types2.
return
}
base.ErrorfAt(m.makeXPos(terr.Pos), "%s", terr.Msg)
},
Importer: &gcimports{
packages: make(map[string]*types2.Package),
},
Sizes: &gcSizes{},
}
info := types2.Info{
Types: make(map[syntax.Expr]types2.TypeAndValue),
Defs: make(map[*syntax.Name]types2.Object),
Uses: make(map[*syntax.Name]types2.Object),
Selections: make(map[*syntax.SelectorExpr]*types2.Selection),
Implicits: make(map[syntax.Node]types2.Object),
Scopes: make(map[syntax.Node]*types2.Scope),
Inferred: make(map[syntax.Expr]types2.Inferred),
// expand as needed
}
pkg, err := conf.Check(base.Ctxt.Pkgpath, files, &info)
files = nil
if err != nil {
base.FatalfAt(src.NoXPos, "conf.Check error: %v", err)
}
base.ExitIfErrors()
if base.Flag.G < 2 {
os.Exit(0)
}
g := irgen{
target: typecheck.Target,
self: pkg,
info: &info,
posMap: m,
objs: make(map[types2.Object]*ir.Name),
typs: make(map[types2.Type]*types.Type),
}
g.generate(noders)
if base.Flag.G < 3 {
os.Exit(0)
}
}
type irgen struct {
target *ir.Package
self *types2.Package
info *types2.Info
posMap
objs map[types2.Object]*ir.Name
typs map[types2.Type]*types.Type
marker dwarfgen.ScopeMarker
}
func (g *irgen) generate(noders []*noder) {
types.LocalPkg.Name = g.self.Name()
typecheck.TypecheckAllowed = true
// Prevent size calculations until we set the underlying type
// for all package-block defined types.
types.DeferCheckSize()
// At this point, types2 has already handled name resolution and
// type checking. We just need to map from its object and type
// representations to those currently used by the rest of the
// compiler. This happens mostly in 3 passes.
// 1. Process all import declarations. We use the compiler's own
// importer for this, rather than types2's gcimporter-derived one,
// to handle extensions and inline function bodies correctly.
//
// Also, we need to do this in a separate pass, because mappings are
// instantiated on demand. If we interleaved processing import
// declarations with other declarations, it's likely we'd end up
// wanting to map an object/type from another source file, but not
// yet have the import data it relies on.
declLists := make([][]syntax.Decl, len(noders))
Outer:
for i, p := range noders {
g.pragmaFlags(p.file.Pragma, ir.GoBuildPragma)
for j, decl := range p.file.DeclList {
switch decl := decl.(type) {
case *syntax.ImportDecl:
g.importDecl(p, decl)
default:
declLists[i] = p.file.DeclList[j:]
continue Outer // no more ImportDecls
}
}
}
types.LocalPkg.Height = myheight
// 2. Process all package-block type declarations. As with imports,
// we need to make sure all types are properly instantiated before
// trying to map any expressions that utilize them. In particular,
// we need to make sure type pragmas are already known (see comment
// in irgen.typeDecl).
//
// We could perhaps instead defer processing of package-block
// variable initializers and function bodies, like noder does, but
// special-casing just package-block type declarations minimizes the
// differences between processing package-block and function-scoped
// declarations.
for _, declList := range declLists {
for _, decl := range declList {
switch decl := decl.(type) {
case *syntax.TypeDecl:
g.typeDecl((*ir.Nodes)(&g.target.Decls), decl)
}
}
}
types.ResumeCheckSize()
// 3. Process all remaining declarations.
for _, declList := range declLists {
g.target.Decls = append(g.target.Decls, g.decls(declList)...)
}
if base.Flag.W > 1 {
for _, n := range g.target.Decls {
s := fmt.Sprintf("\nafter noder2 %v", n)
ir.Dump(s, n)
}
}
typecheck.DeclareUniverse()
for _, p := range noders {
// Process linkname and cgo pragmas.
p.processPragmas()
// Double check for any type-checking inconsistencies. This can be
// removed once we're confident in IR generation results.
syntax.Walk(p.file, func(n syntax.Node) bool {
g.validate(n)
return false
})
}
// Create any needed stencils of generic functions
g.stencil()
// For now, remove all generic functions from g.target.Decl, since they
// have been used for stenciling, but don't compile. TODO: We will
// eventually export any exportable generic functions.
j := 0
for i, decl := range g.target.Decls {
if decl.Op() != ir.ODCLFUNC || !decl.Type().HasTParam() {
g.target.Decls[j] = g.target.Decls[i]
j++
}
}
g.target.Decls = g.target.Decls[:j]
}
func (g *irgen) unhandled(what string, p poser) {
base.FatalfAt(g.pos(p), "unhandled %s: %T", what, p)
panic("unreachable")
}

View File

@ -30,6 +30,9 @@ func LoadPackage(filenames []string) {
base.Timer.Start("fe", "parse")
mode := syntax.CheckBranches
if base.Flag.G != 0 {
mode |= syntax.AllowGenerics
}
// Limit the number of simultaneously open files.
sem := make(chan struct{}, runtime.GOMAXPROCS(0)+10)
@ -65,10 +68,16 @@ func LoadPackage(filenames []string) {
for e := range p.err {
p.errorAt(e.Pos, "%s", e.Msg)
}
lines += p.file.Lines
lines += p.file.EOF.Line()
}
base.Timer.AddEvent(int64(lines), "lines")
if base.Flag.G != 0 {
// Use types2 to type-check and possibly generate IR.
check2(noders)
return
}
for _, p := range noders {
p.node()
p.file = nil // release memory
@ -1031,8 +1040,7 @@ func (p *noder) stmtFall(stmt syntax.Stmt, fallOK bool) ir.Node {
case *syntax.DeclStmt:
return ir.NewBlockStmt(src.NoXPos, p.decls(stmt.DeclList))
case *syntax.AssignStmt:
if stmt.Rhs == syntax.ImplicitOne {
one := constant.MakeInt64(1)
if stmt.Rhs == nil {
pos := p.pos(stmt)
n := ir.NewAssignOpStmt(pos, p.binOp(stmt.Op), p.expr(stmt.Lhs), ir.NewBasicLit(pos, one))
n.IncDec = true
@ -1447,6 +1455,20 @@ func (p *noder) basicLit(lit *syntax.BasicLit) constant.Value {
switch lit.Kind {
case syntax.IntLit, syntax.FloatLit, syntax.ImagLit:
checkLangCompat(lit)
// The max. mantissa precision for untyped numeric values
// is 512 bits, or 4048 bits for each of the two integer
// parts of a fraction for floating-point numbers that are
// represented accurately in the go/constant package.
// Constant literals that are longer than this many bits
// are not meaningful; and excessively long constants may
// consume a lot of space and time for a useless conversion.
// Cap constant length with a generous upper limit that also
// allows for separators between all digits.
const limit = 10000
if len(lit.Value) > limit {
p.errorAt(lit.Pos(), "excessively long constant: %s... (%d chars)", lit.Value[:10], len(lit.Value))
return constant.MakeUnknown()
}
}
v := constant.MakeFromLiteral(lit.Value, tokenForLitKind[lit.Kind], 0)

View File

@ -0,0 +1,175 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/syntax"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/compile/internal/types2"
"cmd/internal/src"
)
func (g *irgen) def(name *syntax.Name) (*ir.Name, types2.Object) {
obj, ok := g.info.Defs[name]
if !ok {
base.FatalfAt(g.pos(name), "unknown name %v", name)
}
return g.obj(obj), obj
}
func (g *irgen) use(name *syntax.Name) *ir.Name {
obj, ok := g.info.Uses[name]
if !ok {
base.FatalfAt(g.pos(name), "unknown name %v", name)
}
return ir.CaptureName(g.pos(obj), ir.CurFunc, g.obj(obj))
}
// obj returns the Name that represents the given object. If no such
// Name exists yet, it will be implicitly created.
//
// For objects declared at function scope, ir.CurFunc must already be
// set to the respective function when the Name is created.
func (g *irgen) obj(obj types2.Object) *ir.Name {
// For imported objects, we use iimport directly instead of mapping
// the types2 representation.
if obj.Pkg() != g.self {
sym := g.sym(obj)
if sym.Def != nil {
return sym.Def.(*ir.Name)
}
n := typecheck.Resolve(ir.NewIdent(src.NoXPos, sym))
if n, ok := n.(*ir.Name); ok {
return n
}
base.FatalfAt(g.pos(obj), "failed to resolve %v", obj)
}
if name, ok := g.objs[obj]; ok {
return name // previously mapped
}
var name *ir.Name
pos := g.pos(obj)
class := typecheck.DeclContext
if obj.Parent() == g.self.Scope() {
class = ir.PEXTERN // forward reference to package-block declaration
}
// "You are in a maze of twisting little passages, all different."
switch obj := obj.(type) {
case *types2.Const:
name = g.objCommon(pos, ir.OLITERAL, g.sym(obj), class, g.typ(obj.Type()))
case *types2.Func:
sig := obj.Type().(*types2.Signature)
var sym *types.Sym
var typ *types.Type
if recv := sig.Recv(); recv == nil {
if obj.Name() == "init" {
sym = renameinit()
} else {
sym = g.sym(obj)
}
typ = g.typ(sig)
} else {
sym = g.selector(obj)
if !sym.IsBlank() {
sym = ir.MethodSym(g.typ(recv.Type()), sym)
}
typ = g.signature(g.param(recv), sig)
}
name = g.objCommon(pos, ir.ONAME, sym, ir.PFUNC, typ)
case *types2.TypeName:
if obj.IsAlias() {
name = g.objCommon(pos, ir.OTYPE, g.sym(obj), class, g.typ(obj.Type()))
} else {
name = ir.NewDeclNameAt(pos, ir.OTYPE, g.sym(obj))
g.objFinish(name, class, types.NewNamed(name))
}
case *types2.Var:
var sym *types.Sym
if class == ir.PPARAMOUT {
// Backend needs names for result parameters,
// even if they're anonymous or blank.
switch obj.Name() {
case "":
sym = typecheck.LookupNum("~r", len(ir.CurFunc.Dcl)) // 'r' for "result"
case "_":
sym = typecheck.LookupNum("~b", len(ir.CurFunc.Dcl)) // 'b' for "blank"
}
}
if sym == nil {
sym = g.sym(obj)
}
name = g.objCommon(pos, ir.ONAME, sym, class, g.typ(obj.Type()))
default:
g.unhandled("object", obj)
}
g.objs[obj] = name
return name
}
func (g *irgen) objCommon(pos src.XPos, op ir.Op, sym *types.Sym, class ir.Class, typ *types.Type) *ir.Name {
name := ir.NewDeclNameAt(pos, op, sym)
g.objFinish(name, class, typ)
return name
}
func (g *irgen) objFinish(name *ir.Name, class ir.Class, typ *types.Type) {
sym := name.Sym()
name.SetType(typ)
name.Class = class
if name.Class == ir.PFUNC {
sym.SetFunc(true)
}
// We already know name's type, but typecheck is really eager to try
// recomputing it later. This appears to prevent that at least.
name.Ntype = ir.TypeNode(typ)
name.SetTypecheck(1)
name.SetWalkdef(1)
if ir.IsBlank(name) {
return
}
switch class {
case ir.PEXTERN:
g.target.Externs = append(g.target.Externs, name)
fallthrough
case ir.PFUNC:
sym.Def = name
if name.Class == ir.PFUNC && name.Type().Recv() != nil {
break // methods are exported with their receiver type
}
if types.IsExported(sym.Name) {
if name.Class == ir.PFUNC && name.Type().NumTParams() > 0 {
base.FatalfAt(name.Pos(), "Cannot export a generic function (yet): %v", name)
}
typecheck.Export(name)
}
if base.Flag.AsmHdr != "" && !name.Sym().Asm() {
name.Sym().SetAsm(true)
g.target.Asms = append(g.target.Asms, name)
}
default:
// Function-scoped declaration.
name.Curfn = ir.CurFunc
if name.Op() == ir.ONAME {
ir.CurFunc.Dcl = append(ir.CurFunc.Dcl, name)
}
}
}

View File

@ -0,0 +1,64 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"strings"
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/syntax"
"cmd/compile/internal/types2"
)
// recordScopes populates fn.Parents and fn.Marks based on the scoping
// information provided by types2.
func (g *irgen) recordScopes(fn *ir.Func, sig *syntax.FuncType) {
scope, ok := g.info.Scopes[sig]
if !ok {
base.FatalfAt(fn.Pos(), "missing scope for %v", fn)
}
for i, n := 0, scope.NumChildren(); i < n; i++ {
g.walkScope(scope.Child(i))
}
g.marker.WriteTo(fn)
}
func (g *irgen) walkScope(scope *types2.Scope) bool {
// types2 doesn't provide a proper API for determining the
// lexical element a scope represents, so we have to resort to
// string matching. Conveniently though, this allows us to
// skip both function types and function literals, neither of
// which are interesting to us here.
if strings.HasPrefix(scope.String(), "function scope ") {
return false
}
g.marker.Push(g.pos(scope))
haveVars := false
for _, name := range scope.Names() {
if obj, ok := scope.Lookup(name).(*types2.Var); ok && obj.Name() != "_" {
haveVars = true
break
}
}
for i, n := 0, scope.NumChildren(); i < n; i++ {
if g.walkScope(scope.Child(i)) {
haveVars = true
}
}
if haveVars {
g.marker.Pop(g.end(scope))
} else {
g.marker.Unpush()
}
return haveVars
}

View File

@ -0,0 +1,150 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"fmt"
"cmd/compile/internal/types"
"cmd/compile/internal/types2"
)
// Code below based on go/types.StdSizes.
// Intentional differences are marked with "gc:".
type gcSizes struct{}
func (s *gcSizes) Alignof(T types2.Type) int64 {
// For arrays and structs, alignment is defined in terms
// of alignment of the elements and fields, respectively.
switch t := T.Underlying().(type) {
case *types2.Array:
// spec: "For a variable x of array type: unsafe.Alignof(x)
// is the same as unsafe.Alignof(x[0]), but at least 1."
return s.Alignof(t.Elem())
case *types2.Struct:
// spec: "For a variable x of struct type: unsafe.Alignof(x)
// is the largest of the values unsafe.Alignof(x.f) for each
// field f of x, but at least 1."
max := int64(1)
for i, nf := 0, t.NumFields(); i < nf; i++ {
if a := s.Alignof(t.Field(i).Type()); a > max {
max = a
}
}
return max
case *types2.Slice, *types2.Interface:
// Multiword data structures are effectively structs
// in which each element has size PtrSize.
return int64(types.PtrSize)
case *types2.Basic:
// Strings are like slices and interfaces.
if t.Info()&types2.IsString != 0 {
return int64(types.PtrSize)
}
}
a := s.Sizeof(T) // may be 0
// spec: "For a variable x of any type: unsafe.Alignof(x) is at least 1."
if a < 1 {
return 1
}
// complex{64,128} are aligned like [2]float{32,64}.
if isComplex(T) {
a /= 2
}
if a > int64(types.RegSize) {
return int64(types.RegSize)
}
return a
}
func isComplex(T types2.Type) bool {
basic, ok := T.Underlying().(*types2.Basic)
return ok && basic.Info()&types2.IsComplex != 0
}
func (s *gcSizes) Offsetsof(fields []*types2.Var) []int64 {
offsets := make([]int64, len(fields))
var o int64
for i, f := range fields {
typ := f.Type()
a := s.Alignof(typ)
o = types.Rnd(o, a)
offsets[i] = o
o += s.Sizeof(typ)
}
return offsets
}
func (s *gcSizes) Sizeof(T types2.Type) int64 {
switch t := T.Underlying().(type) {
case *types2.Basic:
k := t.Kind()
if int(k) < len(basicSizes) {
if s := basicSizes[k]; s > 0 {
return int64(s)
}
}
switch k {
case types2.String:
return int64(types.PtrSize) * 2
case types2.Int, types2.Uint, types2.Uintptr, types2.UnsafePointer:
return int64(types.PtrSize)
}
panic(fmt.Sprintf("unimplemented basic: %v (kind %v)", T, k))
case *types2.Array:
n := t.Len()
if n <= 0 {
return 0
}
// n > 0
// gc: Size includes alignment padding.
return s.Sizeof(t.Elem()) * n
case *types2.Slice:
return int64(types.PtrSize) * 3
case *types2.Struct:
n := t.NumFields()
if n == 0 {
return 0
}
fields := make([]*types2.Var, n)
for i := range fields {
fields[i] = t.Field(i)
}
offsets := s.Offsetsof(fields)
// gc: The last field of a struct is not allowed to
// have size 0.
last := s.Sizeof(fields[n-1].Type())
if last == 0 {
last = 1
}
// gc: Size includes alignment padding.
return types.Rnd(offsets[n-1]+last, s.Alignof(t))
case *types2.Interface:
return int64(types.PtrSize) * 2
case *types2.Chan, *types2.Map, *types2.Pointer, *types2.Signature:
return int64(types.PtrSize)
default:
panic(fmt.Sprintf("unimplemented type: %T", t))
}
}
var basicSizes = [...]byte{
types2.Bool: 1,
types2.Int8: 1,
types2.Int16: 2,
types2.Int32: 4,
types2.Int64: 8,
types2.Uint8: 1,
types2.Uint16: 2,
types2.Uint32: 4,
types2.Uint64: 8,
types2.Float32: 4,
types2.Float64: 8,
types2.Complex64: 8,
types2.Complex128: 16,
}

View File

@ -0,0 +1,460 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file will evolve, since we plan to do a mix of stenciling and passing
// around dictionaries.
package noder
import (
"bytes"
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/internal/src"
"fmt"
"strings"
)
// stencil scans functions for instantiated generic function calls and
// creates the required stencils for simple generic functions.
func (g *irgen) stencil() {
g.target.Stencils = make(map[*types.Sym]*ir.Func)
// Don't use range(g.target.Decls) - we also want to process any new instantiated
// functions that are created during this loop, in order to handle generic
// functions calling other generic functions.
for i := 0; i < len(g.target.Decls); i++ {
decl := g.target.Decls[i]
if decl.Op() != ir.ODCLFUNC || decl.Type().NumTParams() > 0 {
// Skip any non-function declarations and skip generic functions
continue
}
// For each non-generic function, search for any function calls using
// generic function instantiations. (We don't yet handle generic
// function instantiations that are not immediately called.)
// Then create the needed instantiated function if it hasn't been
// created yet, and change to calling that function directly.
f := decl.(*ir.Func)
modified := false
ir.VisitList(f.Body, func(n ir.Node) {
if n.Op() != ir.OCALLFUNC || n.(*ir.CallExpr).X.Op() != ir.OFUNCINST {
return
}
// We have found a function call using a generic function
// instantiation.
call := n.(*ir.CallExpr)
inst := call.X.(*ir.InstExpr)
sym := makeInstName(inst)
//fmt.Printf("Found generic func call in %v to %v\n", f, s)
st := g.target.Stencils[sym]
if st == nil {
// If instantiation doesn't exist yet, create it and add
// to the list of decls.
st = genericSubst(sym, inst)
g.target.Stencils[sym] = st
g.target.Decls = append(g.target.Decls, st)
if base.Flag.W > 1 {
ir.Dump(fmt.Sprintf("\nstenciled %v", st), st)
}
}
// Replace the OFUNCINST with a direct reference to the
// new stenciled function
call.X = st.Nname
if inst.X.Op() == ir.OCALLPART {
// When we create an instantiation of a method
// call, we make it a function. So, move the
// receiver to be the first arg of the function
// call.
withRecv := make([]ir.Node, len(call.Args)+1)
dot := inst.X.(*ir.SelectorExpr)
withRecv[0] = dot.X
copy(withRecv[1:], call.Args)
call.Args = withRecv
}
modified = true
})
if base.Flag.W > 1 && modified {
ir.Dump(fmt.Sprintf("\nmodified %v", decl), decl)
}
}
}
// makeInstName makes the unique name for a stenciled generic function, based on
// the name of the function and the types of the type params.
func makeInstName(inst *ir.InstExpr) *types.Sym {
b := bytes.NewBufferString("#")
if meth, ok := inst.X.(*ir.SelectorExpr); ok {
// Write the name of the generic method, including receiver type
b.WriteString(meth.Selection.Nname.Sym().Name)
} else {
b.WriteString(inst.X.(*ir.Name).Name().Sym().Name)
}
b.WriteString("[")
for i, targ := range inst.Targs {
if i > 0 {
b.WriteString(",")
}
b.WriteString(targ.Type().String())
}
b.WriteString("]")
return typecheck.Lookup(b.String())
}
// Struct containing info needed for doing the substitution as we create the
// instantiation of a generic function with specified type arguments.
type subster struct {
newf *ir.Func // Func node for the new stenciled function
tparams []*types.Field
targs []ir.Node
// The substitution map from name nodes in the generic function to the
// name nodes in the new stenciled function.
vars map[*ir.Name]*ir.Name
seen map[*types.Type]*types.Type
}
// genericSubst returns a new function with the specified name. The function is an
// instantiation of a generic function or method with type params, as specified by
// inst. For a method with a generic receiver, it returns an instantiated function
// type where the receiver becomes the first parameter. Otherwise the instantiated
// method would still need to be transformed by later compiler phases.
func genericSubst(name *types.Sym, inst *ir.InstExpr) *ir.Func {
var nameNode *ir.Name
var tparams []*types.Field
if selExpr, ok := inst.X.(*ir.SelectorExpr); ok {
// Get the type params from the method receiver (after skipping
// over any pointer)
nameNode = ir.AsNode(selExpr.Selection.Nname).(*ir.Name)
recvType := selExpr.Type().Recv().Type
if recvType.IsPtr() {
recvType = recvType.Elem()
}
tparams = make([]*types.Field, len(recvType.RParams))
for i, rparam := range recvType.RParams {
tparams[i] = types.NewField(src.NoXPos, nil, rparam)
}
} else {
nameNode = inst.X.(*ir.Name)
tparams = nameNode.Type().TParams().Fields().Slice()
}
gf := nameNode.Func
newf := ir.NewFunc(inst.Pos())
newf.Nname = ir.NewNameAt(inst.Pos(), name)
newf.Nname.Func = newf
newf.Nname.Defn = newf
name.Def = newf.Nname
subst := &subster{
newf: newf,
tparams: tparams,
targs: inst.Targs,
vars: make(map[*ir.Name]*ir.Name),
seen: make(map[*types.Type]*types.Type),
}
newf.Dcl = make([]*ir.Name, len(gf.Dcl))
for i, n := range gf.Dcl {
newf.Dcl[i] = subst.node(n).(*ir.Name)
}
newf.Body = subst.list(gf.Body)
// Ugly: we have to insert the Name nodes of the parameters/results into
// the function type. The current function type has no Nname fields set,
// because it came via conversion from the types2 type.
oldt := inst.X.Type()
// We also transform a generic method type to the corresponding
// instantiated function type where the receiver is the first parameter.
newt := types.NewSignature(oldt.Pkg(), nil, nil,
subst.fields(ir.PPARAM, append(oldt.Recvs().FieldSlice(), oldt.Params().FieldSlice()...), newf.Dcl),
subst.fields(ir.PPARAMOUT, oldt.Results().FieldSlice(), newf.Dcl))
newf.Nname.Ntype = ir.TypeNode(newt)
newf.Nname.SetType(newt)
ir.MarkFunc(newf.Nname)
newf.SetTypecheck(1)
newf.Nname.SetTypecheck(1)
// TODO(danscales) - remove later, but avoid confusion for now.
newf.Pragma = ir.Noinline
return newf
}
// node is like DeepCopy(), but creates distinct ONAME nodes, and also descends
// into closures. It substitutes type arguments for type parameters in all the new
// nodes.
func (subst *subster) node(n ir.Node) ir.Node {
// Use closure to capture all state needed by the ir.EditChildren argument.
var edit func(ir.Node) ir.Node
edit = func(x ir.Node) ir.Node {
switch x.Op() {
case ir.OTYPE:
return ir.TypeNode(subst.typ(x.Type()))
case ir.ONAME:
name := x.(*ir.Name)
if v := subst.vars[name]; v != nil {
return v
}
m := ir.NewNameAt(name.Pos(), name.Sym())
t := x.Type()
newt := subst.typ(t)
m.SetType(newt)
m.Curfn = subst.newf
m.Class = name.Class
m.Func = name.Func
subst.vars[name] = m
m.SetTypecheck(1)
return m
case ir.OLITERAL, ir.ONIL:
if x.Sym() != nil {
return x
}
}
m := ir.Copy(x)
if _, isExpr := m.(ir.Expr); isExpr {
t := x.Type()
if t == nil {
// t can be nil only if this is a call that has no
// return values, so allow that and otherwise give
// an error.
if _, isCallExpr := m.(*ir.CallExpr); !isCallExpr {
base.Fatalf(fmt.Sprintf("Nil type for %v", x))
}
} else {
m.SetType(subst.typ(x.Type()))
}
}
ir.EditChildren(m, edit)
if x.Op() == ir.OXDOT {
// A method value/call via a type param will have been left as an
// OXDOT. When we see this during stenciling, finish the
// typechecking, now that we have the instantiated receiver type.
// We need to do this now, since the access/selection to the
// method for the real type is very different from the selection
// for the type param.
m.SetTypecheck(0)
// m will transform to an OCALLPART
typecheck.Expr(m)
}
if x.Op() == ir.OCALL {
call := m.(*ir.CallExpr)
if call.X.Op() == ir.OTYPE {
// Do typechecking on a conversion, now that we
// know the type argument.
m.SetTypecheck(0)
m = typecheck.Expr(m)
} else if call.X.Op() == ir.OCALLPART {
// Redo the typechecking, now that we know the method
// value is being called.
call.X.(*ir.SelectorExpr).SetOp(ir.OXDOT)
call.X.SetTypecheck(0)
call.X.SetType(nil)
typecheck.Callee(call.X)
m.SetTypecheck(0)
typecheck.Call(m.(*ir.CallExpr))
} else {
base.FatalfAt(call.Pos(), "Expecting OCALLPART or OTYPE with CALL")
}
}
if x.Op() == ir.OCLOSURE {
x := x.(*ir.ClosureExpr)
// Need to save/duplicate x.Func.Nname,
// x.Func.Nname.Ntype, x.Func.Dcl, x.Func.ClosureVars, and
// x.Func.Body.
oldfn := x.Func
newfn := ir.NewFunc(oldfn.Pos())
if oldfn.ClosureCalled() {
newfn.SetClosureCalled(true)
}
m.(*ir.ClosureExpr).Func = newfn
newfn.Nname = ir.NewNameAt(oldfn.Nname.Pos(), oldfn.Nname.Sym())
newfn.Nname.SetType(oldfn.Nname.Type())
newfn.Nname.Ntype = subst.node(oldfn.Nname.Ntype).(ir.Ntype)
newfn.Body = subst.list(oldfn.Body)
// Make shallow copy of the Dcl and ClosureVar slices
newfn.Dcl = append([]*ir.Name(nil), oldfn.Dcl...)
newfn.ClosureVars = append([]*ir.Name(nil), oldfn.ClosureVars...)
}
return m
}
return edit(n)
}
func (subst *subster) list(l []ir.Node) []ir.Node {
s := make([]ir.Node, len(l))
for i, n := range l {
s[i] = subst.node(n)
}
return s
}
// tstruct substitutes type params in a structure type
func (subst *subster) tstruct(t *types.Type) *types.Type {
if t.NumFields() == 0 {
return t
}
var newfields []*types.Field
for i, f := range t.Fields().Slice() {
t2 := subst.typ(f.Type)
if t2 != f.Type && newfields == nil {
newfields = make([]*types.Field, t.NumFields())
for j := 0; j < i; j++ {
newfields[j] = t.Field(j)
}
}
if newfields != nil {
newfields[i] = types.NewField(f.Pos, f.Sym, t2)
}
}
if newfields != nil {
return types.NewStruct(t.Pkg(), newfields)
}
return t
}
// instTypeName creates a name for an instantiated type, based on the type args
func instTypeName(name string, targs []ir.Node) string {
b := bytes.NewBufferString(name)
b.WriteByte('[')
for i, targ := range targs {
if i > 0 {
b.WriteByte(',')
}
b.WriteString(targ.Type().String())
}
b.WriteByte(']')
return b.String()
}
// typ computes the type obtained by substituting any type parameter in t with the
// corresponding type argument in subst. If t contains no type parameters, the
// result is t; otherwise the result is a new type.
// It deals with recursive types by using a map and TFORW types.
// TODO(danscales) deal with recursion besides ptr/struct cases.
func (subst *subster) typ(t *types.Type) *types.Type {
if !t.HasTParam() {
return t
}
if subst.seen[t] != nil {
// We've hit a recursive type
return subst.seen[t]
}
var newt *types.Type
switch t.Kind() {
case types.TTYPEPARAM:
for i, tp := range subst.tparams {
if tp.Type == t {
return subst.targs[i].Type()
}
}
return t
case types.TARRAY:
elem := t.Elem()
newelem := subst.typ(elem)
if newelem != elem {
newt = types.NewArray(newelem, t.NumElem())
}
case types.TPTR:
elem := t.Elem()
// In order to deal with recursive generic types, create a TFORW
// type initially and store it in the seen map, so it can be
// accessed if this type appears recursively within the type.
forw := types.New(types.TFORW)
subst.seen[t] = forw
newelem := subst.typ(elem)
if newelem != elem {
forw.SetUnderlying(types.NewPtr(newelem))
newt = forw
}
delete(subst.seen, t)
case types.TSLICE:
elem := t.Elem()
newelem := subst.typ(elem)
if newelem != elem {
newt = types.NewSlice(newelem)
}
case types.TSTRUCT:
forw := types.New(types.TFORW)
subst.seen[t] = forw
newt = subst.tstruct(t)
if newt != t {
forw.SetUnderlying(newt)
newt = forw
}
delete(subst.seen, t)
case types.TFUNC:
newrecvs := subst.tstruct(t.Recvs())
newparams := subst.tstruct(t.Params())
newresults := subst.tstruct(t.Results())
if newrecvs != t.Recvs() || newparams != t.Params() || newresults != t.Results() {
var newrecv *types.Field
if newrecvs.NumFields() > 0 {
newrecv = newrecvs.Field(0)
}
newt = types.NewSignature(t.Pkg(), newrecv, nil, newparams.FieldSlice(), newresults.FieldSlice())
}
// TODO: case TCHAN
// TODO: case TMAP
// TODO: case TINTER
}
if newt != nil {
if t.Sym() != nil {
// Since we've substituted types, we also need to change
// the defined name of the type, by removing the old types
// (in brackets) from the name, and adding the new types.
oldname := t.Sym().Name
i := strings.Index(oldname, "[")
oldname = oldname[:i]
sym := t.Sym().Pkg.Lookup(instTypeName(oldname, subst.targs))
if sym.Def != nil {
// We've already created this instantiated defined type.
return sym.Def.Type()
}
newt.SetSym(sym)
sym.Def = ir.TypeNode(newt)
}
return newt
}
return t
}
// fields sets the Nname field for the Field nodes inside a type signature, based
// on the corresponding in/out parameters in dcl. It depends on the in and out
// parameters being in order in dcl.
func (subst *subster) fields(class ir.Class, oldfields []*types.Field, dcl []*ir.Name) []*types.Field {
newfields := make([]*types.Field, len(oldfields))
var i int
// Find the starting index in dcl of declarations of the class (either
// PPARAM or PPARAMOUT).
for i = range dcl {
if dcl[i].Class == class {
break
}
}
// Create newfields nodes that are copies of the oldfields nodes, but
// with substitution for any type params, and with Nname set to be the node in
// Dcl for the corresponding PPARAM or PPARAMOUT.
for j := range oldfields {
newfields[j] = oldfields[j].Copy()
newfields[j].Type = subst.typ(oldfields[j].Type)
newfields[j].Nname = dcl[i]
i++
}
return newfields
}

View File

@ -0,0 +1,303 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"cmd/compile/internal/ir"
"cmd/compile/internal/syntax"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/internal/src"
)
func (g *irgen) stmts(stmts []syntax.Stmt) []ir.Node {
var nodes []ir.Node
for _, stmt := range stmts {
switch s := g.stmt(stmt).(type) {
case nil: // EmptyStmt
case *ir.BlockStmt:
nodes = append(nodes, s.List...)
default:
nodes = append(nodes, s)
}
}
return nodes
}
func (g *irgen) stmt(stmt syntax.Stmt) ir.Node {
// TODO(mdempsky): Remove dependency on typecheck.
return typecheck.Stmt(g.stmt0(stmt))
}
func (g *irgen) stmt0(stmt syntax.Stmt) ir.Node {
switch stmt := stmt.(type) {
case nil, *syntax.EmptyStmt:
return nil
case *syntax.LabeledStmt:
return g.labeledStmt(stmt)
case *syntax.BlockStmt:
return ir.NewBlockStmt(g.pos(stmt), g.blockStmt(stmt))
case *syntax.ExprStmt:
x := g.expr(stmt.X)
if call, ok := x.(*ir.CallExpr); ok {
call.Use = ir.CallUseStmt
}
return x
case *syntax.SendStmt:
return ir.NewSendStmt(g.pos(stmt), g.expr(stmt.Chan), g.expr(stmt.Value))
case *syntax.DeclStmt:
return ir.NewBlockStmt(g.pos(stmt), g.decls(stmt.DeclList))
case *syntax.AssignStmt:
if stmt.Op != 0 && stmt.Op != syntax.Def {
op := g.op(stmt.Op, binOps[:])
if stmt.Rhs == nil {
return IncDec(g.pos(stmt), op, g.expr(stmt.Lhs))
}
return ir.NewAssignOpStmt(g.pos(stmt), op, g.expr(stmt.Lhs), g.expr(stmt.Rhs))
}
names, lhs := g.assignList(stmt.Lhs, stmt.Op == syntax.Def)
rhs := g.exprList(stmt.Rhs)
if len(lhs) == 1 && len(rhs) == 1 {
n := ir.NewAssignStmt(g.pos(stmt), lhs[0], rhs[0])
n.Def = initDefn(n, names)
return n
}
n := ir.NewAssignListStmt(g.pos(stmt), ir.OAS2, lhs, rhs)
n.Def = initDefn(n, names)
return n
case *syntax.BranchStmt:
return ir.NewBranchStmt(g.pos(stmt), g.tokOp(int(stmt.Tok), branchOps[:]), g.name(stmt.Label))
case *syntax.CallStmt:
return ir.NewGoDeferStmt(g.pos(stmt), g.tokOp(int(stmt.Tok), callOps[:]), g.expr(stmt.Call))
case *syntax.ReturnStmt:
return ir.NewReturnStmt(g.pos(stmt), g.exprList(stmt.Results))
case *syntax.IfStmt:
return g.ifStmt(stmt)
case *syntax.ForStmt:
return g.forStmt(stmt)
case *syntax.SelectStmt:
return g.selectStmt(stmt)
case *syntax.SwitchStmt:
return g.switchStmt(stmt)
default:
g.unhandled("statement", stmt)
panic("unreachable")
}
}
// TODO(mdempsky): Investigate replacing with switch statements or dense arrays.
var branchOps = [...]ir.Op{
syntax.Break: ir.OBREAK,
syntax.Continue: ir.OCONTINUE,
syntax.Fallthrough: ir.OFALL,
syntax.Goto: ir.OGOTO,
}
var callOps = [...]ir.Op{
syntax.Defer: ir.ODEFER,
syntax.Go: ir.OGO,
}
func (g *irgen) tokOp(tok int, ops []ir.Op) ir.Op {
// TODO(mdempsky): Validate.
return ops[tok]
}
func (g *irgen) op(op syntax.Operator, ops []ir.Op) ir.Op {
// TODO(mdempsky): Validate.
return ops[op]
}
func (g *irgen) assignList(expr syntax.Expr, def bool) ([]*ir.Name, []ir.Node) {
if !def {
return nil, g.exprList(expr)
}
var exprs []syntax.Expr
if list, ok := expr.(*syntax.ListExpr); ok {
exprs = list.ElemList
} else {
exprs = []syntax.Expr{expr}
}
var names []*ir.Name
res := make([]ir.Node, len(exprs))
for i, expr := range exprs {
expr := expr.(*syntax.Name)
if expr.Value == "_" {
res[i] = ir.BlankNode
continue
}
if obj, ok := g.info.Uses[expr]; ok {
res[i] = g.obj(obj)
continue
}
name, _ := g.def(expr)
names = append(names, name)
res[i] = name
}
return names, res
}
// initDefn marks the given names as declared by defn and populates
// its Init field with ODCL nodes. It then reports whether any names
// were so declared, which can be used to initialize defn.Def.
func initDefn(defn ir.InitNode, names []*ir.Name) bool {
if len(names) == 0 {
return false
}
init := make([]ir.Node, len(names))
for i, name := range names {
name.Defn = defn
init[i] = ir.NewDecl(name.Pos(), ir.ODCL, name)
}
defn.SetInit(init)
return true
}
func (g *irgen) blockStmt(stmt *syntax.BlockStmt) []ir.Node {
return g.stmts(stmt.List)
}
func (g *irgen) ifStmt(stmt *syntax.IfStmt) ir.Node {
init := g.stmt(stmt.Init)
n := ir.NewIfStmt(g.pos(stmt), g.expr(stmt.Cond), g.blockStmt(stmt.Then), nil)
if stmt.Else != nil {
e := g.stmt(stmt.Else)
if e.Op() == ir.OBLOCK {
e := e.(*ir.BlockStmt)
n.Else = e.List
} else {
n.Else = []ir.Node{e}
}
}
return g.init(init, n)
}
// unpackTwo returns the first two nodes in list. If list has fewer
// than 2 nodes, then the missing nodes are replaced with nils.
func unpackTwo(list []ir.Node) (fst, snd ir.Node) {
switch len(list) {
case 0:
return nil, nil
case 1:
return list[0], nil
default:
return list[0], list[1]
}
}
func (g *irgen) forStmt(stmt *syntax.ForStmt) ir.Node {
if r, ok := stmt.Init.(*syntax.RangeClause); ok {
names, lhs := g.assignList(r.Lhs, r.Def)
key, value := unpackTwo(lhs)
n := ir.NewRangeStmt(g.pos(r), key, value, g.expr(r.X), g.blockStmt(stmt.Body))
n.Def = initDefn(n, names)
return n
}
return ir.NewForStmt(g.pos(stmt), g.stmt(stmt.Init), g.expr(stmt.Cond), g.stmt(stmt.Post), g.blockStmt(stmt.Body))
}
func (g *irgen) selectStmt(stmt *syntax.SelectStmt) ir.Node {
body := make([]*ir.CommClause, len(stmt.Body))
for i, clause := range stmt.Body {
body[i] = ir.NewCommStmt(g.pos(clause), g.stmt(clause.Comm), g.stmts(clause.Body))
}
return ir.NewSelectStmt(g.pos(stmt), body)
}
func (g *irgen) switchStmt(stmt *syntax.SwitchStmt) ir.Node {
pos := g.pos(stmt)
init := g.stmt(stmt.Init)
var expr ir.Node
switch tag := stmt.Tag.(type) {
case *syntax.TypeSwitchGuard:
var ident *ir.Ident
if tag.Lhs != nil {
ident = ir.NewIdent(g.pos(tag.Lhs), g.name(tag.Lhs))
}
expr = ir.NewTypeSwitchGuard(pos, ident, g.expr(tag.X))
default:
expr = g.expr(tag)
}
body := make([]*ir.CaseClause, len(stmt.Body))
for i, clause := range stmt.Body {
// Check for an implicit clause variable before
// visiting body, because it may contain function
// literals that reference it, and then it'll be
// associated to the wrong function.
//
// Also, override its position to the clause's colon, so that
// dwarfgen can find the right scope for it later.
// TODO(mdempsky): We should probably just store the scope
// directly in the ir.Name.
var cv *ir.Name
if obj, ok := g.info.Implicits[clause]; ok {
cv = g.obj(obj)
cv.SetPos(g.makeXPos(clause.Colon))
}
body[i] = ir.NewCaseStmt(g.pos(clause), g.exprList(clause.Cases), g.stmts(clause.Body))
body[i].Var = cv
}
return g.init(init, ir.NewSwitchStmt(pos, expr, body))
}
func (g *irgen) labeledStmt(label *syntax.LabeledStmt) ir.Node {
sym := g.name(label.Label)
lhs := ir.NewLabelStmt(g.pos(label), sym)
ls := g.stmt(label.Stmt)
// Attach label directly to control statement too.
switch ls := ls.(type) {
case *ir.ForStmt:
ls.Label = sym
case *ir.RangeStmt:
ls.Label = sym
case *ir.SelectStmt:
ls.Label = sym
case *ir.SwitchStmt:
ls.Label = sym
}
l := []ir.Node{lhs}
if ls != nil {
if ls.Op() == ir.OBLOCK {
ls := ls.(*ir.BlockStmt)
l = append(l, ls.List...)
} else {
l = append(l, ls)
}
}
return ir.NewBlockStmt(src.NoXPos, l)
}
func (g *irgen) init(init ir.Node, stmt ir.InitNode) ir.InitNode {
if init != nil {
stmt.SetInit([]ir.Node{init})
}
return stmt
}
func (g *irgen) name(name *syntax.Name) *types.Sym {
if name == nil {
return nil
}
return typecheck.Lookup(name.Value)
}

View File

@ -0,0 +1,328 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"bytes"
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/compile/internal/types2"
"cmd/internal/src"
)
func (g *irgen) pkg(pkg *types2.Package) *types.Pkg {
switch pkg {
case nil:
return types.BuiltinPkg
case g.self:
return types.LocalPkg
case types2.Unsafe:
return ir.Pkgs.Unsafe
}
return types.NewPkg(pkg.Path(), pkg.Name())
}
// typ converts a types2.Type to a types.Type, including caching of previously
// translated types.
func (g *irgen) typ(typ types2.Type) *types.Type {
// Caching type mappings isn't strictly needed, because typ0 preserves
// type identity; but caching minimizes memory blow-up from mapping the
// same composite type multiple times, and also plays better with the
// current state of cmd/compile (e.g., haphazard calculation of type
// sizes).
res, ok := g.typs[typ]
if !ok {
res = g.typ0(typ)
g.typs[typ] = res
// Ensure we calculate the size for all concrete types seen by
// the frontend. This is another heavy hammer for something that
// should really be the backend's responsibility instead.
if res != nil && !res.IsUntyped() && !res.IsFuncArgStruct() {
types.CheckSize(res)
}
}
return res
}
// instTypeName2 creates a name for an instantiated type, base on the type args
// (given as types2 types).
func instTypeName2(name string, targs []types2.Type) string {
b := bytes.NewBufferString(name)
b.WriteByte('[')
for i, targ := range targs {
if i > 0 {
b.WriteByte(',')
}
b.WriteString(types2.TypeString(targ,
func(*types2.Package) string { return "" }))
}
b.WriteByte(']')
return b.String()
}
// typ0 converts a types2.Type to a types.Type, but doesn't do the caching check
// at the top level.
func (g *irgen) typ0(typ types2.Type) *types.Type {
switch typ := typ.(type) {
case *types2.Basic:
return g.basic(typ)
case *types2.Named:
if typ.TParams() != nil {
// typ is an instantiation of a defined (named) generic type.
// This instantiation should also be a defined (named) type.
// types2 gives us the substituted type in t.Underlying()
// The substituted type may or may not still have type
// params. We might, for example, be substituting one type
// param for another type param.
if typ.TArgs() == nil {
base.Fatalf("In typ0, Targs should be set if TParams is set")
}
// When converted to types.Type, typ must have a name,
// based on the names of the type arguments. We need a
// name to deal with recursive generic types (and it also
// looks better when printing types).
instName := instTypeName2(typ.Obj().Name(), typ.TArgs())
s := g.pkg(typ.Obj().Pkg()).Lookup(instName)
if s.Def != nil {
// We have already encountered this instantiation,
// so use the type we previously created, since there
// must be exactly one instance of a defined type.
return s.Def.Type()
}
// Create a forwarding type first and put it in the g.typs
// map, in order to deal with recursive generic types.
ntyp := types.New(types.TFORW)
g.typs[typ] = ntyp
ntyp.SetUnderlying(g.typ(typ.Underlying()))
ntyp.SetSym(s)
if ntyp.HasTParam() {
// If ntyp still has type params, then we must be
// referencing something like 'value[T2]', as when
// specifying the generic receiver of a method,
// where value was defined as "type value[T any]
// ...". Save the type args, which will now be the
// new type params of the current type.
ntyp.RParams = make([]*types.Type, len(typ.TArgs()))
for i, targ := range typ.TArgs() {
ntyp.RParams[i] = g.typ(targ)
}
}
// Make sure instantiated type can be uniquely found from
// the sym
s.Def = ir.TypeNode(ntyp)
return ntyp
}
obj := g.obj(typ.Obj())
if obj.Op() != ir.OTYPE {
base.FatalfAt(obj.Pos(), "expected type: %L", obj)
}
return obj.Type()
case *types2.Array:
return types.NewArray(g.typ(typ.Elem()), typ.Len())
case *types2.Chan:
return types.NewChan(g.typ(typ.Elem()), dirs[typ.Dir()])
case *types2.Map:
return types.NewMap(g.typ(typ.Key()), g.typ(typ.Elem()))
case *types2.Pointer:
return types.NewPtr(g.typ(typ.Elem()))
case *types2.Signature:
return g.signature(nil, typ)
case *types2.Slice:
return types.NewSlice(g.typ(typ.Elem()))
case *types2.Struct:
fields := make([]*types.Field, typ.NumFields())
for i := range fields {
v := typ.Field(i)
f := types.NewField(g.pos(v), g.selector(v), g.typ(v.Type()))
f.Note = typ.Tag(i)
if v.Embedded() {
f.Embedded = 1
}
fields[i] = f
}
return types.NewStruct(g.tpkg(typ), fields)
case *types2.Interface:
embeddeds := make([]*types.Field, typ.NumEmbeddeds())
for i := range embeddeds {
// TODO(mdempsky): Get embedding position.
e := typ.EmbeddedType(i)
embeddeds[i] = types.NewField(src.NoXPos, nil, g.typ(e))
}
methods := make([]*types.Field, typ.NumExplicitMethods())
for i := range methods {
m := typ.ExplicitMethod(i)
mtyp := g.signature(typecheck.FakeRecv(), m.Type().(*types2.Signature))
methods[i] = types.NewField(g.pos(m), g.selector(m), mtyp)
}
return types.NewInterface(g.tpkg(typ), append(embeddeds, methods...))
case *types2.TypeParam:
tp := types.NewTypeParam(g.tpkg(typ), g.typ(typ.Bound()))
// Save the name of the type parameter in the sym of the type.
tp.SetSym(g.sym(typ.Obj()))
return tp
case *types2.Tuple:
// Tuples are used for the type of a function call (i.e. the
// return value of the function).
if typ == nil {
return (*types.Type)(nil)
}
fields := make([]*types.Field, typ.Len())
for i := range fields {
fields[i] = g.param(typ.At(i))
}
t := types.NewStruct(types.LocalPkg, fields)
types.CheckSize(t)
// Can only set after doing the types.CheckSize()
t.StructType().Funarg = types.FunargResults
return t
default:
base.FatalfAt(src.NoXPos, "unhandled type: %v (%T)", typ, typ)
panic("unreachable")
}
}
func (g *irgen) signature(recv *types.Field, sig *types2.Signature) *types.Type {
tparams2 := sig.TParams()
tparams := make([]*types.Field, len(tparams2))
for i := range tparams {
tp := tparams2[i]
tparams[i] = types.NewField(g.pos(tp), g.sym(tp), g.typ(tp.Type()))
}
do := func(typ *types2.Tuple) []*types.Field {
fields := make([]*types.Field, typ.Len())
for i := range fields {
fields[i] = g.param(typ.At(i))
}
return fields
}
params := do(sig.Params())
results := do(sig.Results())
if sig.Variadic() {
params[len(params)-1].SetIsDDD(true)
}
return types.NewSignature(g.tpkg(sig), recv, tparams, params, results)
}
func (g *irgen) param(v *types2.Var) *types.Field {
return types.NewField(g.pos(v), g.sym(v), g.typ(v.Type()))
}
func (g *irgen) sym(obj types2.Object) *types.Sym {
if name := obj.Name(); name != "" {
return g.pkg(obj.Pkg()).Lookup(obj.Name())
}
return nil
}
func (g *irgen) selector(obj types2.Object) *types.Sym {
pkg, name := g.pkg(obj.Pkg()), obj.Name()
if types.IsExported(name) {
pkg = types.LocalPkg
}
return pkg.Lookup(name)
}
// tpkg returns the package that a function, interface, or struct type
// expression appeared in.
//
// Caveat: For the degenerate types "func()", "interface{}", and
// "struct{}", tpkg always returns LocalPkg. However, we only need the
// package information so that go/types can report it via its API, and
// the reason we fail to return the original package for these
// particular types is because go/types does *not* report it for
// them. So in practice this limitation is probably moot.
func (g *irgen) tpkg(typ types2.Type) *types.Pkg {
anyObj := func() types2.Object {
switch typ := typ.(type) {
case *types2.Signature:
if recv := typ.Recv(); recv != nil {
return recv
}
if params := typ.Params(); params.Len() > 0 {
return params.At(0)
}
if results := typ.Results(); results.Len() > 0 {
return results.At(0)
}
case *types2.Struct:
if typ.NumFields() > 0 {
return typ.Field(0)
}
case *types2.Interface:
if typ.NumExplicitMethods() > 0 {
return typ.ExplicitMethod(0)
}
}
return nil
}
if obj := anyObj(); obj != nil {
return g.pkg(obj.Pkg())
}
return types.LocalPkg
}
func (g *irgen) basic(typ *types2.Basic) *types.Type {
switch typ.Name() {
case "byte":
return types.ByteType
case "rune":
return types.RuneType
}
return *basics[typ.Kind()]
}
var basics = [...]**types.Type{
types2.Invalid: new(*types.Type),
types2.Bool: &types.Types[types.TBOOL],
types2.Int: &types.Types[types.TINT],
types2.Int8: &types.Types[types.TINT8],
types2.Int16: &types.Types[types.TINT16],
types2.Int32: &types.Types[types.TINT32],
types2.Int64: &types.Types[types.TINT64],
types2.Uint: &types.Types[types.TUINT],
types2.Uint8: &types.Types[types.TUINT8],
types2.Uint16: &types.Types[types.TUINT16],
types2.Uint32: &types.Types[types.TUINT32],
types2.Uint64: &types.Types[types.TUINT64],
types2.Uintptr: &types.Types[types.TUINTPTR],
types2.Float32: &types.Types[types.TFLOAT32],
types2.Float64: &types.Types[types.TFLOAT64],
types2.Complex64: &types.Types[types.TCOMPLEX64],
types2.Complex128: &types.Types[types.TCOMPLEX128],
types2.String: &types.Types[types.TSTRING],
types2.UnsafePointer: &types.Types[types.TUNSAFEPTR],
types2.UntypedBool: &types.UntypedBool,
types2.UntypedInt: &types.UntypedInt,
types2.UntypedRune: &types.UntypedRune,
types2.UntypedFloat: &types.UntypedFloat,
types2.UntypedComplex: &types.UntypedComplex,
types2.UntypedString: &types.UntypedString,
types2.UntypedNil: &types.Types[types.TNIL],
}
var dirs = [...]types.ChanDir{
types2.SendRecv: types.Cboth,
types2.SendOnly: types.Csend,
types2.RecvOnly: types.Crecv,
}

View File

@ -0,0 +1,113 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"go/constant"
"cmd/compile/internal/base"
"cmd/compile/internal/syntax"
"cmd/compile/internal/types"
"cmd/compile/internal/types2"
)
// match reports whether types t1 and t2 are consistent
// representations for a given expression's type.
func (g *irgen) match(t1 *types.Type, t2 types2.Type, hasOK bool) bool {
tuple, ok := t2.(*types2.Tuple)
if !ok {
// Not a tuple; can use simple type identity comparison.
return types.Identical(t1, g.typ(t2))
}
if hasOK {
// For has-ok values, types2 represents the expression's type as
// a 2-element tuple, whereas ir just uses the first type and
// infers that the second type is boolean.
return tuple.Len() == 2 && types.Identical(t1, g.typ(tuple.At(0).Type()))
}
if t1 == nil || tuple == nil {
return t1 == nil && tuple == nil
}
if !t1.IsFuncArgStruct() {
return false
}
if t1.NumFields() != tuple.Len() {
return false
}
for i, result := range t1.FieldSlice() {
if !types.Identical(result.Type, g.typ(tuple.At(i).Type())) {
return false
}
}
return true
}
func (g *irgen) validate(n syntax.Node) {
switch n := n.(type) {
case *syntax.CallExpr:
tv := g.info.Types[n.Fun]
if tv.IsBuiltin() {
switch builtin := n.Fun.(type) {
case *syntax.Name:
g.validateBuiltin(builtin.Value, n)
case *syntax.SelectorExpr:
g.validateBuiltin(builtin.Sel.Value, n)
default:
g.unhandled("builtin", n)
}
}
}
}
func (g *irgen) validateBuiltin(name string, call *syntax.CallExpr) {
switch name {
case "Alignof", "Offsetof", "Sizeof":
// Check that types2+gcSizes calculates sizes the same
// as cmd/compile does.
got, ok := constant.Int64Val(g.info.Types[call].Value)
if !ok {
base.FatalfAt(g.pos(call), "expected int64 constant value")
}
want := g.unsafeExpr(name, call.ArgList[0])
if got != want {
base.FatalfAt(g.pos(call), "got %v from types2, but want %v", got, want)
}
}
}
// unsafeExpr evaluates the given unsafe builtin function on arg.
func (g *irgen) unsafeExpr(name string, arg syntax.Expr) int64 {
switch name {
case "Alignof":
return g.typ(g.info.Types[arg].Type).Alignment()
case "Sizeof":
return g.typ(g.info.Types[arg].Type).Size()
}
// Offsetof
sel := arg.(*syntax.SelectorExpr)
selection := g.info.Selections[sel]
typ := g.typ(g.info.Types[sel.X].Type)
if typ.IsPtr() {
typ = typ.Elem()
}
var offset int64
for _, i := range selection.Index() {
// Ensure field offsets have been calculated.
types.CalcSize(typ)
f := typ.Field(i)
offset += f.Offset
typ = f.Type
}
return offset
}

View File

@ -289,7 +289,7 @@ func hashfor(t *types.Type) ir.Node {
n := typecheck.NewName(sym)
ir.MarkFunc(n)
n.SetType(types.NewSignature(types.NoPkg, nil, []*types.Field{
n.SetType(types.NewSignature(types.NoPkg, nil, nil, []*types.Field{
types.NewField(base.Pos, nil, types.NewPtr(t)),
types.NewField(base.Pos, nil, types.Types[types.TUINTPTR]),
}, []*types.Field{
@ -777,7 +777,7 @@ func hashmem(t *types.Type) ir.Node {
n := typecheck.NewName(sym)
ir.MarkFunc(n)
n.SetType(types.NewSignature(types.NoPkg, nil, []*types.Field{
n.SetType(types.NewSignature(types.NoPkg, nil, nil, []*types.Field{
types.NewField(base.Pos, nil, types.NewPtr(t)),
types.NewField(base.Pos, nil, types.Types[types.TUINTPTR]),
types.NewField(base.Pos, nil, types.Types[types.TUINTPTR]),

View File

@ -1315,6 +1315,11 @@ func ITabSym(it *obj.LSym, offset int64) *obj.LSym {
// NeedRuntimeType ensures that a runtime type descriptor is emitted for t.
func NeedRuntimeType(t *types.Type) {
if t.HasTParam() {
// Generic types don't have a runtime type descriptor (but will
// have a dictionary)
return
}
if _, ok := signatset[t]; !ok {
signatset[t] = struct{}{}
signatslice = append(signatslice, t)
@ -1426,7 +1431,7 @@ func WriteBasicTypes() {
// The latter is the type of an auto-generated wrapper.
writeType(types.NewPtr(types.ErrorType))
writeType(types.NewSignature(types.NoPkg, nil, []*types.Field{
writeType(types.NewSignature(types.NoPkg, nil, nil, []*types.Field{
types.NewField(base.Pos, nil, types.ErrorType),
}, []*types.Field{
types.NewField(base.Pos, nil, types.Types[types.TSTRING]),

View File

@ -213,8 +213,7 @@ func StackOffset(slot ssa.LocalSlot) int32 {
if base.Ctxt.FixedFrameSize() == 0 {
off -= int64(types.PtrSize)
}
if objabi.Framepointer_enabled || objabi.GOARCH == "arm64" {
// There is a word space for FP on ARM64 even if the frame pointer is disabled
if objabi.Framepointer_enabled {
off -= int64(types.PtrSize)
}
case ir.PPARAM, ir.PPARAMOUT:

View File

@ -26,7 +26,7 @@ func Fdump(w io.Writer, n Node) (err error) {
defer func() {
if e := recover(); e != nil {
err = e.(localError).err // re-panics if it's not a localError
err = e.(writeError).err // re-panics if it's not a writeError
}
}()
@ -82,16 +82,16 @@ func (p *dumper) Write(data []byte) (n int, err error) {
return
}
// localError wraps locally caught errors so we can distinguish
// writeError wraps locally caught write errors so we can distinguish
// them from genuine panics which we don't want to return as errors.
type localError struct {
type writeError struct {
err error
}
// printf is a convenience wrapper that takes care of print errors.
func (p *dumper) printf(format string, args ...interface{}) {
if _, err := fmt.Fprintf(p, format, args...); err != nil {
panic(localError{err})
panic(writeError{err})
}
}

View File

@ -128,6 +128,10 @@ func testSyntaxErrors(t *testing.T, filename string) {
}
defer f.Close()
var mode Mode
if strings.HasSuffix(filename, ".go2") {
mode = AllowGenerics
}
ParseFile(filename, func(err error) {
e, ok := err.(Error)
if !ok {
@ -162,7 +166,7 @@ func testSyntaxErrors(t *testing.T, filename string) {
} else {
t.Errorf("%s: unexpected error: %s", orig, e.Msg)
}
}, nil, 0)
}, nil, mode)
if *print {
fmt.Println()

View File

@ -37,7 +37,7 @@ type File struct {
Pragma Pragma
PkgName *Name
DeclList []Decl
Lines uint
EOF Pos
node
}
@ -55,8 +55,8 @@ type (
ImportDecl struct {
Group *Group // nil means not part of a group
Pragma Pragma
LocalPkgName *Name // including "."; nil means no rename present
Path *BasicLit
LocalPkgName *Name // including "."; nil means no rename present
Path *BasicLit // Path.Bad || Path.Kind == StringLit; nil means no path
decl
}
@ -74,11 +74,12 @@ type (
// Name Type
TypeDecl struct {
Group *Group // nil means not part of a group
Pragma Pragma
Name *Name
Alias bool
Type Expr
Group *Group // nil means not part of a group
Pragma Pragma
Name *Name
TParamList []*Field // nil means no type parameters
Alias bool
Type Expr
decl
}
@ -99,11 +100,12 @@ type (
// func Receiver Name Type { Body }
// func Receiver Name Type
FuncDecl struct {
Pragma Pragma
Recv *Field // nil means regular function
Name *Name
Type *FuncType
Body *BlockStmt // nil means no body (forward declaration)
Pragma Pragma
Recv *Field // nil means regular function
Name *Name
TParamList []*Field // nil means no type parameters
Type *FuncType
Body *BlockStmt // nil means no body (forward declaration)
decl
}
)
@ -120,6 +122,13 @@ type Group struct {
// ----------------------------------------------------------------------------
// Expressions
func NewName(pos Pos, value string) *Name {
n := new(Name)
n.pos = pos
n.Value = value
return n
}
type (
Expr interface {
Node
@ -182,6 +191,7 @@ type (
}
// X[Index]
// X[T1, T2, ...] (with Ti = Index.(*ListExpr).ElemList[i])
IndexExpr struct {
X Expr
Index Expr
@ -272,7 +282,7 @@ type (
// interface { MethodList[0]; MethodList[1]; ... }
InterfaceType struct {
MethodList []*Field
MethodList []*Field // a field named "type" means a type constraint
expr
}
@ -357,7 +367,7 @@ type (
AssignStmt struct {
Op Operator // 0 means no operation
Lhs, Rhs Expr // Rhs == ImplicitOne means Lhs++ (Op == Add) or Lhs-- (Op == Sub)
Lhs, Rhs Expr // Rhs == nil means Lhs++ (Op == Add) or Lhs-- (Op == Sub)
simpleStmt
}

File diff suppressed because it is too large Load Diff

View File

@ -26,10 +26,35 @@ var (
)
func TestParse(t *testing.T) {
ParseFile(*src_, func(err error) { t.Error(err) }, nil, 0)
ParseFile(*src_, func(err error) { t.Error(err) }, nil, AllowGenerics)
}
func TestStdLib(t *testing.T) {
func TestVerify(t *testing.T) {
ast, err := ParseFile(*src_, func(err error) { t.Error(err) }, nil, AllowGenerics)
if err != nil {
return // error already reported
}
verifyPrint(t, *src_, ast)
}
func TestParseGo2(t *testing.T) {
dir := filepath.Join(testdata, "go2")
list, err := ioutil.ReadDir(dir)
if err != nil {
t.Fatal(err)
}
for _, fi := range list {
name := fi.Name()
if !fi.IsDir() && !strings.HasPrefix(name, ".") {
ParseFile(filepath.Join(dir, name), func(err error) { t.Error(err) }, nil, AllowGenerics)
}
}
}
func TestStdLib(t *testing.T) { testStdLib(t, 0) }
func TestStdLibGeneric(t *testing.T) { testStdLib(t, AllowGenerics) }
func testStdLib(t *testing.T, mode Mode) {
if testing.Short() {
t.Skip("skipping test in short mode")
}
@ -68,15 +93,15 @@ func TestStdLib(t *testing.T) {
if debug {
fmt.Printf("parsing %s\n", filename)
}
ast, err := ParseFile(filename, nil, nil, 0)
ast, err := ParseFile(filename, nil, nil, mode)
if err != nil {
t.Error(err)
return
}
if *verify {
verifyPrint(filename, ast)
verifyPrint(t, filename, ast)
}
results <- parseResult{filename, ast.Lines}
results <- parseResult{filename, ast.EOF.Line()}
})
}
}()
@ -142,12 +167,13 @@ func walkDirs(t *testing.T, dir string, action func(string)) {
}
}
func verifyPrint(filename string, ast1 *File) {
func verifyPrint(t *testing.T, filename string, ast1 *File) {
var buf1 bytes.Buffer
_, err := Fprint(&buf1, ast1, true)
_, err := Fprint(&buf1, ast1, LineForm)
if err != nil {
panic(err)
}
bytes1 := buf1.Bytes()
ast2, err := Parse(NewFileBase(filename), &buf1, nil, nil, 0)
if err != nil {
@ -155,20 +181,22 @@ func verifyPrint(filename string, ast1 *File) {
}
var buf2 bytes.Buffer
_, err = Fprint(&buf2, ast2, true)
_, err = Fprint(&buf2, ast2, LineForm)
if err != nil {
panic(err)
}
bytes2 := buf2.Bytes()
if bytes.Compare(buf1.Bytes(), buf2.Bytes()) != 0 {
if bytes.Compare(bytes1, bytes2) != 0 {
fmt.Printf("--- %s ---\n", filename)
fmt.Printf("%s\n", buf1.Bytes())
fmt.Printf("%s\n", bytes1)
fmt.Println()
fmt.Printf("--- %s ---\n", filename)
fmt.Printf("%s\n", buf2.Bytes())
fmt.Printf("%s\n", bytes2)
fmt.Println()
panic("not equal")
t.Error("printed syntax trees do not match")
}
}

View File

@ -26,6 +26,7 @@ func MakePos(base *PosBase, line, col uint) Pos { return Pos{base, sat32(line),
// TODO(gri) IsKnown makes an assumption about linebase < 1.
// Maybe we should check for Base() != nil instead.
func (pos Pos) Pos() Pos { return pos }
func (pos Pos) IsKnown() bool { return pos.line > 0 }
func (pos Pos) Base() *PosBase { return pos.base }
func (pos Pos) Line() uint { return uint(pos.line) }

View File

@ -13,19 +13,28 @@ import (
"strings"
)
// TODO(gri) Consider removing the linebreaks flag from this signature.
// Its likely rarely used in common cases.
// Form controls print formatting.
type Form uint
func Fprint(w io.Writer, x Node, linebreaks bool) (n int, err error) {
const (
_ Form = iota // default
LineForm // use spaces instead of linebreaks where possible
ShortForm // like LineForm but print "…" for non-empty function or composite literal bodies
)
// Fprint prints node x to w in the specified form.
// It returns the number of bytes written, and whether there was an error.
func Fprint(w io.Writer, x Node, form Form) (n int, err error) {
p := printer{
output: w,
linebreaks: linebreaks,
form: form,
linebreaks: form == 0,
}
defer func() {
n = p.written
if e := recover(); e != nil {
err = e.(localError).err // re-panics if it's not a localError
err = e.(writeError).err // re-panics if it's not a writeError
}
}()
@ -35,11 +44,13 @@ func Fprint(w io.Writer, x Node, linebreaks bool) (n int, err error) {
return
}
// String is a convenience functions that prints n in ShortForm
// and returns the printed string.
func String(n Node) string {
var buf bytes.Buffer
_, err := Fprint(&buf, n, false)
_, err := Fprint(&buf, n, ShortForm)
if err != nil {
panic(err) // TODO(gri) print something sensible into buf instead
fmt.Fprintf(&buf, "<<< ERROR: %s", err)
}
return buf.String()
}
@ -65,7 +76,8 @@ type whitespace struct {
type printer struct {
output io.Writer
written int // number of bytes written
written int // number of bytes written
form Form
linebreaks bool // print linebreaks instead of semis
indent int // current indentation level
@ -81,7 +93,7 @@ func (p *printer) write(data []byte) {
n, err := p.output.Write(data)
p.written += n
if err != nil {
panic(localError{err})
panic(writeError{err})
}
}
@ -355,17 +367,34 @@ func (p *printer) printRawNode(n Node) {
p.print(_Name, n.Value) // _Name requires actual value following immediately
case *FuncLit:
p.print(n.Type, blank, n.Body)
p.print(n.Type, blank)
if n.Body != nil {
if p.form == ShortForm {
p.print(_Lbrace)
if len(n.Body.List) > 0 {
p.print(_Name, "…")
}
p.print(_Rbrace)
} else {
p.print(n.Body)
}
}
case *CompositeLit:
if n.Type != nil {
p.print(n.Type)
}
p.print(_Lbrace)
if n.NKeys > 0 && n.NKeys == len(n.ElemList) {
p.printExprLines(n.ElemList)
if p.form == ShortForm {
if len(n.ElemList) > 0 {
p.print(_Name, "…")
}
} else {
p.printExprList(n.ElemList)
if n.NKeys > 0 && n.NKeys == len(n.ElemList) {
p.printExprLines(n.ElemList)
} else {
p.printExprList(n.ElemList)
}
}
p.print(_Rbrace)
@ -450,9 +479,13 @@ func (p *printer) printRawNode(n Node) {
}
p.print(_Lbrace)
if len(n.FieldList) > 0 {
p.print(newline, indent)
p.printFieldList(n.FieldList, n.TagList)
p.print(outdent, newline)
if p.linebreaks {
p.print(newline, indent)
p.printFieldList(n.FieldList, n.TagList)
p.print(outdent, newline)
} else {
p.printFieldList(n.FieldList, n.TagList)
}
}
p.print(_Rbrace)
@ -467,9 +500,13 @@ func (p *printer) printRawNode(n Node) {
}
p.print(_Lbrace)
if len(n.MethodList) > 0 {
p.print(newline, indent)
p.printMethodList(n.MethodList)
p.print(outdent, newline)
if p.linebreaks {
p.print(newline, indent)
p.printMethodList(n.MethodList)
p.print(outdent, newline)
} else {
p.printMethodList(n.MethodList)
}
}
p.print(_Rbrace)
@ -484,7 +521,15 @@ func (p *printer) printRawNode(n Node) {
if n.Dir == SendOnly {
p.print(_Arrow)
}
p.print(blank, n.Elem)
p.print(blank)
if e, _ := n.Elem.(*ChanType); n.Dir == 0 && e != nil && e.Dir == RecvOnly {
// don't print chan (<-chan T) as chan <-chan T
p.print(_Lparen)
p.print(n.Elem)
p.print(_Rparen)
} else {
p.print(n.Elem)
}
// statements
case *DeclStmt:
@ -504,7 +549,7 @@ func (p *printer) printRawNode(n Node) {
case *AssignStmt:
p.print(n.Lhs)
if n.Rhs == ImplicitOne {
if n.Rhs == nil {
// TODO(gri) This is going to break the mayCombine
// check once we enable that again.
p.print(n.Op, n.Op) // ++ or --

View File

@ -25,17 +25,60 @@ func TestPrint(t *testing.T) {
}
if ast != nil {
Fprint(testOut(), ast, true)
Fprint(testOut(), ast, LineForm)
fmt.Println()
}
}
type shortBuffer struct {
buf []byte
}
func (w *shortBuffer) Write(data []byte) (n int, err error) {
w.buf = append(w.buf, data...)
n = len(data)
if len(w.buf) > 10 {
err = io.ErrShortBuffer
}
return
}
func TestPrintError(t *testing.T) {
const src = "package p; var x int"
ast, err := Parse(nil, strings.NewReader(src), nil, nil, 0)
if err != nil {
t.Fatal(err)
}
var buf shortBuffer
_, err = Fprint(&buf, ast, 0)
if err == nil || err != io.ErrShortBuffer {
t.Errorf("got err = %s, want %s", err, io.ErrShortBuffer)
}
}
var stringTests = []string{
"package p",
"package p; type _ int; type T1 = struct{}; type ( _ *struct{}; T2 = float32 )",
// channels
"package p; type _ chan chan int",
"package p; type _ chan (<-chan int)",
"package p; type _ chan chan<- int",
"package p; type _ <-chan chan int",
"package p; type _ <-chan <-chan int",
"package p; type _ <-chan chan<- int",
"package p; type _ chan<- chan int",
"package p; type _ chan<- <-chan int",
"package p; type _ chan<- chan<- int",
// TODO(gri) expand
}
func TestPrintString(t *testing.T) {
for _, want := range []string{
"package p",
"package p; type _ = int; type T1 = struct{}; type ( _ = *struct{}; T2 = float32 )",
// TODO(gri) expand
} {
for _, want := range stringTests {
ast, err := Parse(nil, strings.NewReader(want), nil, nil, 0)
if err != nil {
t.Error(err)
@ -53,3 +96,90 @@ func testOut() io.Writer {
}
return ioutil.Discard
}
func dup(s string) [2]string { return [2]string{s, s} }
var exprTests = [][2]string{
// basic type literals
dup("x"),
dup("true"),
dup("42"),
dup("3.1415"),
dup("2.71828i"),
dup(`'a'`),
dup(`"foo"`),
dup("`bar`"),
// func and composite literals
dup("func() {}"),
dup("[]int{}"),
{"func(x int) complex128 { return 0 }", "func(x int) complex128 {…}"},
{"[]int{1, 2, 3}", "[]int{…}"},
// non-type expressions
dup("(x)"),
dup("x.f"),
dup("a[i]"),
dup("s[:]"),
dup("s[i:]"),
dup("s[:j]"),
dup("s[i:j]"),
dup("s[:j:k]"),
dup("s[i:j:k]"),
dup("x.(T)"),
dup("x.([10]int)"),
dup("x.([...]int)"),
dup("x.(struct{})"),
dup("x.(struct{x int; y, z float32; E})"),
dup("x.(func())"),
dup("x.(func(x int))"),
dup("x.(func() int)"),
dup("x.(func(x, y int, z float32) (r int))"),
dup("x.(func(a, b, c int))"),
dup("x.(func(x ...T))"),
dup("x.(interface{})"),
dup("x.(interface{m(); n(x int); E})"),
dup("x.(interface{m(); n(x int) T; E; F})"),
dup("x.(map[K]V)"),
dup("x.(chan E)"),
dup("x.(<-chan E)"),
dup("x.(chan<- chan int)"),
dup("x.(chan<- <-chan int)"),
dup("x.(<-chan chan int)"),
dup("x.(chan (<-chan int))"),
dup("f()"),
dup("f(x)"),
dup("int(x)"),
dup("f(x, x + y)"),
dup("f(s...)"),
dup("f(a, s...)"),
dup("*x"),
dup("&x"),
dup("x + y"),
dup("x + y << (2 * s)"),
}
func TestShortString(t *testing.T) {
for _, test := range exprTests {
src := "package p; var _ = " + test[0]
ast, err := Parse(nil, strings.NewReader(src), nil, nil, 0)
if err != nil {
t.Errorf("%s: %s", test[0], err)
continue
}
x := ast.DeclList[0].(*VarDecl).Values
if got := String(x); got != test[1] {
t.Errorf("%s: got %s, want %s", test[0], got, test[1])
}
}
}

View File

@ -16,6 +16,7 @@ type Mode uint
// Modes supported by the parser.
const (
CheckBranches Mode = 1 << iota // check correct use of labels, break, continue, and goto statements
AllowGenerics
)
// Error describes a syntax error. Error implements the error interface.

View File

@ -0,0 +1,62 @@
package chans
import "runtime"
// Ranger returns a Sender and a Receiver. The Receiver provides a
// Next method to retrieve values. The Sender provides a Send method
// to send values and a Close method to stop sending values. The Next
// method indicates when the Sender has been closed, and the Send
// method indicates when the Receiver has been freed.
//
// This is a convenient way to exit a goroutine sending values when
// the receiver stops reading them.
func Ranger[T any]() (*Sender[T], *Receiver[T]) {
c := make(chan T)
d := make(chan bool)
s := &Sender[T]{values: c, done: d}
r := &Receiver[T]{values: c, done: d}
runtime.SetFinalizer(r, r.finalize)
return s, r
}
// A sender is used to send values to a Receiver.
type Sender[T any] struct {
values chan<- T
done <-chan bool
}
// Send sends a value to the receiver. It returns whether any more
// values may be sent; if it returns false the value was not sent.
func (s *Sender[T]) Send(v T) bool {
select {
case s.values <- v:
return true
case <-s.done:
return false
}
}
// Close tells the receiver that no more values will arrive.
// After Close is called, the Sender may no longer be used.
func (s *Sender[T]) Close() {
close(s.values)
}
// A Receiver receives values from a Sender.
type Receiver[T any] struct {
values <-chan T
done chan<- bool
}
// Next returns the next value from the channel. The bool result
// indicates whether the value is valid, or whether the Sender has
// been closed and no more values will be received.
func (r *Receiver[T]) Next() (T, bool) {
v, ok := <-r.values
return v, ok
}
// finalize is a finalizer for the receiver.
func (r *Receiver[T]) finalize() {
close(r.done)
}

View File

@ -0,0 +1,83 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package linalg
import "math"
// Numeric is type bound that matches any numeric type.
// It would likely be in a constraints package in the standard library.
type Numeric interface {
type int, int8, int16, int32, int64,
uint, uint8, uint16, uint32, uint64, uintptr,
float32, float64,
complex64, complex128
}
func DotProduct[T Numeric](s1, s2 []T) T {
if len(s1) != len(s2) {
panic("DotProduct: slices of unequal length")
}
var r T
for i := range s1 {
r += s1[i] * s2[i]
}
return r
}
// NumericAbs matches numeric types with an Abs method.
type NumericAbs[T any] interface {
Numeric
Abs() T
}
// AbsDifference computes the absolute value of the difference of
// a and b, where the absolute value is determined by the Abs method.
func AbsDifference[T NumericAbs[T]](a, b T) T {
d := a - b
return d.Abs()
}
// OrderedNumeric is a type bound that matches numeric types that support the < operator.
type OrderedNumeric interface {
type int, int8, int16, int32, int64,
uint, uint8, uint16, uint32, uint64, uintptr,
float32, float64
}
// Complex is a type bound that matches the two complex types, which do not have a < operator.
type Complex interface {
type complex64, complex128
}
// OrderedAbs is a helper type that defines an Abs method for
// ordered numeric types.
type OrderedAbs[T OrderedNumeric] T
func (a OrderedAbs[T]) Abs() OrderedAbs[T] {
if a < 0 {
return -a
}
return a
}
// ComplexAbs is a helper type that defines an Abs method for
// complex types.
type ComplexAbs[T Complex] T
func (a ComplexAbs[T]) Abs() ComplexAbs[T] {
r := float64(real(a))
i := float64(imag(a))
d := math.Sqrt(r * r + i * i)
return ComplexAbs[T](complex(d, 0))
}
func OrderedAbsDifference[T OrderedNumeric](a, b T) T {
return T(AbsDifference(OrderedAbs[T](a), OrderedAbs[T](b)))
}
func ComplexAbsDifference[T Complex](a, b T) T {
return T(AbsDifference(ComplexAbs[T](a), ComplexAbs[T](b)))
}

View File

@ -0,0 +1,113 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package orderedmap provides an ordered map, implemented as a binary tree.
package orderedmap
// TODO(gri) fix imports for tests
import "chans" // ERROR could not import
// Map is an ordered map.
type Map[K, V any] struct {
root *node[K, V]
compare func(K, K) int
}
// node is the type of a node in the binary tree.
type node[K, V any] struct {
key K
val V
left, right *node[K, V]
}
// New returns a new map.
func New[K, V any](compare func(K, K) int) *Map[K, V] {
return &Map[K, V]{compare: compare}
}
// find looks up key in the map, and returns either a pointer
// to the node holding key, or a pointer to the location where
// such a node would go.
func (m *Map[K, V]) find(key K) **node[K, V] {
pn := &m.root
for *pn != nil {
switch cmp := m.compare(key, (*pn).key); {
case cmp < 0:
pn = &(*pn).left
case cmp > 0:
pn = &(*pn).right
default:
return pn
}
}
return pn
}
// Insert inserts a new key/value into the map.
// If the key is already present, the value is replaced.
// Returns true if this is a new key, false if already present.
func (m *Map[K, V]) Insert(key K, val V) bool {
pn := m.find(key)
if *pn != nil {
(*pn).val = val
return false
}
*pn = &node[K, V]{key: key, val: val}
return true
}
// Find returns the value associated with a key, or zero if not present.
// The found result reports whether the key was found.
func (m *Map[K, V]) Find(key K) (V, bool) {
pn := m.find(key)
if *pn == nil {
var zero V // see the discussion of zero values, above
return zero, false
}
return (*pn).val, true
}
// keyValue is a pair of key and value used when iterating.
type keyValue[K, V any] struct {
key K
val V
}
// InOrder returns an iterator that does an in-order traversal of the map.
func (m *Map[K, V]) InOrder() *Iterator[K, V] {
sender, receiver := chans.Ranger[keyValue[K, V]]()
var f func(*node[K, V]) bool
f = func(n *node[K, V]) bool {
if n == nil {
return true
}
// Stop sending values if sender.Send returns false,
// meaning that nothing is listening at the receiver end.
return f(n.left) &&
sender.Send(keyValue[K, V]{n.key, n.val}) &&
f(n.right)
}
go func() {
f(m.root)
sender.Close()
}()
return &Iterator[K, V]{receiver}
}
// Iterator is used to iterate over the map.
type Iterator[K, V any] struct {
r *chans.Receiver[keyValue[K, V]]
}
// Next returns the next key and value pair, and a boolean indicating
// whether they are valid or whether we have reached the end.
func (it *Iterator[K, V]) Next() (K, V, bool) {
keyval, ok := it.r.Next()
if !ok {
var zerok K
var zerov V
return zerok, zerov, false
}
return keyval.key, keyval.val, true
}

View File

@ -0,0 +1,146 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file is like map.go2, but instead if importing chans, it contains
// the necessary functionality at the end of the file.
// Package orderedmap provides an ordered map, implemented as a binary tree.
package orderedmap
// Map is an ordered map.
type Map[K, V any] struct {
root *node[K, V]
compare func(K, K) int
}
// node is the type of a node in the binary tree.
type node[K, V any] struct {
key K
val V
left, right *node[K, V]
}
// New returns a new map.
func New[K, V any](compare func(K, K) int) *Map[K, V] {
return &Map[K, V]{compare: compare}
}
// find looks up key in the map, and returns either a pointer
// to the node holding key, or a pointer to the location where
// such a node would go.
func (m *Map[K, V]) find(key K) **node[K, V] {
pn := &m.root
for *pn != nil {
switch cmp := m.compare(key, (*pn).key); {
case cmp < 0:
pn = &(*pn).left
case cmp > 0:
pn = &(*pn).right
default:
return pn
}
}
return pn
}
// Insert inserts a new key/value into the map.
// If the key is already present, the value is replaced.
// Returns true if this is a new key, false if already present.
func (m *Map[K, V]) Insert(key K, val V) bool {
pn := m.find(key)
if *pn != nil {
(*pn).val = val
return false
}
*pn = &node[K, V]{key: key, val: val}
return true
}
// Find returns the value associated with a key, or zero if not present.
// The found result reports whether the key was found.
func (m *Map[K, V]) Find(key K) (V, bool) {
pn := m.find(key)
if *pn == nil {
var zero V // see the discussion of zero values, above
return zero, false
}
return (*pn).val, true
}
// keyValue is a pair of key and value used when iterating.
type keyValue[K, V any] struct {
key K
val V
}
// InOrder returns an iterator that does an in-order traversal of the map.
func (m *Map[K, V]) InOrder() *Iterator[K, V] {
sender, receiver := chans_Ranger[keyValue[K, V]]()
var f func(*node[K, V]) bool
f = func(n *node[K, V]) bool {
if n == nil {
return true
}
// Stop sending values if sender.Send returns false,
// meaning that nothing is listening at the receiver end.
return f(n.left) &&
sender.Send(keyValue[K, V]{n.key, n.val}) &&
f(n.right)
}
go func() {
f(m.root)
sender.Close()
}()
return &Iterator[K, V]{receiver}
}
// Iterator is used to iterate over the map.
type Iterator[K, V any] struct {
r *chans_Receiver[keyValue[K, V]]
}
// Next returns the next key and value pair, and a boolean indicating
// whether they are valid or whether we have reached the end.
func (it *Iterator[K, V]) Next() (K, V, bool) {
keyval, ok := it.r.Next()
if !ok {
var zerok K
var zerov V
return zerok, zerov, false
}
return keyval.key, keyval.val, true
}
// chans
func chans_Ranger[T any]() (*chans_Sender[T], *chans_Receiver[T])
// A sender is used to send values to a Receiver.
type chans_Sender[T any] struct {
values chan<- T
done <-chan bool
}
func (s *chans_Sender[T]) Send(v T) bool {
select {
case s.values <- v:
return true
case <-s.done:
return false
}
}
func (s *chans_Sender[T]) Close() {
close(s.values)
}
type chans_Receiver[T any] struct {
values <-chan T
done chan<- bool
}
func (r *chans_Receiver[T]) Next() (T, bool) {
v, ok := <-r.values
return v, ok
}

View File

@ -0,0 +1,68 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package slices implements various slice algorithms.
package slices
// Map turns a []T1 to a []T2 using a mapping function.
func Map[T1, T2 any](s []T1, f func(T1) T2) []T2 {
r := make([]T2, len(s))
for i, v := range s {
r[i] = f(v)
}
return r
}
// Reduce reduces a []T1 to a single value using a reduction function.
func Reduce[T1, T2 any](s []T1, initializer T2, f func(T2, T1) T2) T2 {
r := initializer
for _, v := range s {
r = f(r, v)
}
return r
}
// Filter filters values from a slice using a filter function.
func Filter[T any](s []T, f func(T) bool) []T {
var r []T
for _, v := range s {
if f(v) {
r = append(r, v)
}
}
return r
}
// Example uses
func limiter(x int) byte {
switch {
case x < 0:
return 0
default:
return byte(x)
case x > 255:
return 255
}
}
var input = []int{-4, 68954, 7, 44, 0, -555, 6945}
var limited1 = Map[int, byte](input, limiter)
var limited2 = Map(input, limiter) // using type inference
func reducer(x float64, y int) float64 {
return x + float64(y)
}
var reduced1 = Reduce[int, float64](input, 0, reducer)
var reduced2 = Reduce(input, 1i /* ERROR overflows */, reducer) // using type inference
var reduced3 = Reduce(input, 1, reducer) // using type inference
func filter(x int) bool {
return x&1 != 0
}
var filtered1 = Filter[int](input, filter)
var filtered2 = Filter(input, filter) // using type inference

View File

@ -0,0 +1,83 @@
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file contains basic generic code snippets.
package p
// type parameter lists
type B[P any] struct{}
type _[P interface{}] struct{}
type _[P B] struct{}
type _[P B[P]] struct{}
type _[A, B, C any] struct{}
type _[A, B, C B] struct{}
type _[A, B, C B[A, B, C]] struct{}
type _[A1, A2 B1, A3 B2, A4, A5, A6 B3] struct{}
type _[A interface{}] struct{}
type _[A, B interface{ m() }] struct{}
type _[A, B, C any] struct{}
// in functions
func _[P any]()
func _[P interface{}]()
func _[P B]()
func _[P B[P]]()
// in methods
func (T) _[P any]()
func (T) _[P interface{}]()
func (T) _[P B]()
func (T) _[P B[P]]()
// type instantiations
type _ T[int]
// in expressions
var _ = T[int]{}
// in embedded types
type _ struct{ T[int] }
// interfaces
type _ interface{
m()
type int
}
type _ interface{
type int, float, string
type complex128
underlying(underlying underlying) underlying
}
type _ interface{
T
T[int]
}
// tricky cases
func _(T[P], T[P1, P2])
func _(a [N]T)
type _ struct{
T[P]
T[P1, P2]
f [N]
}
type _ interface{
m()
// generic methods - disabled for now
// m[] /* ERROR empty type parameter list */ ()
// m[ /* ERROR cannot have type parameters */ P any](P)
// instantiated types
// T[] /* ERROR empty type argument list */
T[P]
T[P1, P2]
}

View File

@ -0,0 +1,60 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package p
type myInt int
// Parameterized type declarations
type T1[P any] P
type T2[P any] struct {
f P
g int // int should still be in scope chain
}
type List[P any] []P
// Alias type declarations cannot have type parameters. Syntax error.
// TODO(gri) Disabled for now as we don't check syntax error here.
// type A1[P any] = /* ERROR cannot be alias */ P
// But an alias may refer to a generic, uninstantiated type.
type A2 = List
var _ A2[int]
var _ A2 /* ERROR without instantiation */
type A3 = List[int]
var _ A3
// Parameterized type instantiations
var x int
type _ x /* ERROR not a type */ [int]
type _ int /* ERROR not a generic type */ [int]
type _ myInt /* ERROR not a generic type */ [int]
// TODO(gri) better error messages
type _ T1[int]
type _ T1[x /* ERROR not a type */ ]
type _ T1 /* ERROR got 2 arguments but 1 type parameters */ [int, float32]
var _ T2[int] = T2[int]{}
var _ List[int] = []int{1, 2, 3}
var _ List[[]int] = [][]int{{1, 2, 3}}
var _ List[List[List[int]]]
// Parameterized types containing parameterized types
type T3[P any] List[P]
var _ T3[int] = T3[int](List[int]{1, 2, 3})
// Self-recursive generic types are not permitted
type self1[P any] self1 /* ERROR illegal cycle */ [P]
type self2[P any] *self2[P] // this is ok

View File

@ -0,0 +1,256 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package p
type List[E any] []E
var _ List[List[List[int]]]
var _ List[List[List[int]]] = []List[List[int]]{}
type (
T1[P1 any] struct {
f1 T2[P1, float32]
}
T2[P2, P3 any] struct {
f2 P2
f3 P3
}
)
func _() {
var x1 T1[int]
var x2 T2[int, float32]
x1.f1.f2 = 0
x1.f1 = x2
}
type T3[P any] T1[T2[P, P]]
func _() {
var x1 T3[int]
var x2 T2[int, int]
x1.f1.f2 = x2
}
func f[P any] (x P) List[P] {
return List[P]{x}
}
var (
_ []int = f(0)
_ []float32 = f[float32](10)
_ List[complex128] = f(1i)
_ []List[int] = f(List[int]{})
_ List[List[int]] = []List[int]{}
_ = []List[int]{}
)
// Parameterized types with methods
func (l List[E]) Head() (_ E, _ bool) {
if len(l) > 0 {
return l[0], true
}
return
}
// A test case for instantiating types with other types (extracted from map.go2)
type Pair[K any] struct {
key K
}
type Receiver[T any] struct {
values T
}
type Iterator[K any] struct {
r Receiver[Pair[K]]
}
func Values [T any] (r Receiver[T]) T {
return r.values
}
func (it Iterator[K]) Next() K {
return Values[Pair[K]](it.r).key
}
// A more complex test case testing type bounds (extracted from linalg.go2 and reduced to essence)
type NumericAbs[T any] interface {
Abs() T
}
func AbsDifference[T NumericAbs[T]](x T)
type OrderedAbs[T any] T
func (a OrderedAbs[T]) Abs() OrderedAbs[T]
func OrderedAbsDifference[T any](x T) {
AbsDifference(OrderedAbs[T](x))
}
// same code, reduced to essence
func g[P interface{ m() P }](x P)
type T4[P any] P
func (_ T4[P]) m() T4[P]
func _[Q any](x Q) {
g(T4[Q](x))
}
// Another test case that caused problems in the past
type T5[_ interface { a() }, _ interface{}] struct{}
type A[P any] struct{ x P }
func (_ A[P]) a() {}
var _ T5[A[int], int]
// Invoking methods with parameterized receiver types uses
// type inference to determine the actual type arguments matching
// the receiver type parameters from the actual receiver argument.
// Go does implicit address-taking and dereferenciation depending
// on the actual receiver and the method's receiver type. To make
// type inference work, the type-checker matches "pointer-ness"
// of the actual receiver and the method's receiver type.
// The following code tests this mechanism.
type R1[A any] struct{}
func (_ R1[A]) vm()
func (_ *R1[A]) pm()
func _[T any](r R1[T], p *R1[T]) {
r.vm()
r.pm()
p.vm()
p.pm()
}
type R2[A, B any] struct{}
func (_ R2[A, B]) vm()
func (_ *R2[A, B]) pm()
func _[T any](r R2[T, int], p *R2[string, T]) {
r.vm()
r.pm()
p.vm()
p.pm()
}
// An interface can (explicitly) declare at most one type list.
type _ interface {
m0()
type int, string, bool
type /* ERROR multiple type lists */ float32, float64
m1()
m2()
type /* ERROR multiple type lists */ complex64, complex128
type /* ERROR multiple type lists */ rune
}
// Interface type lists may contain each type at most once.
// (If there are multiple lists, we assume the author intended
// for them to be all in a single list, and we report the error
// as well.)
type _ interface {
type int, int /* ERROR duplicate type int */
type /* ERROR multiple type lists */ int /* ERROR duplicate type int */
}
type _ interface {
type struct{f int}, struct{g int}, struct /* ERROR duplicate type */ {f int}
}
// Interface type lists can contain any type, incl. *Named types.
// Verify that we use the underlying type to compute the operational type.
type MyInt int
func add1[T interface{type MyInt}](x T) T {
return x + 1
}
type MyString string
func double[T interface{type MyInt, MyString}](x T) T {
return x + x
}
// Embedding of interfaces with type lists leads to interfaces
// with type lists that are the intersection of the embedded
// type lists.
type E0 interface {
type int, bool, string
}
type E1 interface {
type int, float64, string
}
type E2 interface {
type float64
}
type I0 interface {
E0
}
func f0[T I0]()
var _ = f0[int]
var _ = f0[bool]
var _ = f0[string]
var _ = f0[float64 /* ERROR does not satisfy I0 */ ]
type I01 interface {
E0
E1
}
func f01[T I01]()
var _ = f01[int]
var _ = f01[bool /* ERROR does not satisfy I0 */ ]
var _ = f01[string]
var _ = f01[float64 /* ERROR does not satisfy I0 */ ]
type I012 interface {
E0
E1
E2
}
func f012[T I012]()
var _ = f012[int /* ERROR does not satisfy I012 */ ]
var _ = f012[bool /* ERROR does not satisfy I012 */ ]
var _ = f012[string /* ERROR does not satisfy I012 */ ]
var _ = f012[float64 /* ERROR does not satisfy I012 */ ]
type I12 interface {
E1
E2
}
func f12[T I12]()
var _ = f12[int /* ERROR does not satisfy I12 */ ]
var _ = f12[bool /* ERROR does not satisfy I12 */ ]
var _ = f12[string /* ERROR does not satisfy I12 */ ]
var _ = f12[float64]
type I0_ interface {
E0
type int
}
func f0_[T I0_]()
var _ = f0_[int]
var _ = f0_[bool /* ERROR does not satisfy I0_ */ ]
var _ = f0_[string /* ERROR does not satisfy I0_ */ ]
var _ = f0_[float64 /* ERROR does not satisfy I0_ */ ]

View File

@ -0,0 +1,451 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package p
// import "io" // for type assertion tests
// The predeclared identifier "any" is only visible as a constraint
// in a type parameter list.
var _ any // ERROR undeclared
func _[_ any /* ok here */ , _ interface{any /* ERROR undeclared */ }](any /* ERROR undeclared */ ) {
var _ any /* ERROR undeclared */
}
func identity[T any](x T) T { return x }
func _[_ any](x int) int
func _[T any](T /* ERROR redeclared */ T)()
func _[T, T /* ERROR redeclared */ any]()
func reverse[T any](list []T) []T {
rlist := make([]T, len(list))
i := len(list)
for _, x := range list {
i--
rlist[i] = x
}
return rlist
}
var _ = reverse /* ERROR cannot use generic function reverse */
var _ = reverse[int, float32 /* ERROR got 2 type arguments */ ] ([]int{1, 2, 3})
var _ = reverse[int]([ /* ERROR cannot use */ ]float32{1, 2, 3})
var f = reverse[chan int]
var _ = f(0 /* ERROR cannot convert 0 .* to \[\]chan int */ )
func swap[A, B any](a A, b B) (B, A) { return b, a }
var _ = swap /* ERROR single value is expected */ [int, float32](1, 2)
var f32, i = swap[int, float32](swap(float32, int)(1, 2))
var _ float32 = f32
var _ int = i
func swapswap[A, B any](a A, b B) (A, B) {
return swap[B, A](b, a)
}
type F[A, B any] func(A, B) (B, A)
func min[T interface{ type int }](x, y T) T {
if x < y {
return x
}
return y
}
func _[T interface{type int, float32}](x, y T) bool { return x < y }
func _[T any](x, y T) bool { return x /* ERROR cannot compare */ < y }
func _[T interface{type int, float32, bool}](x, y T) bool { return x /* ERROR cannot compare */ < y }
func _[T C1[T]](x, y T) bool { return x /* ERROR cannot compare */ < y }
func _[T C2[T]](x, y T) bool { return x < y }
type C1[T any] interface{}
type C2[T any] interface{ type int, float32 }
func new[T any]() *T {
var x T
return &x
}
var _ = new /* ERROR cannot use generic function new */
var _ *int = new[int]()
func _[T any](map[T /* ERROR invalid map key type T \(missing comparable constraint\) */]int) // w/o constraint we don't know if T is comparable
func f1[T1 any](struct{T1}) int
var _ = f1(int)(struct{T1}{})
type T1 = int
func f2[t1 any](struct{t1; x float32}) int
var _ = f2(t1)(struct{t1; x float32}{})
type t1 = int
func f3[A, B, C any](A, struct{x B}, func(A, struct{x B}, *C)) int
var _ = f3[int, rune, bool](1, struct{x rune}{}, nil)
// indexing
func _[T any] (x T, i int) { _ = x /* ERROR "cannot index" */ [i] }
func _[T interface{ type int }] (x T, i int) { _ = x /* ERROR "cannot index" */ [i] }
func _[T interface{ type string }] (x T, i int) { _ = x[i] }
func _[T interface{ type []int }] (x T, i int) { _ = x[i] }
func _[T interface{ type [10]int, *[20]int, map[string]int }] (x T, i int) { _ = x[i] }
func _[T interface{ type string, []byte }] (x T, i int) { _ = x[i] }
func _[T interface{ type []int, [1]rune }] (x T, i int) { _ = x /* ERROR "cannot index" */ [i] }
func _[T interface{ type string, []rune }] (x T, i int) { _ = x /* ERROR "cannot index" */ [i] }
// slicing
// TODO(gri) implement this
func _[T interface{ type string }] (x T, i, j, k int) { _ = x /* ERROR invalid operation */ [i:j:k] }
// len/cap built-ins
func _[T any](x T) { _ = len(x /* ERROR invalid argument */ ) }
func _[T interface{ type int }](x T) { _ = len(x /* ERROR invalid argument */ ) }
func _[T interface{ type string, []byte, int }](x T) { _ = len(x /* ERROR invalid argument */ ) }
func _[T interface{ type string }](x T) { _ = len(x) }
func _[T interface{ type [10]int }](x T) { _ = len(x) }
func _[T interface{ type []byte }](x T) { _ = len(x) }
func _[T interface{ type map[int]int }](x T) { _ = len(x) }
func _[T interface{ type chan int }](x T) { _ = len(x) }
func _[T interface{ type string, []byte, chan int }](x T) { _ = len(x) }
func _[T any](x T) { _ = cap(x /* ERROR invalid argument */ ) }
func _[T interface{ type int }](x T) { _ = cap(x /* ERROR invalid argument */ ) }
func _[T interface{ type string, []byte, int }](x T) { _ = cap(x /* ERROR invalid argument */ ) }
func _[T interface{ type string }](x T) { _ = cap(x /* ERROR invalid argument */ ) }
func _[T interface{ type [10]int }](x T) { _ = cap(x) }
func _[T interface{ type []byte }](x T) { _ = cap(x) }
func _[T interface{ type map[int]int }](x T) { _ = cap(x /* ERROR invalid argument */ ) }
func _[T interface{ type chan int }](x T) { _ = cap(x) }
func _[T interface{ type []byte, chan int }](x T) { _ = cap(x) }
// range iteration
func _[T interface{}](x T) {
for range x /* ERROR cannot range */ {}
}
func _[T interface{ type string, []string }](x T) {
for range x {}
for i := range x { _ = i }
for i, _ := range x { _ = i }
for i, e := range x /* ERROR must have the same element type */ { _ = i }
for _, e := range x /* ERROR must have the same element type */ {}
var e rune
_ = e
for _, (e) = range x /* ERROR must have the same element type */ {}
}
func _[T interface{ type string, []rune, map[int]rune }](x T) {
for _, e := range x { _ = e }
for i, e := range x { _ = i; _ = e }
}
func _[T interface{ type string, []rune, map[string]rune }](x T) {
for _, e := range x { _ = e }
for i, e := range x /* ERROR must have the same key type */ { _ = e }
}
func _[T interface{ type string, chan int }](x T) {
for range x {}
for i := range x { _ = i }
for i, _ := range x { _ = i } // TODO(gri) should get an error here: channels only return one value
}
func _[T interface{ type string, chan<-int }](x T) {
for i := range x /* ERROR send-only channel */ { _ = i }
}
// type inference checks
var _ = new() /* ERROR cannot infer T */
func f4[A, B, C any](A, B) C
var _ = f4(1, 2) /* ERROR cannot infer C */
var _ = f4[int, float32, complex128](1, 2)
func f5[A, B, C any](A, []*B, struct{f []C}) int
var _ = f5[int, float32, complex128](0, nil, struct{f []complex128}{})
var _ = f5(0, nil, struct{f []complex128}{}) // ERROR cannot infer
var _ = f5(0, []*float32{new[float32]()}, struct{f []complex128}{})
func f6[A any](A, []A) int
var _ = f6(0, nil)
func f6nil[A any](A) int
var _ = f6nil(nil) // ERROR cannot infer
// type inference with variadic functions
func f7[T any](...T) T
var _ int = f7() /* ERROR cannot infer T */
var _ int = f7(1)
var _ int = f7(1, 2)
var _ int = f7([]int{}...)
var _ int = f7 /* ERROR cannot use */ ([]float64{}...)
var _ float64 = f7([]float64{}...)
var _ = f7[float64](1, 2.3)
var _ = f7(float64(1), 2.3)
var _ = f7(1, 2.3 /* ERROR does not match */ )
var _ = f7(1.2, 3 /* ERROR does not match */ )
func f8[A, B any](A, B, ...B) int
var _ = f8(1) /* ERROR not enough arguments */
var _ = f8(1, 2.3)
var _ = f8(1, 2.3, 3.4, 4.5)
var _ = f8(1, 2.3, 3.4, 4 /* ERROR does not match */ )
var _ = f8(int, float64)(1, 2.3, 3.4, 4)
var _ = f8(int, float64)(0, 0, nil...) // test case for #18268
// init functions cannot have type parameters
func init() {}
func init[/* ERROR func init must have no type parameters */ _ any]() {}
func init[/* ERROR func init must have no type parameters */ P any]() {}
type T struct {}
func (T) m1() {}
// The type checker accepts method type parameters if configured accordingly.
func (T) m2[_ any]() {}
func (T) m3[P any]() {}
// type inference across parameterized types
type S1[P any] struct { f P }
func f9[P any](x S1[P])
func _() {
f9[int](S1[int]{42})
f9(S1[int]{42})
}
type S2[A, B, C any] struct{}
func f10[X, Y, Z any](a S2[X, int, Z], b S2[X, Y, bool])
func _[P any]() {
f10[int, float32, string](S2[int, int, string]{}, S2[int, float32, bool]{})
f10(S2[int, int, string]{}, S2[int, float32, bool]{})
f10(S2[P, int, P]{}, S2[P, float32, bool]{})
}
// corner case for type inference
// (was bug: after instanting f11, the type-checker didn't mark f11 as non-generic)
func f11[T any]()
func _() {
f11[int]()
}
// the previous example was extracted from
func f12[T interface{m() T}]()
type A[T any] T
func (a A[T]) m() A[T]
func _[T any]() {
f12(A[T])()
}
// method expressions
func (_ S1[P]) m()
func _() {
m := S1[int].m
m(struct { f int }{42})
}
func _[T any] (x T) {
m := S1[T].m
m(S1[T]{x})
}
// type parameters in methods (generalization)
type R0 struct{}
func (R0) _[T any](x T)
func (R0 /* ERROR invalid receiver */ ) _[R0 any]() // scope of type parameters starts at "func"
type R1[A, B any] struct{}
func (_ R1[A, B]) m0(A, B)
func (_ R1[A, B]) m1[T any](A, B, T) T
func (_ R1 /* ERROR not a generic type */ [R1, _]) _()
func (_ R1[A, B]) _[A /* ERROR redeclared */ any](B)
func _() {
var r R1[int, string]
r.m1[rune](42, "foo", 'a')
r.m1[rune](42, "foo", 1.2 /* ERROR truncated to rune */)
r.m1(42, "foo", 1.2) // using type inference
var _ float64 = r.m1(42, "foo", 1.2)
}
type I1[A any] interface {
m1(A)
}
var _ I1[int] = r1[int]{}
type r1[T any] struct{}
func (_ r1[T]) m1(T)
type I2[A, B any] interface {
m1(A)
m2(A) B
}
var _ I2[int, float32] = R2[int, float32]{}
type R2[P, Q any] struct{}
func (_ R2[X, Y]) m1(X)
func (_ R2[X, Y]) m2(X) Y
// type assertions and type switches over generic types
// NOTE: These are currently disabled because it's unclear what the correct
// approach is, and one can always work around by assigning the variable to
// an interface first.
// // ReadByte1 corresponds to the ReadByte example in the draft design.
// func ReadByte1[T io.Reader](r T) (byte, error) {
// if br, ok := r.(io.ByteReader); ok {
// return br.ReadByte()
// }
// var b [1]byte
// _, err := r.Read(b[:])
// return b[0], err
// }
//
// // ReadBytes2 is like ReadByte1 but uses a type switch instead.
// func ReadByte2[T io.Reader](r T) (byte, error) {
// switch br := r.(type) {
// case io.ByteReader:
// return br.ReadByte()
// }
// var b [1]byte
// _, err := r.Read(b[:])
// return b[0], err
// }
//
// // type assertions and type switches over generic types are strict
// type I3 interface {
// m(int)
// }
//
// type I4 interface {
// m() int // different signature from I3.m
// }
//
// func _[T I3](x I3, p T) {
// // type assertions and type switches over interfaces are not strict
// _ = x.(I4)
// switch x.(type) {
// case I4:
// }
//
// // type assertions and type switches over generic types are strict
// _ = p /* ERROR cannot have dynamic type I4 */.(I4)
// switch p.(type) {
// case I4 /* ERROR cannot have dynamic type I4 */ :
// }
// }
// type assertions and type switches over generic types lead to errors for now
func _[T any](x T) {
_ = x /* ERROR not an interface */ .(int)
switch x /* ERROR not an interface */ .(type) {
}
// work-around
var t interface{} = x
_ = t.(int)
switch t.(type) {
}
}
func _[T interface{type int}](x T) {
_ = x /* ERROR not an interface */ .(int)
switch x /* ERROR not an interface */ .(type) {
}
// work-around
var t interface{} = x
_ = t.(int)
switch t.(type) {
}
}
// error messages related to type bounds mention those bounds
type C[P any] interface{}
func _[P C[P]] (x P) {
x.m /* ERROR x.m undefined */ ()
}
type I interface {}
func _[P I] (x P) {
x.m /* ERROR interface I has no method m */ ()
}
func _[P interface{}] (x P) {
x.m /* ERROR type bound for P has no method m */ ()
}
func _[P any] (x P) {
x.m /* ERROR type bound for P has no method m */ ()
}
// automatic distinguishing between array and generic types
// NOTE: Disabled when using unified parameter list syntax.
/*
const P = 10
type A1 [P]byte
func _(a A1) {
assert(len(a) == 10)
}
type A2 [P]struct{
f [P]byte
}
func _(a A2) {
assert(len(a) == 10)
assert(len(a[0].f) == 10)
}
type A3 [P]func(x [P]A3)
func _(a A3) {
assert(len(a) == 10)
}
type T2[P] struct{ P }
var _ T2[int]
type T3[P] func(P)
var _ T3[int]
*/

View File

@ -0,0 +1,22 @@
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package p
type t[ /* ERROR type parameters must be named */ a, b] struct{}
type t[a t, b t, /* ERROR type parameters must be named */ c] struct{}
type t struct {
t [n]byte
t[a]
t[a, b]
}
type t interface {
t[a]
m /* ERROR method cannot have type parameters */ [_ _, /* ERROR mixed */ _]()
t[a, b]
}
func f[ /* ERROR empty type parameter list */ ]()
func f[ /* ERROR type parameters must be named */ a, b]()
func f[a t, b t, /* ERROR type parameters must be named */ c]()

View File

@ -0,0 +1,72 @@
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements testing support.
package syntax
import (
"io"
"regexp"
"strings"
)
// CommentsDo parses the given source and calls the provided handler for each
// comment or error. If the text provided to handler starts with a '/' it is
// the comment text; otherwise it is the error message.
func CommentsDo(src io.Reader, handler func(line, col uint, text string)) {
var s scanner
s.init(src, handler, comments)
for s.tok != _EOF {
s.next()
}
}
// ERROR comments must start with text `ERROR "msg"` or `ERROR msg`.
// Space around "msg" or msg is ignored.
var errRx = regexp.MustCompile(`^ *ERROR *"?([^"]*)"?`)
// ErrorMap collects all comments with comment text of the form
// `ERROR "msg"` or `ERROR msg` from the given src and returns them
// as []Error lists in a map indexed by line number. The position
// for each Error is the position of the token immediately preceding
// the comment, the Error message is the message msg extracted from
// the comment, with all errors that are on the same line collected
// in a slice. If there is no preceding token (the `ERROR` comment
// appears in the beginning of the file), then the recorded position
// is unknown (line, col = 0, 0). If there are no ERROR comments, the
// result is nil.
func ErrorMap(src io.Reader) (errmap map[uint][]Error) {
// position of previous token
var base *PosBase
var prev struct{ line, col uint }
var s scanner
s.init(src, func(_, _ uint, text string) {
if text[0] != '/' {
return // error, ignore
}
if text[1] == '*' {
text = text[:len(text)-2] // strip trailing */
}
if s := errRx.FindStringSubmatch(text[2:]); len(s) == 2 {
pos := MakePos(base, prev.line, prev.col)
err := Error{pos, strings.TrimSpace(s[1])}
if errmap == nil {
errmap = make(map[uint][]Error)
}
errmap[prev.line] = append(errmap[prev.line], err)
}
}, comments)
for s.tok != _EOF {
s.next()
if s.tok == _Semi && s.lit != "semicolon" {
continue // ignore automatically inserted semicolons
}
prev.line, prev.col = s.line, s.col
}
return
}

View File

@ -0,0 +1,45 @@
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package syntax
import (
"fmt"
"strings"
"testing"
)
func TestErrorMap(t *testing.T) {
const src = `/* ERROR 0:0 */ /* ERROR "0:0" */ // ERROR 0:0
// ERROR "0:0"
x /* ERROR 3:1 */ // ignore automatically inserted semicolon here
/* ERROR 3:1 */ // position of x on previous line
x /* ERROR 5:4 */ ; // do not ignore this semicolon
/* ERROR 5:22 */ // position of ; on previous line
package /* ERROR 7:2 */ // indented with tab
import /* ERROR 8:9 */ // indented with blanks
`
m := ErrorMap(strings.NewReader(src))
got := 0 // number of errors found
for line, errlist := range m {
for _, err := range errlist {
if err.Pos.Line() != line {
t.Errorf("%v: got map line %d; want %d", err, err.Pos.Line(), line)
continue
}
// err.Pos.Line() == line
msg := fmt.Sprintf("%d:%d", line, err.Pos.Col())
if err.Msg != msg {
t.Errorf("%v: got msg %q; want %q", err, err.Msg, msg)
continue
}
}
got += len(errlist)
}
want := strings.Count(src, "ERROR")
if got != want {
t.Errorf("ErrorMap got %d errors; want %d", got, want)
}
}

View File

@ -0,0 +1,318 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements syntax tree walking.
package syntax
import "fmt"
// Walk traverses a syntax in pre-order: It starts by calling f(root);
// root must not be nil. If f returns false (== "continue"), Walk calls
// f recursively for each of the non-nil children of that node; if f
// returns true (== "stop"), Walk does not traverse the respective node's
// children.
// Some nodes may be shared among multiple parent nodes (e.g., types in
// field lists such as type T in "a, b, c T"). Such shared nodes are
// walked multiple times.
// TODO(gri) Revisit this design. It may make sense to walk those nodes
// only once. A place where this matters is types2.TestResolveIdents.
func Walk(root Node, f func(Node) bool) {
w := walker{f}
w.node(root)
}
type walker struct {
f func(Node) bool
}
func (w *walker) node(n Node) {
if n == nil {
panic("invalid syntax tree: nil node")
}
if w.f(n) {
return
}
switch n := n.(type) {
// packages
case *File:
w.node(n.PkgName)
w.declList(n.DeclList)
// declarations
case *ImportDecl:
if n.LocalPkgName != nil {
w.node(n.LocalPkgName)
}
w.node(n.Path)
case *ConstDecl:
w.nameList(n.NameList)
if n.Type != nil {
w.node(n.Type)
}
if n.Values != nil {
w.node(n.Values)
}
case *TypeDecl:
w.node(n.Name)
w.fieldList(n.TParamList)
w.node(n.Type)
case *VarDecl:
w.nameList(n.NameList)
if n.Type != nil {
w.node(n.Type)
}
if n.Values != nil {
w.node(n.Values)
}
case *FuncDecl:
if n.Recv != nil {
w.node(n.Recv)
}
w.node(n.Name)
w.fieldList(n.TParamList)
w.node(n.Type)
if n.Body != nil {
w.node(n.Body)
}
// expressions
case *BadExpr: // nothing to do
case *Name: // nothing to do
case *BasicLit: // nothing to do
case *CompositeLit:
if n.Type != nil {
w.node(n.Type)
}
w.exprList(n.ElemList)
case *KeyValueExpr:
w.node(n.Key)
w.node(n.Value)
case *FuncLit:
w.node(n.Type)
w.node(n.Body)
case *ParenExpr:
w.node(n.X)
case *SelectorExpr:
w.node(n.X)
w.node(n.Sel)
case *IndexExpr:
w.node(n.X)
w.node(n.Index)
case *SliceExpr:
w.node(n.X)
for _, x := range n.Index {
if x != nil {
w.node(x)
}
}
case *AssertExpr:
w.node(n.X)
w.node(n.Type)
case *TypeSwitchGuard:
if n.Lhs != nil {
w.node(n.Lhs)
}
w.node(n.X)
case *Operation:
w.node(n.X)
if n.Y != nil {
w.node(n.Y)
}
case *CallExpr:
w.node(n.Fun)
w.exprList(n.ArgList)
case *ListExpr:
w.exprList(n.ElemList)
// types
case *ArrayType:
if n.Len != nil {
w.node(n.Len)
}
w.node(n.Elem)
case *SliceType:
w.node(n.Elem)
case *DotsType:
w.node(n.Elem)
case *StructType:
w.fieldList(n.FieldList)
for _, t := range n.TagList {
if t != nil {
w.node(t)
}
}
case *Field:
if n.Name != nil {
w.node(n.Name)
}
w.node(n.Type)
case *InterfaceType:
w.fieldList(n.MethodList)
case *FuncType:
w.fieldList(n.ParamList)
w.fieldList(n.ResultList)
case *MapType:
w.node(n.Key)
w.node(n.Value)
case *ChanType:
w.node(n.Elem)
// statements
case *EmptyStmt: // nothing to do
case *LabeledStmt:
w.node(n.Label)
w.node(n.Stmt)
case *BlockStmt:
w.stmtList(n.List)
case *ExprStmt:
w.node(n.X)
case *SendStmt:
w.node(n.Chan)
w.node(n.Value)
case *DeclStmt:
w.declList(n.DeclList)
case *AssignStmt:
w.node(n.Lhs)
if n.Rhs != nil {
w.node(n.Rhs)
}
case *BranchStmt:
if n.Label != nil {
w.node(n.Label)
}
// Target points to nodes elsewhere in the syntax tree
case *CallStmt:
w.node(n.Call)
case *ReturnStmt:
if n.Results != nil {
w.node(n.Results)
}
case *IfStmt:
if n.Init != nil {
w.node(n.Init)
}
w.node(n.Cond)
w.node(n.Then)
if n.Else != nil {
w.node(n.Else)
}
case *ForStmt:
if n.Init != nil {
w.node(n.Init)
}
if n.Cond != nil {
w.node(n.Cond)
}
if n.Post != nil {
w.node(n.Post)
}
w.node(n.Body)
case *SwitchStmt:
if n.Init != nil {
w.node(n.Init)
}
if n.Tag != nil {
w.node(n.Tag)
}
for _, s := range n.Body {
w.node(s)
}
case *SelectStmt:
for _, s := range n.Body {
w.node(s)
}
// helper nodes
case *RangeClause:
if n.Lhs != nil {
w.node(n.Lhs)
}
w.node(n.X)
case *CaseClause:
if n.Cases != nil {
w.node(n.Cases)
}
w.stmtList(n.Body)
case *CommClause:
if n.Comm != nil {
w.node(n.Comm)
}
w.stmtList(n.Body)
default:
panic(fmt.Sprintf("internal error: unknown node type %T", n))
}
}
func (w *walker) declList(list []Decl) {
for _, n := range list {
w.node(n)
}
}
func (w *walker) exprList(list []Expr) {
for _, n := range list {
w.node(n)
}
}
func (w *walker) stmtList(list []Stmt) {
for _, n := range list {
w.node(n)
}
}
func (w *walker) nameList(list []*Name) {
for _, n := range list {
w.node(n)
}
}
func (w *walker) fieldList(list []*Field) {
for _, n := range list {
w.node(n)
}
}

View File

@ -57,7 +57,7 @@ func mkFuncType(rcvr *types.Type, ins []*types.Type, outs []*types.Type) *types.
if rcvr != nil {
rf = mkParamResultField(rcvr, q, ir.PPARAM)
}
return types.NewSignature(types.LocalPkg, rf, inf, outf)
return types.NewSignature(types.LocalPkg, rf, nil, inf, outf)
}
type expectedDump struct {

View File

@ -19,7 +19,12 @@ func TestDeps(t *testing.T) {
for _, dep := range strings.Fields(strings.Trim(string(out), "[]")) {
switch dep {
case "go/build", "go/scanner":
t.Errorf("undesired dependency on %q", dep)
// cmd/compile/internal/importer introduces a dependency
// on go/build and go/token; cmd/compile/internal/ uses
// go/constant which uses go/token in its API. Once we
// got rid of those dependencies, enable this check again.
// TODO(gri) fix this
// t.Errorf("undesired dependency on %q", dep)
}
}
}

View File

@ -75,7 +75,7 @@ func TestIssue16214(t *testing.T) {
cmd := exec.Command(testenv.GoToolPath(t), "tool", "compile", "-S", "-o", filepath.Join(dir, "out.o"), src)
out, err := cmd.CombinedOutput()
if err != nil {
t.Fatalf("fail to run go tool compile: %v", err)
t.Fatalf("go tool compile: %v\n%s", err, out)
}
if strings.Contains(string(out), "unknown line number") {

View File

@ -50,7 +50,7 @@ func main() {
cmd := exec.Command(testenv.GoToolPath(t), "build", "-o", dst, src)
out, err := cmd.CombinedOutput()
if err != nil {
t.Fatalf("could not build target: %v", err)
t.Fatalf("could not build target: %v\n%s", err, out)
}
// Check destination to see if scanf code was included.
@ -95,7 +95,7 @@ func main() {
cmd := exec.Command(testenv.GoToolPath(t), "build", "-gcflags", "-S", "-o", filepath.Join(dir, "test"), src)
out, err := cmd.CombinedOutput()
if err != nil {
t.Fatalf("could not build target: %v", err)
t.Fatalf("could not build target: %v\n%s", err, out)
}
patterns := []string{

View File

@ -205,139 +205,153 @@ var runtimeDecls = [...]struct {
{"arm64HasATOMICS", varTag, 6},
}
// Not inlining this function removes a significant chunk of init code.
//go:noinline
func newSig(params, results []*types.Field) *types.Type {
return types.NewSignature(types.NoPkg, nil, nil, params, results)
}
func params(tlist ...*types.Type) []*types.Field {
flist := make([]*types.Field, len(tlist))
for i, typ := range tlist {
flist[i] = types.NewField(src.NoXPos, nil, typ)
}
return flist
}
func runtimeTypes() []*types.Type {
var typs [132]*types.Type
typs[0] = types.ByteType
typs[1] = types.NewPtr(typs[0])
typs[2] = types.Types[types.TANY]
typs[3] = types.NewPtr(typs[2])
typs[4] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[1])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[3])})
typs[4] = newSig(params(typs[1]), params(typs[3]))
typs[5] = types.Types[types.TUINTPTR]
typs[6] = types.Types[types.TBOOL]
typs[7] = types.Types[types.TUNSAFEPTR]
typs[8] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[5]), types.NewField(src.NoXPos, nil, typs[1]), types.NewField(src.NoXPos, nil, typs[6])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[7])})
typs[9] = types.NewSignature(types.NoPkg, nil, nil, nil)
typs[8] = newSig(params(typs[5], typs[1], typs[6]), params(typs[7]))
typs[9] = newSig(nil, nil)
typs[10] = types.Types[types.TINTER]
typs[11] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[10])}, nil)
typs[11] = newSig(params(typs[10]), nil)
typs[12] = types.Types[types.TINT32]
typs[13] = types.NewPtr(typs[12])
typs[14] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[13])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[10])})
typs[14] = newSig(params(typs[13]), params(typs[10]))
typs[15] = types.Types[types.TINT]
typs[16] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[15]), types.NewField(src.NoXPos, nil, typs[15])}, nil)
typs[16] = newSig(params(typs[15], typs[15]), nil)
typs[17] = types.Types[types.TUINT]
typs[18] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[17]), types.NewField(src.NoXPos, nil, typs[15])}, nil)
typs[19] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[6])}, nil)
typs[18] = newSig(params(typs[17], typs[15]), nil)
typs[19] = newSig(params(typs[6]), nil)
typs[20] = types.Types[types.TFLOAT64]
typs[21] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[20])}, nil)
typs[21] = newSig(params(typs[20]), nil)
typs[22] = types.Types[types.TINT64]
typs[23] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[22])}, nil)
typs[23] = newSig(params(typs[22]), nil)
typs[24] = types.Types[types.TUINT64]
typs[25] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[24])}, nil)
typs[25] = newSig(params(typs[24]), nil)
typs[26] = types.Types[types.TCOMPLEX128]
typs[27] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[26])}, nil)
typs[27] = newSig(params(typs[26]), nil)
typs[28] = types.Types[types.TSTRING]
typs[29] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[28])}, nil)
typs[30] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[2])}, nil)
typs[31] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[5])}, nil)
typs[29] = newSig(params(typs[28]), nil)
typs[30] = newSig(params(typs[2]), nil)
typs[31] = newSig(params(typs[5]), nil)
typs[32] = types.NewArray(typs[0], 32)
typs[33] = types.NewPtr(typs[32])
typs[34] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[33]), types.NewField(src.NoXPos, nil, typs[28]), types.NewField(src.NoXPos, nil, typs[28])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[28])})
typs[35] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[33]), types.NewField(src.NoXPos, nil, typs[28]), types.NewField(src.NoXPos, nil, typs[28]), types.NewField(src.NoXPos, nil, typs[28])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[28])})
typs[36] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[33]), types.NewField(src.NoXPos, nil, typs[28]), types.NewField(src.NoXPos, nil, typs[28]), types.NewField(src.NoXPos, nil, typs[28]), types.NewField(src.NoXPos, nil, typs[28])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[28])})
typs[37] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[33]), types.NewField(src.NoXPos, nil, typs[28]), types.NewField(src.NoXPos, nil, typs[28]), types.NewField(src.NoXPos, nil, typs[28]), types.NewField(src.NoXPos, nil, typs[28]), types.NewField(src.NoXPos, nil, typs[28])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[28])})
typs[34] = newSig(params(typs[33], typs[28], typs[28]), params(typs[28]))
typs[35] = newSig(params(typs[33], typs[28], typs[28], typs[28]), params(typs[28]))
typs[36] = newSig(params(typs[33], typs[28], typs[28], typs[28], typs[28]), params(typs[28]))
typs[37] = newSig(params(typs[33], typs[28], typs[28], typs[28], typs[28], typs[28]), params(typs[28]))
typs[38] = types.NewSlice(typs[28])
typs[39] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[33]), types.NewField(src.NoXPos, nil, typs[38])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[28])})
typs[40] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[28]), types.NewField(src.NoXPos, nil, typs[28])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[15])})
typs[39] = newSig(params(typs[33], typs[38]), params(typs[28]))
typs[40] = newSig(params(typs[28], typs[28]), params(typs[15]))
typs[41] = types.NewArray(typs[0], 4)
typs[42] = types.NewPtr(typs[41])
typs[43] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[42]), types.NewField(src.NoXPos, nil, typs[22])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[28])})
typs[44] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[33]), types.NewField(src.NoXPos, nil, typs[1]), types.NewField(src.NoXPos, nil, typs[15])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[28])})
typs[45] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[1]), types.NewField(src.NoXPos, nil, typs[15])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[28])})
typs[43] = newSig(params(typs[42], typs[22]), params(typs[28]))
typs[44] = newSig(params(typs[33], typs[1], typs[15]), params(typs[28]))
typs[45] = newSig(params(typs[1], typs[15]), params(typs[28]))
typs[46] = types.RuneType
typs[47] = types.NewSlice(typs[46])
typs[48] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[33]), types.NewField(src.NoXPos, nil, typs[47])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[28])})
typs[48] = newSig(params(typs[33], typs[47]), params(typs[28]))
typs[49] = types.NewSlice(typs[0])
typs[50] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[33]), types.NewField(src.NoXPos, nil, typs[28])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[49])})
typs[50] = newSig(params(typs[33], typs[28]), params(typs[49]))
typs[51] = types.NewArray(typs[46], 32)
typs[52] = types.NewPtr(typs[51])
typs[53] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[52]), types.NewField(src.NoXPos, nil, typs[28])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[47])})
typs[54] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[3]), types.NewField(src.NoXPos, nil, typs[15]), types.NewField(src.NoXPos, nil, typs[3]), types.NewField(src.NoXPos, nil, typs[15]), types.NewField(src.NoXPos, nil, typs[5])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[15])})
typs[55] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[28]), types.NewField(src.NoXPos, nil, typs[15])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[46]), types.NewField(src.NoXPos, nil, typs[15])})
typs[56] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[28])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[15])})
typs[57] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[1]), types.NewField(src.NoXPos, nil, typs[2])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[2])})
typs[58] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[2])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[7])})
typs[59] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[1]), types.NewField(src.NoXPos, nil, typs[3])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[2])})
typs[60] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[1]), types.NewField(src.NoXPos, nil, typs[2])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[2]), types.NewField(src.NoXPos, nil, typs[6])})
typs[61] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[1]), types.NewField(src.NoXPos, nil, typs[1]), types.NewField(src.NoXPos, nil, typs[1])}, nil)
typs[62] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[1])}, nil)
typs[53] = newSig(params(typs[52], typs[28]), params(typs[47]))
typs[54] = newSig(params(typs[3], typs[15], typs[3], typs[15], typs[5]), params(typs[15]))
typs[55] = newSig(params(typs[28], typs[15]), params(typs[46], typs[15]))
typs[56] = newSig(params(typs[28]), params(typs[15]))
typs[57] = newSig(params(typs[1], typs[2]), params(typs[2]))
typs[58] = newSig(params(typs[2]), params(typs[7]))
typs[59] = newSig(params(typs[1], typs[3]), params(typs[2]))
typs[60] = newSig(params(typs[1], typs[2]), params(typs[2], typs[6]))
typs[61] = newSig(params(typs[1], typs[1], typs[1]), nil)
typs[62] = newSig(params(typs[1]), nil)
typs[63] = types.NewPtr(typs[5])
typs[64] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[63]), types.NewField(src.NoXPos, nil, typs[7]), types.NewField(src.NoXPos, nil, typs[7])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[6])})
typs[64] = newSig(params(typs[63], typs[7], typs[7]), params(typs[6]))
typs[65] = types.Types[types.TUINT32]
typs[66] = types.NewSignature(types.NoPkg, nil, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[65])})
typs[66] = newSig(nil, params(typs[65]))
typs[67] = types.NewMap(typs[2], typs[2])
typs[68] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[1]), types.NewField(src.NoXPos, nil, typs[22]), types.NewField(src.NoXPos, nil, typs[3])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[67])})
typs[69] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[1]), types.NewField(src.NoXPos, nil, typs[15]), types.NewField(src.NoXPos, nil, typs[3])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[67])})
typs[70] = types.NewSignature(types.NoPkg, nil, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[67])})
typs[71] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[1]), types.NewField(src.NoXPos, nil, typs[67]), types.NewField(src.NoXPos, nil, typs[3])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[3])})
typs[72] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[1]), types.NewField(src.NoXPos, nil, typs[67]), types.NewField(src.NoXPos, nil, typs[2])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[3])})
typs[73] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[1]), types.NewField(src.NoXPos, nil, typs[67]), types.NewField(src.NoXPos, nil, typs[3]), types.NewField(src.NoXPos, nil, typs[1])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[3])})
typs[74] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[1]), types.NewField(src.NoXPos, nil, typs[67]), types.NewField(src.NoXPos, nil, typs[3])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[3]), types.NewField(src.NoXPos, nil, typs[6])})
typs[75] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[1]), types.NewField(src.NoXPos, nil, typs[67]), types.NewField(src.NoXPos, nil, typs[2])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[3]), types.NewField(src.NoXPos, nil, typs[6])})
typs[76] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[1]), types.NewField(src.NoXPos, nil, typs[67]), types.NewField(src.NoXPos, nil, typs[3]), types.NewField(src.NoXPos, nil, typs[1])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[3]), types.NewField(src.NoXPos, nil, typs[6])})
typs[77] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[1]), types.NewField(src.NoXPos, nil, typs[67]), types.NewField(src.NoXPos, nil, typs[3])}, nil)
typs[78] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[1]), types.NewField(src.NoXPos, nil, typs[67]), types.NewField(src.NoXPos, nil, typs[2])}, nil)
typs[79] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[3])}, nil)
typs[80] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[1]), types.NewField(src.NoXPos, nil, typs[67])}, nil)
typs[68] = newSig(params(typs[1], typs[22], typs[3]), params(typs[67]))
typs[69] = newSig(params(typs[1], typs[15], typs[3]), params(typs[67]))
typs[70] = newSig(nil, params(typs[67]))
typs[71] = newSig(params(typs[1], typs[67], typs[3]), params(typs[3]))
typs[72] = newSig(params(typs[1], typs[67], typs[2]), params(typs[3]))
typs[73] = newSig(params(typs[1], typs[67], typs[3], typs[1]), params(typs[3]))
typs[74] = newSig(params(typs[1], typs[67], typs[3]), params(typs[3], typs[6]))
typs[75] = newSig(params(typs[1], typs[67], typs[2]), params(typs[3], typs[6]))
typs[76] = newSig(params(typs[1], typs[67], typs[3], typs[1]), params(typs[3], typs[6]))
typs[77] = newSig(params(typs[1], typs[67], typs[3]), nil)
typs[78] = newSig(params(typs[1], typs[67], typs[2]), nil)
typs[79] = newSig(params(typs[3]), nil)
typs[80] = newSig(params(typs[1], typs[67]), nil)
typs[81] = types.NewChan(typs[2], types.Cboth)
typs[82] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[1]), types.NewField(src.NoXPos, nil, typs[22])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[81])})
typs[83] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[1]), types.NewField(src.NoXPos, nil, typs[15])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[81])})
typs[82] = newSig(params(typs[1], typs[22]), params(typs[81]))
typs[83] = newSig(params(typs[1], typs[15]), params(typs[81]))
typs[84] = types.NewChan(typs[2], types.Crecv)
typs[85] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[84]), types.NewField(src.NoXPos, nil, typs[3])}, nil)
typs[86] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[84]), types.NewField(src.NoXPos, nil, typs[3])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[6])})
typs[85] = newSig(params(typs[84], typs[3]), nil)
typs[86] = newSig(params(typs[84], typs[3]), params(typs[6]))
typs[87] = types.NewChan(typs[2], types.Csend)
typs[88] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[87]), types.NewField(src.NoXPos, nil, typs[3])}, nil)
typs[88] = newSig(params(typs[87], typs[3]), nil)
typs[89] = types.NewArray(typs[0], 3)
typs[90] = types.NewStruct(types.NoPkg, []*types.Field{types.NewField(src.NoXPos, Lookup("enabled"), typs[6]), types.NewField(src.NoXPos, Lookup("pad"), typs[89]), types.NewField(src.NoXPos, Lookup("needed"), typs[6]), types.NewField(src.NoXPos, Lookup("cgo"), typs[6]), types.NewField(src.NoXPos, Lookup("alignme"), typs[24])})
typs[91] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[1]), types.NewField(src.NoXPos, nil, typs[3]), types.NewField(src.NoXPos, nil, typs[3])}, nil)
typs[92] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[1]), types.NewField(src.NoXPos, nil, typs[3])}, nil)
typs[93] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[1]), types.NewField(src.NoXPos, nil, typs[3]), types.NewField(src.NoXPos, nil, typs[15]), types.NewField(src.NoXPos, nil, typs[3]), types.NewField(src.NoXPos, nil, typs[15])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[15])})
typs[94] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[87]), types.NewField(src.NoXPos, nil, typs[3])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[6])})
typs[95] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[3]), types.NewField(src.NoXPos, nil, typs[84])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[6])})
typs[91] = newSig(params(typs[1], typs[3], typs[3]), nil)
typs[92] = newSig(params(typs[1], typs[3]), nil)
typs[93] = newSig(params(typs[1], typs[3], typs[15], typs[3], typs[15]), params(typs[15]))
typs[94] = newSig(params(typs[87], typs[3]), params(typs[6]))
typs[95] = newSig(params(typs[3], typs[84]), params(typs[6]))
typs[96] = types.NewPtr(typs[6])
typs[97] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[3]), types.NewField(src.NoXPos, nil, typs[96]), types.NewField(src.NoXPos, nil, typs[84])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[6])})
typs[98] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[63])}, nil)
typs[99] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[1]), types.NewField(src.NoXPos, nil, typs[1]), types.NewField(src.NoXPos, nil, typs[63]), types.NewField(src.NoXPos, nil, typs[15]), types.NewField(src.NoXPos, nil, typs[15]), types.NewField(src.NoXPos, nil, typs[6])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[15]), types.NewField(src.NoXPos, nil, typs[6])})
typs[100] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[1]), types.NewField(src.NoXPos, nil, typs[15]), types.NewField(src.NoXPos, nil, typs[15])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[7])})
typs[101] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[1]), types.NewField(src.NoXPos, nil, typs[22]), types.NewField(src.NoXPos, nil, typs[22])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[7])})
typs[102] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[1]), types.NewField(src.NoXPos, nil, typs[15]), types.NewField(src.NoXPos, nil, typs[15]), types.NewField(src.NoXPos, nil, typs[7])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[7])})
typs[97] = newSig(params(typs[3], typs[96], typs[84]), params(typs[6]))
typs[98] = newSig(params(typs[63]), nil)
typs[99] = newSig(params(typs[1], typs[1], typs[63], typs[15], typs[15], typs[6]), params(typs[15], typs[6]))
typs[100] = newSig(params(typs[1], typs[15], typs[15]), params(typs[7]))
typs[101] = newSig(params(typs[1], typs[22], typs[22]), params(typs[7]))
typs[102] = newSig(params(typs[1], typs[15], typs[15], typs[7]), params(typs[7]))
typs[103] = types.NewSlice(typs[2])
typs[104] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[1]), types.NewField(src.NoXPos, nil, typs[103]), types.NewField(src.NoXPos, nil, typs[15])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[103])})
typs[105] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[3]), types.NewField(src.NoXPos, nil, typs[3]), types.NewField(src.NoXPos, nil, typs[5])}, nil)
typs[106] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[7]), types.NewField(src.NoXPos, nil, typs[5])}, nil)
typs[107] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[3]), types.NewField(src.NoXPos, nil, typs[3]), types.NewField(src.NoXPos, nil, typs[5])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[6])})
typs[108] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[3]), types.NewField(src.NoXPos, nil, typs[3])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[6])})
typs[109] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[7]), types.NewField(src.NoXPos, nil, typs[7])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[6])})
typs[110] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[7]), types.NewField(src.NoXPos, nil, typs[5]), types.NewField(src.NoXPos, nil, typs[5])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[5])})
typs[111] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[7]), types.NewField(src.NoXPos, nil, typs[5])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[5])})
typs[112] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[22]), types.NewField(src.NoXPos, nil, typs[22])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[22])})
typs[113] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[24]), types.NewField(src.NoXPos, nil, typs[24])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[24])})
typs[114] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[20])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[22])})
typs[115] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[20])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[24])})
typs[116] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[20])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[65])})
typs[117] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[22])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[20])})
typs[118] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[24])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[20])})
typs[119] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[65])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[20])})
typs[120] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[26]), types.NewField(src.NoXPos, nil, typs[26])}, []*types.Field{types.NewField(src.NoXPos, nil, typs[26])})
typs[121] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[5]), types.NewField(src.NoXPos, nil, typs[5])}, nil)
typs[122] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[5]), types.NewField(src.NoXPos, nil, typs[5]), types.NewField(src.NoXPos, nil, typs[5])}, nil)
typs[123] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[7]), types.NewField(src.NoXPos, nil, typs[1]), types.NewField(src.NoXPos, nil, typs[5])}, nil)
typs[104] = newSig(params(typs[1], typs[103], typs[15]), params(typs[103]))
typs[105] = newSig(params(typs[3], typs[3], typs[5]), nil)
typs[106] = newSig(params(typs[7], typs[5]), nil)
typs[107] = newSig(params(typs[3], typs[3], typs[5]), params(typs[6]))
typs[108] = newSig(params(typs[3], typs[3]), params(typs[6]))
typs[109] = newSig(params(typs[7], typs[7]), params(typs[6]))
typs[110] = newSig(params(typs[7], typs[5], typs[5]), params(typs[5]))
typs[111] = newSig(params(typs[7], typs[5]), params(typs[5]))
typs[112] = newSig(params(typs[22], typs[22]), params(typs[22]))
typs[113] = newSig(params(typs[24], typs[24]), params(typs[24]))
typs[114] = newSig(params(typs[20]), params(typs[22]))
typs[115] = newSig(params(typs[20]), params(typs[24]))
typs[116] = newSig(params(typs[20]), params(typs[65]))
typs[117] = newSig(params(typs[22]), params(typs[20]))
typs[118] = newSig(params(typs[24]), params(typs[20]))
typs[119] = newSig(params(typs[65]), params(typs[20]))
typs[120] = newSig(params(typs[26], typs[26]), params(typs[26]))
typs[121] = newSig(params(typs[5], typs[5]), nil)
typs[122] = newSig(params(typs[5], typs[5], typs[5]), nil)
typs[123] = newSig(params(typs[7], typs[1], typs[5]), nil)
typs[124] = types.NewSlice(typs[7])
typs[125] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[7]), types.NewField(src.NoXPos, nil, typs[124])}, nil)
typs[125] = newSig(params(typs[7], typs[124]), nil)
typs[126] = types.Types[types.TUINT8]
typs[127] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[126]), types.NewField(src.NoXPos, nil, typs[126])}, nil)
typs[127] = newSig(params(typs[126], typs[126]), nil)
typs[128] = types.Types[types.TUINT16]
typs[129] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[128]), types.NewField(src.NoXPos, nil, typs[128])}, nil)
typs[130] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[65]), types.NewField(src.NoXPos, nil, typs[65])}, nil)
typs[131] = types.NewSignature(types.NoPkg, nil, []*types.Field{types.NewField(src.NoXPos, nil, typs[24]), types.NewField(src.NoXPos, nil, typs[24])}, nil)
typs[129] = newSig(params(typs[128], typs[128]), nil)
typs[130] = newSig(params(typs[65], typs[65]), nil)
typs[131] = newSig(params(typs[24], typs[24]), nil)
return typs[:]
}

View File

@ -449,7 +449,7 @@ func EvalConst(n ir.Node) ir.Node {
n := n.(*ir.BinaryExpr)
nl, nr := n.X, n.Y
if nl.Op() == ir.OLITERAL && nr.Op() == ir.OLITERAL {
// shiftBound from go/types; "so we can express smallestFloat64"
// shiftBound from go/types; "so we can express smallestFloat64" (see issue #44057)
const shiftBound = 1023 - 1 + 52
s, ok := constant.Uint64Val(nr.Val())
if !ok || s > shiftBound {

View File

@ -470,5 +470,5 @@ func NewMethodType(sig *types.Type, recv *types.Type) *types.Type {
results[i] = types.NewField(base.Pos, nil, t.Type)
}
return types.NewSignature(types.LocalPkg, nil, params, results)
return types.NewSignature(types.LocalPkg, nil, nil, params, results)
}

View File

@ -100,6 +100,11 @@ func PartialCallType(n *ir.SelectorExpr) *types.Type {
return t
}
// True if we are typechecking an inline body in ImportedBody below. We use this
// flag to not create a new closure function in tcClosure when we are just
// typechecking an inline body, as opposed to the body of a real function.
var inTypeCheckInl bool
// Lazy typechecking of imported bodies. For local functions, CanInline will set ->typecheck
// because they're a copy of an already checked body.
func ImportedBody(fn *ir.Func) {
@ -138,7 +143,12 @@ func ImportedBody(fn *ir.Func) {
savefn := ir.CurFunc
ir.CurFunc = fn
if inTypeCheckInl {
base.Fatalf("inTypeCheckInl should not be set recursively")
}
inTypeCheckInl = true
Stmts(fn.Inl.Body)
inTypeCheckInl = false
ir.CurFunc = savefn
// During ImportBody (which imports fn.Func.Inl.Body),
@ -307,7 +317,6 @@ func tcClosure(clo *ir.ClosureExpr, top int) {
// body in ImportedBody(), since we only want to create the named function
// when the closure is actually inlined (and then we force a typecheck
// explicitly in (*inlsubst).node()).
inTypeCheckInl := ir.CurFunc != nil && ir.CurFunc.Body == nil
if !inTypeCheckInl {
fn.Nname.SetSym(ClosureName(ir.CurFunc))
ir.MarkFunc(fn.Nname)

View File

@ -607,7 +607,7 @@ func (r *importReader) signature(recv *types.Field) *types.Type {
if n := len(params); n > 0 {
params[n-1].SetIsDDD(r.bool())
}
return types.NewSignature(r.currPkg, recv, params, results)
return types.NewSignature(r.currPkg, recv, nil, params, results)
}
func (r *importReader) paramList() []*types.Field {

View File

@ -102,6 +102,21 @@ func mkbuiltin(w io.Writer, name string) {
}
fmt.Fprintln(w, "}")
fmt.Fprintln(w, `
// Not inlining this function removes a significant chunk of init code.
//go:noinline
func newSig(params, results []*types.Field) *types.Type {
return types.NewSignature(types.NoPkg, nil, nil, params, results)
}
func params(tlist ...*types.Type) []*types.Field {
flist := make([]*types.Field, len(tlist))
for i, typ := range tlist {
flist[i] = types.NewField(src.NoXPos, nil, typ)
}
return flist
}`)
fmt.Fprintln(w)
fmt.Fprintf(w, "func %sTypes() []*types.Type {\n", name)
fmt.Fprintf(w, "var typs [%d]*types.Type\n", len(interner.typs))
@ -169,7 +184,7 @@ func (i *typeInterner) mktype(t ast.Expr) string {
}
return fmt.Sprintf("types.NewChan(%s, %s)", i.subtype(t.Value), dir)
case *ast.FuncType:
return fmt.Sprintf("types.NewSignature(types.NoPkg, nil, %s, %s)", i.fields(t.Params, false), i.fields(t.Results, false))
return fmt.Sprintf("newSig(%s, %s)", i.fields(t.Params, false), i.fields(t.Results, false))
case *ast.InterfaceType:
if len(t.Methods.List) != 0 {
log.Fatal("non-empty interfaces unsupported")
@ -192,22 +207,27 @@ func (i *typeInterner) fields(fl *ast.FieldList, keepNames bool) string {
if fl == nil || len(fl.List) == 0 {
return "nil"
}
var res []string
for _, f := range fl.List {
typ := i.subtype(f.Type)
if len(f.Names) == 0 {
res = append(res, fmt.Sprintf("types.NewField(src.NoXPos, nil, %s)", typ))
res = append(res, typ)
} else {
for _, name := range f.Names {
if keepNames {
res = append(res, fmt.Sprintf("types.NewField(src.NoXPos, Lookup(%q), %s)", name.Name, typ))
} else {
res = append(res, fmt.Sprintf("types.NewField(src.NoXPos, nil, %s)", typ))
res = append(res, typ)
}
}
}
}
return fmt.Sprintf("[]*types.Field{%s}", strings.Join(res, ", "))
if keepNames {
return fmt.Sprintf("[]*types.Field{%s}", strings.Join(res, ", "))
}
return fmt.Sprintf("params(%s)", strings.Join(res, ", "))
}
func intconst(e ast.Expr) int64 {

View File

@ -88,7 +88,7 @@ func tcFuncType(n *ir.FuncType) ir.Node {
recv = tcField(n.Recv, misc)
}
t := types.NewSignature(types.LocalPkg, recv, tcFields(n.Params, misc), tcFields(n.Results, misc))
t := types.NewSignature(types.LocalPkg, recv, nil, tcFields(n.Params, misc), tcFields(n.Results, misc))
checkdupfields("argument", t.Recvs().FieldSlice(), t.Params().FieldSlice(), t.Results().FieldSlice())
base.Pos = lno

View File

@ -329,7 +329,7 @@ func InitUniverse() {
}
func makeErrorInterface() *types.Type {
sig := types.NewSignature(types.NoPkg, fakeRecvField(), nil, []*types.Field{
sig := types.NewSignature(types.NoPkg, fakeRecvField(), nil, nil, []*types.Field{
types.NewField(src.NoXPos, nil, types.Types[types.TSTRING]),
})
method := types.NewField(src.NoXPos, Lookup("Error"), sig)

View File

@ -318,7 +318,7 @@ func tconv2(b *bytes.Buffer, t *Type, verb rune, mode fmtMode, visited map[*Type
}
// Unless the 'L' flag was specified, if the type has a name, just print that name.
if verb != 'L' && t.Sym() != nil && t != Types[t.Kind()] {
if verb != 'L' && t.Sym() != nil && t != Types[t.Kind()] && t.Kind() != TTYPEPARAM {
switch mode {
case fmtTypeID, fmtTypeIDName:
if verb == 'S' {
@ -478,6 +478,9 @@ func tconv2(b *bytes.Buffer, t *Type, verb rune, mode fmtMode, visited map[*Type
}
b.WriteString("func")
}
if t.NumTParams() > 0 {
tconv2(b, t.TParams(), 0, mode, visited)
}
tconv2(b, t.Params(), 0, mode, visited)
switch t.NumResults() {
@ -515,7 +518,11 @@ func tconv2(b *bytes.Buffer, t *Type, verb rune, mode fmtMode, visited map[*Type
}
if funarg := t.StructType().Funarg; funarg != FunargNone {
b.WriteByte('(')
open, close := '(', ')'
if funarg == FunargTparams {
open, close = '[', ']'
}
b.WriteByte(byte(open))
fieldVerb := 'v'
switch mode {
case fmtTypeID, fmtTypeIDName, fmtGo:
@ -528,7 +535,7 @@ func tconv2(b *bytes.Buffer, t *Type, verb rune, mode fmtMode, visited map[*Type
}
fldconv(b, f, fieldVerb, mode, visited, funarg)
}
b.WriteByte(')')
b.WriteByte(byte(close))
} else {
b.WriteString("struct {")
for i, f := range t.Fields().Slice() {
@ -554,6 +561,15 @@ func tconv2(b *bytes.Buffer, t *Type, verb rune, mode fmtMode, visited map[*Type
case TUNSAFEPTR:
b.WriteString("unsafe.Pointer")
case TTYPEPARAM:
if t.Sym() != nil {
sconv2(b, t.Sym(), 'v', mode)
} else {
b.WriteString("tp")
// Print out the pointer value for now to disambiguate type params
b.WriteString(fmt.Sprintf("%p", t))
}
case Txxx:
b.WriteString("Txxx")

View File

@ -37,20 +37,21 @@ func _() {
_ = x[TANY-26]
_ = x[TSTRING-27]
_ = x[TUNSAFEPTR-28]
_ = x[TIDEAL-29]
_ = x[TNIL-30]
_ = x[TBLANK-31]
_ = x[TFUNCARGS-32]
_ = x[TCHANARGS-33]
_ = x[TSSA-34]
_ = x[TTUPLE-35]
_ = x[TRESULTS-36]
_ = x[NTYPE-37]
_ = x[TTYPEPARAM-29]
_ = x[TIDEAL-30]
_ = x[TNIL-31]
_ = x[TBLANK-32]
_ = x[TFUNCARGS-33]
_ = x[TCHANARGS-34]
_ = x[TSSA-35]
_ = x[TTUPLE-36]
_ = x[TRESULTS-37]
_ = x[NTYPE-38]
}
const _Kind_name = "xxxINT8UINT8INT16UINT16INT32UINT32INT64UINT64INTUINTUINTPTRCOMPLEX64COMPLEX128FLOAT32FLOAT64BOOLPTRFUNCSLICEARRAYSTRUCTCHANMAPINTERFORWANYSTRINGUNSAFEPTRIDEALNILBLANKFUNCARGSCHANARGSSSATUPLERESULTSNTYPE"
const _Kind_name = "xxxINT8UINT8INT16UINT16INT32UINT32INT64UINT64INTUINTUINTPTRCOMPLEX64COMPLEX128FLOAT32FLOAT64BOOLPTRFUNCSLICEARRAYSTRUCTCHANMAPINTERFORWANYSTRINGUNSAFEPTRTYPEPARAMIDEALNILBLANKFUNCARGSCHANARGSSSATUPLERESULTSNTYPE"
var _Kind_index = [...]uint8{0, 3, 7, 12, 17, 23, 28, 34, 39, 45, 48, 52, 59, 68, 78, 85, 92, 96, 99, 103, 108, 113, 119, 123, 126, 131, 135, 138, 144, 153, 158, 161, 166, 174, 182, 185, 190, 197, 202}
var _Kind_index = [...]uint8{0, 3, 7, 12, 17, 23, 28, 34, 39, 45, 48, 52, 59, 68, 78, 85, 92, 96, 99, 103, 108, 113, 119, 123, 126, 131, 135, 138, 144, 153, 162, 167, 170, 175, 183, 191, 194, 199, 206, 211}
func (i Kind) String() string {
if i >= Kind(len(_Kind_index)-1) {

View File

@ -499,6 +499,11 @@ func CalcSize(t *Type) {
base.Warn("bad type %v %d\n", t1, w)
}
t.Align = 1
case TTYPEPARAM:
// TODO(danscales) - remove when we eliminate the need
// to do CalcSize in noder2 (which shouldn't be needed in the noder)
w = int64(PtrSize)
}
if PtrSize == 4 && w != int64(int32(w)) {

View File

@ -21,10 +21,10 @@ func TestSizeof(t *testing.T) {
_64bit uintptr // size on 64bit platforms
}{
{Sym{}, 44, 72},
{Type{}, 56, 96},
{Type{}, 68, 120},
{Map{}, 20, 40},
{Forward{}, 20, 32},
{Func{}, 24, 40},
{Func{}, 28, 48},
{Struct{}, 16, 32},
{Interface{}, 8, 16},
{Chan{}, 8, 16},

View File

@ -72,6 +72,7 @@ const (
TANY
TSTRING
TUNSAFEPTR
TTYPEPARAM
// pseudo-types for literals
TIDEAL // untyped numeric constants
@ -150,6 +151,7 @@ type Type struct {
// TARRAY: *Array
// TSLICE: Slice
// TSSA: string
// TTYPEPARAM: *Interface (though we may not need to store/use the Interface info)
Extra interface{}
// Width is the width of this Type in bytes.
@ -174,6 +176,11 @@ type Type struct {
Align uint8 // the required alignment of this type, in bytes (0 means Width and Align have not yet been computed)
flags bitset8
// Type params (in order) of this named type that need to be instantiated.
// TODO(danscales): for space reasons, should probably be a pointer to a
// slice, possibly change the name of this field.
RParams []*Type
}
func (*Type) CanBeAnSSAAux() {}
@ -184,6 +191,7 @@ const (
typeNoalg // suppress hash and eq algorithm generation
typeDeferwidth // width computation has been deferred and type is on deferredTypeStack
typeRecur
typeHasTParam // there is a typeparam somewhere in the type (generic function or type)
)
func (t *Type) NotInHeap() bool { return t.flags&typeNotInHeap != 0 }
@ -191,18 +199,21 @@ func (t *Type) Broke() bool { return t.flags&typeBroke != 0 }
func (t *Type) Noalg() bool { return t.flags&typeNoalg != 0 }
func (t *Type) Deferwidth() bool { return t.flags&typeDeferwidth != 0 }
func (t *Type) Recur() bool { return t.flags&typeRecur != 0 }
func (t *Type) HasTParam() bool { return t.flags&typeHasTParam != 0 }
func (t *Type) SetNotInHeap(b bool) { t.flags.set(typeNotInHeap, b) }
func (t *Type) SetBroke(b bool) { t.flags.set(typeBroke, b) }
func (t *Type) SetNoalg(b bool) { t.flags.set(typeNoalg, b) }
func (t *Type) SetDeferwidth(b bool) { t.flags.set(typeDeferwidth, b) }
func (t *Type) SetRecur(b bool) { t.flags.set(typeRecur, b) }
func (t *Type) SetHasTParam(b bool) { t.flags.set(typeHasTParam, b) }
// Kind returns the kind of type t.
func (t *Type) Kind() Kind { return t.kind }
// Sym returns the name of type t.
func (t *Type) Sym() *Sym { return t.sym }
func (t *Type) Sym() *Sym { return t.sym }
func (t *Type) SetSym(sym *Sym) { t.sym = sym }
// Underlying returns the underlying type of type t.
func (t *Type) Underlying() *Type { return t.underlying }
@ -283,6 +294,7 @@ type Func struct {
Receiver *Type // function receiver
Results *Type // function results
Params *Type // function params
TParams *Type // type params of receiver (if method) or function
pkg *Pkg
@ -318,6 +330,7 @@ const (
FunargRcvr // receiver
FunargParams // input parameters
FunargResults // output results
FunargTparams // type params
)
// StructType returns t's extra struct-specific fields.
@ -508,6 +521,8 @@ func New(et Kind) *Type {
t.Extra = new(Tuple)
case TRESULTS:
t.Extra = new(Results)
case TTYPEPARAM:
t.Extra = new(Interface)
}
return t
}
@ -520,6 +535,9 @@ func NewArray(elem *Type, bound int64) *Type {
t := New(TARRAY)
t.Extra = &Array{Elem: elem, Bound: bound}
t.SetNotInHeap(elem.NotInHeap())
if elem.HasTParam() {
t.SetHasTParam(true)
}
return t
}
@ -535,6 +553,9 @@ func NewSlice(elem *Type) *Type {
t := New(TSLICE)
t.Extra = Slice{Elem: elem}
elem.cache.slice = t
if elem.HasTParam() {
t.SetHasTParam(true)
}
return t
}
@ -544,6 +565,9 @@ func NewChan(elem *Type, dir ChanDir) *Type {
ct := t.ChanType()
ct.Elem = elem
ct.Dir = dir
if elem.HasTParam() {
t.SetHasTParam(true)
}
return t
}
@ -551,6 +575,9 @@ func NewTuple(t1, t2 *Type) *Type {
t := New(TTUPLE)
t.Extra.(*Tuple).first = t1
t.Extra.(*Tuple).second = t2
if t1.HasTParam() || t2.HasTParam() {
t.SetHasTParam(true)
}
return t
}
@ -572,6 +599,9 @@ func NewMap(k, v *Type) *Type {
mt := t.MapType()
mt.Key = k
mt.Elem = v
if k.HasTParam() || v.HasTParam() {
t.SetHasTParam(true)
}
return t
}
@ -590,6 +620,12 @@ func NewPtr(elem *Type) *Type {
if t.Elem() != elem {
base.Fatalf("NewPtr: elem mismatch")
}
if elem.HasTParam() {
// Extra check when reusing the cache, since the elem
// might have still been undetermined (i.e. a TFORW type)
// when this entry was cached.
t.SetHasTParam(true)
}
return t
}
@ -600,6 +636,9 @@ func NewPtr(elem *Type) *Type {
if NewPtrCacheEnabled {
elem.cache.ptr = t
}
if elem.HasTParam() {
t.SetHasTParam(true)
}
return t
}
@ -765,10 +804,12 @@ func (t *Type) wantEtype(et Kind) {
}
func (t *Type) Recvs() *Type { return t.FuncType().Receiver }
func (t *Type) TParams() *Type { return t.FuncType().TParams }
func (t *Type) Params() *Type { return t.FuncType().Params }
func (t *Type) Results() *Type { return t.FuncType().Results }
func (t *Type) NumRecvs() int { return t.FuncType().Receiver.NumFields() }
func (t *Type) NumTParams() int { return t.FuncType().TParams.NumFields() }
func (t *Type) NumParams() int { return t.FuncType().Params.NumFields() }
func (t *Type) NumResults() int { return t.FuncType().Results.NumFields() }
@ -1602,6 +1643,9 @@ func (t *Type) SetUnderlying(underlying *Type) {
if underlying.Broke() {
t.SetBroke(true)
}
if underlying.HasTParam() {
t.SetHasTParam(true)
}
// spec: "The declared type does not inherit any methods bound
// to the existing type, but the method set of an interface
@ -1624,6 +1668,15 @@ func (t *Type) SetUnderlying(underlying *Type) {
}
}
func fieldsHasTParam(fields []*Field) bool {
for _, f := range fields {
if f.Type != nil && f.Type.HasTParam() {
return true
}
}
return false
}
// NewBasic returns a new basic type of the given kind.
func NewBasic(kind Kind, obj Object) *Type {
t := New(kind)
@ -1644,9 +1697,20 @@ func NewInterface(pkg *Pkg, methods []*Field) *Type {
return t
}
// NewTypeParam returns a new type param with the given constraint (which may
// not really be needed except for the type checker).
func NewTypeParam(pkg *Pkg, constraint *Type) *Type {
t := New(TTYPEPARAM)
constraint.wantEtype(TINTER)
t.methods = constraint.methods
t.Extra.(*Interface).pkg = pkg
t.SetHasTParam(true)
return t
}
// NewSignature returns a new function type for the given receiver,
// parameters, and results, any of which may be nil.
func NewSignature(pkg *Pkg, recv *Field, params, results []*Field) *Type {
// parametes, results, and type parameters, any of which may be nil.
func NewSignature(pkg *Pkg, recv *Field, tparams, params, results []*Field) *Type {
var recvs []*Field
if recv != nil {
recvs = []*Field{recv}
@ -1665,9 +1729,14 @@ func NewSignature(pkg *Pkg, recv *Field, params, results []*Field) *Type {
}
ft.Receiver = funargs(recvs, FunargRcvr)
ft.TParams = funargs(tparams, FunargTparams)
ft.Params = funargs(params, FunargParams)
ft.Results = funargs(results, FunargResults)
ft.pkg = pkg
if len(tparams) > 0 || fieldsHasTParam(recvs) || fieldsHasTParam(params) ||
fieldsHasTParam(results) {
t.SetHasTParam(true)
}
return t
}
@ -1680,6 +1749,9 @@ func NewStruct(pkg *Pkg, fields []*Field) *Type {
t.SetBroke(true)
}
t.Extra.(*Struct).pkg = pkg
if fieldsHasTParam(fields) {
t.SetHasTParam(true)
}
return t
}

View File

@ -0,0 +1,443 @@
// UNREVIEWED
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package types declares the data types and implements
// the algorithms for type-checking of Go packages. Use
// Config.Check to invoke the type checker for a package.
// Alternatively, create a new type checker with NewChecker
// and invoke it incrementally by calling Checker.Files.
//
// Type-checking consists of several interdependent phases:
//
// Name resolution maps each identifier (syntax.Name) in the program to the
// language object (Object) it denotes.
// Use Info.{Defs,Uses,Implicits} for the results of name resolution.
//
// Constant folding computes the exact constant value (constant.Value)
// for every expression (syntax.Expr) that is a compile-time constant.
// Use Info.Types[expr].Value for the results of constant folding.
//
// Type inference computes the type (Type) of every expression (syntax.Expr)
// and checks for compliance with the language specification.
// Use Info.Types[expr].Type for the results of type inference.
//
// For a tutorial, see https://golang.org/s/types-tutorial.
//
package types2
import (
"bytes"
"cmd/compile/internal/syntax"
"fmt"
"go/constant"
)
// An Error describes a type-checking error; it implements the error interface.
// A "soft" error is an error that still permits a valid interpretation of a
// package (such as "unused variable"); "hard" errors may lead to unpredictable
// behavior if ignored.
type Error struct {
Pos syntax.Pos // error position
Msg string // default error message, user-friendly
Full string // full error message, for debugging (may contain internal details)
Soft bool // if set, error is "soft"
}
// Error returns an error string formatted as follows:
// filename:line:column: message
func (err Error) Error() string {
return fmt.Sprintf("%s: %s", err.Pos, err.Msg)
}
// FullError returns an error string like Error, buy it may contain
// type-checker internal details such as subscript indices for type
// parameters and more. Useful for debugging.
func (err Error) FullError() string {
return fmt.Sprintf("%s: %s", err.Pos, err.Full)
}
// An Importer resolves import paths to Packages.
//
// CAUTION: This interface does not support the import of locally
// vendored packages. See https://golang.org/s/go15vendor.
// If possible, external implementations should implement ImporterFrom.
type Importer interface {
// Import returns the imported package for the given import path.
// The semantics is like for ImporterFrom.ImportFrom except that
// dir and mode are ignored (since they are not present).
Import(path string) (*Package, error)
}
// ImportMode is reserved for future use.
type ImportMode int
// An ImporterFrom resolves import paths to packages; it
// supports vendoring per https://golang.org/s/go15vendor.
// Use go/importer to obtain an ImporterFrom implementation.
type ImporterFrom interface {
// Importer is present for backward-compatibility. Calling
// Import(path) is the same as calling ImportFrom(path, "", 0);
// i.e., locally vendored packages may not be found.
// The types package does not call Import if an ImporterFrom
// is present.
Importer
// ImportFrom returns the imported package for the given import
// path when imported by a package file located in dir.
// If the import failed, besides returning an error, ImportFrom
// is encouraged to cache and return a package anyway, if one
// was created. This will reduce package inconsistencies and
// follow-on type checker errors due to the missing package.
// The mode value must be 0; it is reserved for future use.
// Two calls to ImportFrom with the same path and dir must
// return the same package.
ImportFrom(path, dir string, mode ImportMode) (*Package, error)
}
// A Config specifies the configuration for type checking.
// The zero value for Config is a ready-to-use default configuration.
type Config struct {
// GoVersion describes the accepted Go language version. The string
// must follow the format "go%d.%d" (e.g. "go1.12") or ist must be
// empty; an empty string indicates the latest language version.
// If the format is invalid, invoking the type checker will cause a
// panic.
GoVersion string
// If IgnoreFuncBodies is set, function bodies are not
// type-checked.
IgnoreFuncBodies bool
// If AcceptMethodTypeParams is set, methods may have type parameters.
AcceptMethodTypeParams bool
// If InferFromConstraints is set, constraint type inference is used
// if some function type arguments are missing.
InferFromConstraints bool
// If FakeImportC is set, `import "C"` (for packages requiring Cgo)
// declares an empty "C" package and errors are omitted for qualified
// identifiers referring to package C (which won't find an object).
// This feature is intended for the standard library cmd/api tool.
//
// Caution: Effects may be unpredictable due to follow-on errors.
// Do not use casually!
FakeImportC bool
// If IgnoreLabels is set, correct label use is not checked.
// TODO(gri) Consolidate label checking and remove this flag.
IgnoreLabels bool
// If CompilerErrorMessages is set, errors are reported using
// cmd/compile error strings to match $GOROOT/test errors.
// TODO(gri) Consolidate error messages and remove this flag.
CompilerErrorMessages bool
// If go115UsesCgo is set, the type checker expects the
// _cgo_gotypes.go file generated by running cmd/cgo to be
// provided as a package source file. Qualified identifiers
// referring to package C will be resolved to cgo-provided
// declarations within _cgo_gotypes.go.
//
// It is an error to set both FakeImportC and go115UsesCgo.
go115UsesCgo bool
// If Trace is set, a debug trace is printed to stdout.
Trace bool
// If Error != nil, it is called with each error found
// during type checking; err has dynamic type Error.
// Secondary errors (for instance, to enumerate all types
// involved in an invalid recursive type declaration) have
// error strings that start with a '\t' character.
// If Error == nil, type-checking stops with the first
// error found.
Error func(err error)
// An importer is used to import packages referred to from
// import declarations.
// If the installed importer implements ImporterFrom, the type
// checker calls ImportFrom instead of Import.
// The type checker reports an error if an importer is needed
// but none was installed.
Importer Importer
// If Sizes != nil, it provides the sizing functions for package unsafe.
// Otherwise SizesFor("gc", "amd64") is used instead.
Sizes Sizes
// If DisableUnusedImportCheck is set, packages are not checked
// for unused imports.
DisableUnusedImportCheck bool
}
func srcimporter_setUsesCgo(conf *Config) {
conf.go115UsesCgo = true
}
// Info holds result type information for a type-checked package.
// Only the information for which a map is provided is collected.
// If the package has type errors, the collected information may
// be incomplete.
type Info struct {
// Types maps expressions to their types, and for constant
// expressions, also their values. Invalid expressions are
// omitted.
//
// For (possibly parenthesized) identifiers denoting built-in
// functions, the recorded signatures are call-site specific:
// if the call result is not a constant, the recorded type is
// an argument-specific signature. Otherwise, the recorded type
// is invalid.
//
// The Types map does not record the type of every identifier,
// only those that appear where an arbitrary expression is
// permitted. For instance, the identifier f in a selector
// expression x.f is found only in the Selections map, the
// identifier z in a variable declaration 'var z int' is found
// only in the Defs map, and identifiers denoting packages in
// qualified identifiers are collected in the Uses map.
Types map[syntax.Expr]TypeAndValue
// Inferred maps calls of parameterized functions that use
// type inference to the inferred type arguments and signature
// of the function called. The recorded "call" expression may be
// an *ast.CallExpr (as in f(x)), or an *ast.IndexExpr (s in f[T]).
Inferred map[syntax.Expr]Inferred
// Defs maps identifiers to the objects they define (including
// package names, dots "." of dot-imports, and blank "_" identifiers).
// For identifiers that do not denote objects (e.g., the package name
// in package clauses, or symbolic variables t in t := x.(type) of
// type switch headers), the corresponding objects are nil.
//
// For an embedded field, Defs returns the field *Var it defines.
//
// Invariant: Defs[id] == nil || Defs[id].Pos() == id.Pos()
Defs map[*syntax.Name]Object
// Uses maps identifiers to the objects they denote.
//
// For an embedded field, Uses returns the *TypeName it denotes.
//
// Invariant: Uses[id].Pos() != id.Pos()
Uses map[*syntax.Name]Object
// Implicits maps nodes to their implicitly declared objects, if any.
// The following node and object types may appear:
//
// node declared object
//
// *syntax.ImportDecl *PkgName for imports without renames
// *syntax.CaseClause type-specific *Var for each type switch case clause (incl. default)
// *syntax.Field anonymous parameter *Var (incl. unnamed results)
//
Implicits map[syntax.Node]Object
// Selections maps selector expressions (excluding qualified identifiers)
// to their corresponding selections.
Selections map[*syntax.SelectorExpr]*Selection
// Scopes maps syntax.Nodes to the scopes they define. Package scopes are not
// associated with a specific node but with all files belonging to a package.
// Thus, the package scope can be found in the type-checked Package object.
// Scopes nest, with the Universe scope being the outermost scope, enclosing
// the package scope, which contains (one or more) files scopes, which enclose
// function scopes which in turn enclose statement and function literal scopes.
// Note that even though package-level functions are declared in the package
// scope, the function scopes are embedded in the file scope of the file
// containing the function declaration.
//
// The following node types may appear in Scopes:
//
// *syntax.File
// *syntax.FuncType
// *syntax.BlockStmt
// *syntax.IfStmt
// *syntax.SwitchStmt
// *syntax.CaseClause
// *syntax.CommClause
// *syntax.ForStmt
//
Scopes map[syntax.Node]*Scope
// InitOrder is the list of package-level initializers in the order in which
// they must be executed. Initializers referring to variables related by an
// initialization dependency appear in topological order, the others appear
// in source order. Variables without an initialization expression do not
// appear in this list.
InitOrder []*Initializer
}
// TypeOf returns the type of expression e, or nil if not found.
// Precondition: the Types, Uses and Defs maps are populated.
//
func (info *Info) TypeOf(e syntax.Expr) Type {
if t, ok := info.Types[e]; ok {
return t.Type
}
if id, _ := e.(*syntax.Name); id != nil {
if obj := info.ObjectOf(id); obj != nil {
return obj.Type()
}
}
return nil
}
// ObjectOf returns the object denoted by the specified id,
// or nil if not found.
//
// If id is an embedded struct field, ObjectOf returns the field (*Var)
// it defines, not the type (*TypeName) it uses.
//
// Precondition: the Uses and Defs maps are populated.
//
func (info *Info) ObjectOf(id *syntax.Name) Object {
if obj := info.Defs[id]; obj != nil {
return obj
}
return info.Uses[id]
}
// TypeAndValue reports the type and value (for constants)
// of the corresponding expression.
type TypeAndValue struct {
mode operandMode
Type Type
Value constant.Value
}
// IsVoid reports whether the corresponding expression
// is a function call without results.
func (tv TypeAndValue) IsVoid() bool {
return tv.mode == novalue
}
// IsType reports whether the corresponding expression specifies a type.
func (tv TypeAndValue) IsType() bool {
return tv.mode == typexpr
}
// IsBuiltin reports whether the corresponding expression denotes
// a (possibly parenthesized) built-in function.
func (tv TypeAndValue) IsBuiltin() bool {
return tv.mode == builtin
}
// IsValue reports whether the corresponding expression is a value.
// Builtins are not considered values. Constant values have a non-
// nil Value.
func (tv TypeAndValue) IsValue() bool {
switch tv.mode {
case constant_, variable, mapindex, value, nilvalue, commaok, commaerr:
return true
}
return false
}
// IsNil reports whether the corresponding expression denotes the
// predeclared value nil. Depending on context, it may have been
// given a type different from UntypedNil.
func (tv TypeAndValue) IsNil() bool {
return tv.mode == nilvalue
}
// Addressable reports whether the corresponding expression
// is addressable (https://golang.org/ref/spec#Address_operators).
func (tv TypeAndValue) Addressable() bool {
return tv.mode == variable
}
// Assignable reports whether the corresponding expression
// is assignable to (provided a value of the right type).
func (tv TypeAndValue) Assignable() bool {
return tv.mode == variable || tv.mode == mapindex
}
// HasOk reports whether the corresponding expression may be
// used on the rhs of a comma-ok assignment.
func (tv TypeAndValue) HasOk() bool {
return tv.mode == commaok || tv.mode == mapindex
}
// Inferred reports the inferred type arguments and signature
// for a parameterized function call that uses type inference.
type Inferred struct {
Targs []Type
Sig *Signature
}
// An Initializer describes a package-level variable, or a list of variables in case
// of a multi-valued initialization expression, and the corresponding initialization
// expression.
type Initializer struct {
Lhs []*Var // var Lhs = Rhs
Rhs syntax.Expr
}
func (init *Initializer) String() string {
var buf bytes.Buffer
for i, lhs := range init.Lhs {
if i > 0 {
buf.WriteString(", ")
}
buf.WriteString(lhs.Name())
}
buf.WriteString(" = ")
syntax.Fprint(&buf, init.Rhs, syntax.ShortForm)
return buf.String()
}
// Check type-checks a package and returns the resulting package object and
// the first error if any. Additionally, if info != nil, Check populates each
// of the non-nil maps in the Info struct.
//
// The package is marked as complete if no errors occurred, otherwise it is
// incomplete. See Config.Error for controlling behavior in the presence of
// errors.
//
// The package is specified by a list of *syntax.Files and corresponding
// file set, and the package path the package is identified with.
// The clean path must not be empty or dot (".").
func (conf *Config) Check(path string, files []*syntax.File, info *Info) (*Package, error) {
pkg := NewPackage(path, "")
return pkg, NewChecker(conf, pkg, info).Files(files)
}
// AssertableTo reports whether a value of type V can be asserted to have type T.
func AssertableTo(V *Interface, T Type) bool {
m, _ := (*Checker)(nil).assertableTo(V, T, false)
return m == nil
}
// AssignableTo reports whether a value of type V is assignable to a variable of type T.
func AssignableTo(V, T Type) bool {
x := operand{mode: value, typ: V}
return x.assignableTo(nil, T, nil) // check not needed for non-constant x
}
// ConvertibleTo reports whether a value of type V is convertible to a value of type T.
func ConvertibleTo(V, T Type) bool {
x := operand{mode: value, typ: V}
return x.convertibleTo(nil, T) // check not needed for non-constant x
}
// Implements reports whether type V implements interface T.
func Implements(V Type, T *Interface) bool {
f, _ := MissingMethod(V, T, true)
return f == nil
}
// Identical reports whether x and y are identical types.
// Receivers of Signature types are ignored.
func Identical(x, y Type) bool {
return (*Checker)(nil).identical(x, y)
}
// IdenticalIgnoreTags reports whether x and y are identical types if tags are ignored.
// Receivers of Signature types are ignored.
func IdenticalIgnoreTags(x, y Type) bool {
return (*Checker)(nil).identicalIgnoreTags(x, y)
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,368 @@
// UNREVIEWED
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements initialization and assignment checks.
package types2
import "cmd/compile/internal/syntax"
// assignment reports whether x can be assigned to a variable of type T,
// if necessary by attempting to convert untyped values to the appropriate
// type. context describes the context in which the assignment takes place.
// Use T == nil to indicate assignment to an untyped blank identifier.
// x.mode is set to invalid if the assignment failed.
func (check *Checker) assignment(x *operand, T Type, context string) {
check.singleValue(x)
switch x.mode {
case invalid:
return // error reported before
case constant_, variable, mapindex, value, nilvalue, commaok, commaerr:
// ok
default:
// we may get here because of other problems (issue #39634, crash 12)
check.errorf(x, "cannot assign %s to %s in %s", x, T, context)
return
}
if isUntyped(x.typ) {
target := T
// spec: "If an untyped constant is assigned to a variable of interface
// type or the blank identifier, the constant is first converted to type
// bool, rune, int, float64, complex128 or string respectively, depending
// on whether the value is a boolean, rune, integer, floating-point, complex,
// or string constant."
if x.isNil() {
if T == nil {
check.errorf(x, "use of untyped nil in %s", context)
x.mode = invalid
return
}
} else if T == nil || IsInterface(T) {
target = Default(x.typ)
}
check.convertUntyped(x, target)
if x.mode == invalid {
return
}
}
// x.typ is typed
// A generic (non-instantiated) function value cannot be assigned to a variable.
if sig := asSignature(x.typ); sig != nil && len(sig.tparams) > 0 {
check.errorf(x, "cannot use generic function %s without instantiation in %s", x, context)
}
// spec: "If a left-hand side is the blank identifier, any typed or
// non-constant value except for the predeclared identifier nil may
// be assigned to it."
if T == nil {
return
}
if reason := ""; !x.assignableTo(check, T, &reason) {
if check.conf.CompilerErrorMessages {
check.errorf(x, "incompatible type: cannot use %s as %s value", x, T)
} else {
if reason != "" {
check.errorf(x, "cannot use %s as %s value in %s: %s", x, T, context, reason)
} else {
check.errorf(x, "cannot use %s as %s value in %s", x, T, context)
}
}
x.mode = invalid
}
}
func (check *Checker) initConst(lhs *Const, x *operand) {
if x.mode == invalid || x.typ == Typ[Invalid] || lhs.typ == Typ[Invalid] {
if lhs.typ == nil {
lhs.typ = Typ[Invalid]
}
return
}
// rhs must be a constant
if x.mode != constant_ {
check.errorf(x, "%s is not constant", x)
if lhs.typ == nil {
lhs.typ = Typ[Invalid]
}
return
}
assert(isConstType(x.typ))
// If the lhs doesn't have a type yet, use the type of x.
if lhs.typ == nil {
lhs.typ = x.typ
}
check.assignment(x, lhs.typ, "constant declaration")
if x.mode == invalid {
return
}
lhs.val = x.val
}
func (check *Checker) initVar(lhs *Var, x *operand, context string) Type {
if x.mode == invalid || x.typ == Typ[Invalid] || lhs.typ == Typ[Invalid] {
if lhs.typ == nil {
lhs.typ = Typ[Invalid]
}
lhs.used = true // avoid follow-on "declared but not used" errors
return nil
}
// If the lhs doesn't have a type yet, use the type of x.
if lhs.typ == nil {
typ := x.typ
if isUntyped(typ) {
// convert untyped types to default types
if typ == Typ[UntypedNil] {
check.errorf(x, "use of untyped nil in %s", context)
lhs.typ = Typ[Invalid]
return nil
}
typ = Default(typ)
}
lhs.typ = typ
}
check.assignment(x, lhs.typ, context)
if x.mode == invalid {
return nil
}
return x.typ
}
func (check *Checker) assignVar(lhs syntax.Expr, x *operand) Type {
if x.mode == invalid || x.typ == Typ[Invalid] {
check.useLHS(lhs)
return nil
}
// Determine if the lhs is a (possibly parenthesized) identifier.
ident, _ := unparen(lhs).(*syntax.Name)
// Don't evaluate lhs if it is the blank identifier.
if ident != nil && ident.Value == "_" {
check.recordDef(ident, nil)
check.assignment(x, nil, "assignment to _ identifier")
if x.mode == invalid {
return nil
}
return x.typ
}
// If the lhs is an identifier denoting a variable v, this assignment
// is not a 'use' of v. Remember current value of v.used and restore
// after evaluating the lhs via check.expr.
var v *Var
var v_used bool
if ident != nil {
if obj := check.lookup(ident.Value); obj != nil {
// It's ok to mark non-local variables, but ignore variables
// from other packages to avoid potential race conditions with
// dot-imported variables.
if w, _ := obj.(*Var); w != nil && w.pkg == check.pkg {
v = w
v_used = v.used
}
}
}
var z operand
check.expr(&z, lhs)
if v != nil {
v.used = v_used // restore v.used
}
if z.mode == invalid || z.typ == Typ[Invalid] {
return nil
}
// spec: "Each left-hand side operand must be addressable, a map index
// expression, or the blank identifier. Operands may be parenthesized."
switch z.mode {
case invalid:
return nil
case variable, mapindex:
// ok
case nilvalue:
check.errorf(&z, "cannot assign to nil") // default would print "untyped nil"
return nil
default:
if sel, ok := z.expr.(*syntax.SelectorExpr); ok {
var op operand
check.expr(&op, sel.X)
if op.mode == mapindex {
check.errorf(&z, "cannot assign to struct field %s in map", syntax.String(z.expr))
return nil
}
}
check.errorf(&z, "cannot assign to %s", &z)
return nil
}
check.assignment(x, z.typ, "assignment")
if x.mode == invalid {
return nil
}
return x.typ
}
// If returnPos is valid, initVars is called to type-check the assignment of
// return expressions, and returnPos is the position of the return statement.
func (check *Checker) initVars(lhs []*Var, orig_rhs []syntax.Expr, returnPos syntax.Pos) {
rhs, commaOk := check.exprList(orig_rhs, len(lhs) == 2 && !returnPos.IsKnown())
if len(lhs) != len(rhs) {
// invalidate lhs
for _, obj := range lhs {
if obj.typ == nil {
obj.typ = Typ[Invalid]
}
}
// don't report an error if we already reported one
for _, x := range rhs {
if x.mode == invalid {
return
}
}
if returnPos.IsKnown() {
check.errorf(returnPos, "wrong number of return values (want %d, got %d)", len(lhs), len(rhs))
return
}
check.errorf(rhs[0], "cannot initialize %d variables with %d values", len(lhs), len(rhs))
return
}
context := "assignment"
if returnPos.IsKnown() {
context = "return statement"
}
if commaOk {
var a [2]Type
for i := range a {
a[i] = check.initVar(lhs[i], rhs[i], context)
}
check.recordCommaOkTypes(orig_rhs[0], a)
return
}
for i, lhs := range lhs {
check.initVar(lhs, rhs[i], context)
}
}
func (check *Checker) assignVars(lhs, orig_rhs []syntax.Expr) {
rhs, commaOk := check.exprList(orig_rhs, len(lhs) == 2)
if len(lhs) != len(rhs) {
check.useLHS(lhs...)
// don't report an error if we already reported one
for _, x := range rhs {
if x.mode == invalid {
return
}
}
check.errorf(rhs[0], "cannot assign %d values to %d variables", len(rhs), len(lhs))
return
}
if commaOk {
var a [2]Type
for i := range a {
a[i] = check.assignVar(lhs[i], rhs[i])
}
check.recordCommaOkTypes(orig_rhs[0], a)
return
}
for i, lhs := range lhs {
check.assignVar(lhs, rhs[i])
}
}
// unpack unpacks a *syntax.ListExpr into a list of syntax.Expr.
// Helper introduced for the go/types -> types2 port.
// TODO(gri) Should find a more efficient solution that doesn't
// require introduction of a new slice for simple
// expressions.
func unpackExpr(x syntax.Expr) []syntax.Expr {
if x, _ := x.(*syntax.ListExpr); x != nil {
return x.ElemList
}
if x != nil {
return []syntax.Expr{x}
}
return nil
}
func (check *Checker) shortVarDecl(pos syntax.Pos, lhs, rhs []syntax.Expr) {
top := len(check.delayed)
scope := check.scope
// collect lhs variables
var newVars []*Var
var lhsVars = make([]*Var, len(lhs))
for i, lhs := range lhs {
var obj *Var
if ident, _ := lhs.(*syntax.Name); ident != nil {
// Use the correct obj if the ident is redeclared. The
// variable's scope starts after the declaration; so we
// must use Scope.Lookup here and call Scope.Insert
// (via check.declare) later.
name := ident.Value
if alt := scope.Lookup(name); alt != nil {
// redeclared object must be a variable
if alt, _ := alt.(*Var); alt != nil {
obj = alt
} else {
check.errorf(lhs, "cannot assign to %s", lhs)
}
check.recordUse(ident, alt)
} else {
// declare new variable, possibly a blank (_) variable
obj = NewVar(ident.Pos(), check.pkg, name, nil)
if name != "_" {
newVars = append(newVars, obj)
}
check.recordDef(ident, obj)
}
} else {
check.useLHS(lhs)
check.errorf(lhs, "cannot declare %s", lhs)
}
if obj == nil {
obj = NewVar(lhs.Pos(), check.pkg, "_", nil) // dummy variable
}
lhsVars[i] = obj
}
check.initVars(lhsVars, rhs, nopos)
// process function literals in rhs expressions before scope changes
check.processDelayed(top)
// declare new variables
if len(newVars) > 0 {
// spec: "The scope of a constant or variable identifier declared inside
// a function begins at the end of the ConstSpec or VarSpec (ShortVarDecl
// for short variable declarations) and ends at the end of the innermost
// containing block."
scopePos := endPos(rhs[len(rhs)-1])
for _, obj := range newVars {
check.declare(scope, nil, obj, scopePos) // recordObject already called
}
} else {
check.softErrorf(pos, "no new variables on left side of :=")
}
}

View File

@ -0,0 +1,776 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements typechecking of builtin function calls.
package types2
import (
"cmd/compile/internal/syntax"
"go/constant"
"go/token"
)
// builtin type-checks a call to the built-in specified by id and
// reports whether the call is valid, with *x holding the result;
// but x.expr is not set. If the call is invalid, the result is
// false, and *x is undefined.
//
func (check *Checker) builtin(x *operand, call *syntax.CallExpr, id builtinId) (_ bool) {
// append is the only built-in that permits the use of ... for the last argument
bin := predeclaredFuncs[id]
if call.HasDots && id != _Append {
//check.invalidOpf(call.Ellipsis, "invalid use of ... with built-in %s", bin.name)
check.invalidOpf(call, "invalid use of ... with built-in %s", bin.name)
check.use(call.ArgList...)
return
}
// For len(x) and cap(x) we need to know if x contains any function calls or
// receive operations. Save/restore current setting and set hasCallOrRecv to
// false for the evaluation of x so that we can check it afterwards.
// Note: We must do this _before_ calling exprList because exprList evaluates
// all arguments.
if id == _Len || id == _Cap {
defer func(b bool) {
check.hasCallOrRecv = b
}(check.hasCallOrRecv)
check.hasCallOrRecv = false
}
// determine actual arguments
var arg func(*operand, int) // TODO(gri) remove use of arg getter in favor of using xlist directly
nargs := len(call.ArgList)
switch id {
default:
// make argument getter
xlist, _ := check.exprList(call.ArgList, false)
arg = func(x *operand, i int) { *x = *xlist[i]; x.typ = expand(x.typ) }
nargs = len(xlist)
// evaluate first argument, if present
if nargs > 0 {
arg(x, 0)
if x.mode == invalid {
return
}
}
case _Make, _New, _Offsetof, _Trace:
// arguments require special handling
}
// check argument count
{
msg := ""
if nargs < bin.nargs {
msg = "not enough"
} else if !bin.variadic && nargs > bin.nargs {
msg = "too many"
}
if msg != "" {
check.invalidOpf(call, "%s arguments for %s (expected %d, found %d)", msg, call, bin.nargs, nargs)
return
}
}
switch id {
case _Append:
// append(s S, x ...T) S, where T is the element type of S
// spec: "The variadic function append appends zero or more values x to s of type
// S, which must be a slice type, and returns the resulting slice, also of type S.
// The values x are passed to a parameter of type ...T where T is the element type
// of S and the respective parameter passing rules apply."
S := x.typ
var T Type
if s := asSlice(S); s != nil {
T = s.elem
} else {
check.invalidArgf(x, "%s is not a slice", x)
return
}
// remember arguments that have been evaluated already
alist := []operand{*x}
// spec: "As a special case, append also accepts a first argument assignable
// to type []byte with a second argument of string type followed by ... .
// This form appends the bytes of the string.
if nargs == 2 && call.HasDots && x.assignableTo(check, NewSlice(universeByte), nil) {
arg(x, 1)
if x.mode == invalid {
return
}
if isString(x.typ) {
if check.Types != nil {
sig := makeSig(S, S, x.typ)
sig.variadic = true
check.recordBuiltinType(call.Fun, sig)
}
x.mode = value
x.typ = S
break
}
alist = append(alist, *x)
// fallthrough
}
// check general case by creating custom signature
sig := makeSig(S, S, NewSlice(T)) // []T required for variadic signature
sig.variadic = true
var xlist []*operand
// convert []operand to []*operand
for i := range alist {
xlist = append(xlist, &alist[i])
}
for i := len(alist); i < nargs; i++ {
var x operand
arg(&x, i)
xlist = append(xlist, &x)
}
check.arguments(call, sig, xlist) // discard result (we know the result type)
// ok to continue even if check.arguments reported errors
x.mode = value
x.typ = S
if check.Types != nil {
check.recordBuiltinType(call.Fun, sig)
}
case _Cap, _Len:
// cap(x)
// len(x)
mode := invalid
var typ Type
var val constant.Value
switch typ = implicitArrayDeref(optype(x.typ)); t := typ.(type) {
case *Basic:
if isString(t) && id == _Len {
if x.mode == constant_ {
mode = constant_
val = constant.MakeInt64(int64(len(constant.StringVal(x.val))))
} else {
mode = value
}
}
case *Array:
mode = value
// spec: "The expressions len(s) and cap(s) are constants
// if the type of s is an array or pointer to an array and
// the expression s does not contain channel receives or
// function calls; in this case s is not evaluated."
if !check.hasCallOrRecv {
mode = constant_
if t.len >= 0 {
val = constant.MakeInt64(t.len)
} else {
val = constant.MakeUnknown()
}
}
case *Slice, *Chan:
mode = value
case *Map:
if id == _Len {
mode = value
}
case *Sum:
if t.is(func(t Type) bool {
switch t := under(t).(type) {
case *Basic:
if isString(t) && id == _Len {
return true
}
case *Array, *Slice, *Chan:
return true
case *Map:
if id == _Len {
return true
}
}
return false
}) {
mode = value
}
}
if mode == invalid && typ != Typ[Invalid] {
check.invalidArgf(x, "%s for %s", x, bin.name)
return
}
x.mode = mode
x.typ = Typ[Int]
x.val = val
if check.Types != nil && mode != constant_ {
check.recordBuiltinType(call.Fun, makeSig(x.typ, typ))
}
case _Close:
// close(c)
c := asChan(x.typ)
if c == nil {
check.invalidArgf(x, "%s is not a channel", x)
return
}
if c.dir == RecvOnly {
check.invalidArgf(x, "%s must not be a receive-only channel", x)
return
}
x.mode = novalue
if check.Types != nil {
check.recordBuiltinType(call.Fun, makeSig(nil, c))
}
case _Complex:
// complex(x, y floatT) complexT
var y operand
arg(&y, 1)
if y.mode == invalid {
return
}
// convert or check untyped arguments
d := 0
if isUntyped(x.typ) {
d |= 1
}
if isUntyped(y.typ) {
d |= 2
}
switch d {
case 0:
// x and y are typed => nothing to do
case 1:
// only x is untyped => convert to type of y
check.convertUntyped(x, y.typ)
case 2:
// only y is untyped => convert to type of x
check.convertUntyped(&y, x.typ)
case 3:
// x and y are untyped =>
// 1) if both are constants, convert them to untyped
// floating-point numbers if possible,
// 2) if one of them is not constant (possible because
// it contains a shift that is yet untyped), convert
// both of them to float64 since they must have the
// same type to succeed (this will result in an error
// because shifts of floats are not permitted)
if x.mode == constant_ && y.mode == constant_ {
toFloat := func(x *operand) {
if isNumeric(x.typ) && constant.Sign(constant.Imag(x.val)) == 0 {
x.typ = Typ[UntypedFloat]
}
}
toFloat(x)
toFloat(&y)
} else {
check.convertUntyped(x, Typ[Float64])
check.convertUntyped(&y, Typ[Float64])
// x and y should be invalid now, but be conservative
// and check below
}
}
if x.mode == invalid || y.mode == invalid {
return
}
// both argument types must be identical
if !check.identical(x.typ, y.typ) {
check.invalidOpf(x, "%s (mismatched types %s and %s)", call, x.typ, y.typ)
return
}
// the argument types must be of floating-point type
f := func(x Type) Type {
if t := asBasic(x); t != nil {
switch t.kind {
case Float32:
return Typ[Complex64]
case Float64:
return Typ[Complex128]
case UntypedFloat:
return Typ[UntypedComplex]
}
}
return nil
}
resTyp := check.applyTypeFunc(f, x.typ)
if resTyp == nil {
check.invalidArgf(x, "arguments have type %s, expected floating-point", x.typ)
return
}
// if both arguments are constants, the result is a constant
if x.mode == constant_ && y.mode == constant_ {
x.val = constant.BinaryOp(constant.ToFloat(x.val), token.ADD, constant.MakeImag(constant.ToFloat(y.val)))
} else {
x.mode = value
}
if check.Types != nil && x.mode != constant_ {
check.recordBuiltinType(call.Fun, makeSig(resTyp, x.typ, x.typ))
}
x.typ = resTyp
case _Copy:
// copy(x, y []T) int
var dst Type
if t := asSlice(x.typ); t != nil {
dst = t.elem
}
var y operand
arg(&y, 1)
if y.mode == invalid {
return
}
var src Type
switch t := optype(y.typ).(type) {
case *Basic:
if isString(y.typ) {
src = universeByte
}
case *Slice:
src = t.elem
}
if dst == nil || src == nil {
check.invalidArgf(x, "copy expects slice arguments; found %s and %s", x, &y)
return
}
if !check.identical(dst, src) {
check.invalidArgf(x, "arguments to copy %s and %s have different element types %s and %s", x, &y, dst, src)
return
}
if check.Types != nil {
check.recordBuiltinType(call.Fun, makeSig(Typ[Int], x.typ, y.typ))
}
x.mode = value
x.typ = Typ[Int]
case _Delete:
// delete(m, k)
m := asMap(x.typ)
if m == nil {
check.invalidArgf(x, "%s is not a map", x)
return
}
arg(x, 1) // k
if x.mode == invalid {
return
}
check.assignment(x, m.key, "argument to delete")
if x.mode == invalid {
return
}
x.mode = novalue
if check.Types != nil {
check.recordBuiltinType(call.Fun, makeSig(nil, m, m.key))
}
case _Imag, _Real:
// imag(complexT) floatT
// real(complexT) floatT
// convert or check untyped argument
if isUntyped(x.typ) {
if x.mode == constant_ {
// an untyped constant number can always be considered
// as a complex constant
if isNumeric(x.typ) {
x.typ = Typ[UntypedComplex]
}
} else {
// an untyped non-constant argument may appear if
// it contains a (yet untyped non-constant) shift
// expression: convert it to complex128 which will
// result in an error (shift of complex value)
check.convertUntyped(x, Typ[Complex128])
// x should be invalid now, but be conservative and check
if x.mode == invalid {
return
}
}
}
// the argument must be of complex type
f := func(x Type) Type {
if t := asBasic(x); t != nil {
switch t.kind {
case Complex64:
return Typ[Float32]
case Complex128:
return Typ[Float64]
case UntypedComplex:
return Typ[UntypedFloat]
}
}
return nil
}
resTyp := check.applyTypeFunc(f, x.typ)
if resTyp == nil {
check.invalidArgf(x, "argument has type %s, expected complex type", x.typ)
return
}
// if the argument is a constant, the result is a constant
if x.mode == constant_ {
if id == _Real {
x.val = constant.Real(x.val)
} else {
x.val = constant.Imag(x.val)
}
} else {
x.mode = value
}
if check.Types != nil && x.mode != constant_ {
check.recordBuiltinType(call.Fun, makeSig(resTyp, x.typ))
}
x.typ = resTyp
case _Make:
// make(T, n)
// make(T, n, m)
// (no argument evaluated yet)
arg0 := call.ArgList[0]
T := check.varType(arg0)
if T == Typ[Invalid] {
return
}
min, max := -1, 10
var valid func(t Type) bool
valid = func(t Type) bool {
var m int
switch t := optype(t).(type) {
case *Slice:
m = 2
case *Map, *Chan:
m = 1
case *Sum:
return t.is(valid)
default:
return false
}
if m > min {
min = m
}
if m+1 < max {
max = m + 1
}
return true
}
if !valid(T) {
check.invalidArgf(arg0, "cannot make %s; type must be slice, map, or channel", arg0)
return
}
if nargs < min || max < nargs {
if min == max {
check.errorf(call, "%v expects %d arguments; found %d", call, min, nargs)
} else {
check.errorf(call, "%v expects %d or %d arguments; found %d", call, min, max, nargs)
}
return
}
types := []Type{T}
var sizes []int64 // constant integer arguments, if any
for _, arg := range call.ArgList[1:] {
typ, size := check.index(arg, -1) // ok to continue with typ == Typ[Invalid]
types = append(types, typ)
if size >= 0 {
sizes = append(sizes, size)
}
}
if len(sizes) == 2 && sizes[0] > sizes[1] {
check.invalidArgf(call.ArgList[1], "length and capacity swapped")
// safe to continue
}
x.mode = value
x.typ = T
if check.Types != nil {
check.recordBuiltinType(call.Fun, makeSig(x.typ, types...))
}
case _New:
// new(T)
// (no argument evaluated yet)
T := check.varType(call.ArgList[0])
if T == Typ[Invalid] {
return
}
x.mode = value
x.typ = &Pointer{base: T}
if check.Types != nil {
check.recordBuiltinType(call.Fun, makeSig(x.typ, T))
}
case _Panic:
// panic(x)
// record panic call if inside a function with result parameters
// (for use in Checker.isTerminating)
if check.sig != nil && check.sig.results.Len() > 0 {
// function has result parameters
p := check.isPanic
if p == nil {
// allocate lazily
p = make(map[*syntax.CallExpr]bool)
check.isPanic = p
}
p[call] = true
}
check.assignment(x, &emptyInterface, "argument to panic")
if x.mode == invalid {
return
}
x.mode = novalue
if check.Types != nil {
check.recordBuiltinType(call.Fun, makeSig(nil, &emptyInterface))
}
case _Print, _Println:
// print(x, y, ...)
// println(x, y, ...)
var params []Type
if nargs > 0 {
params = make([]Type, nargs)
for i := 0; i < nargs; i++ {
if i > 0 {
arg(x, i) // first argument already evaluated
}
check.assignment(x, nil, "argument to "+predeclaredFuncs[id].name)
if x.mode == invalid {
// TODO(gri) "use" all arguments?
return
}
params[i] = x.typ
}
}
x.mode = novalue
if check.Types != nil {
check.recordBuiltinType(call.Fun, makeSig(nil, params...))
}
case _Recover:
// recover() interface{}
x.mode = value
x.typ = &emptyInterface
if check.Types != nil {
check.recordBuiltinType(call.Fun, makeSig(x.typ))
}
case _Alignof:
// unsafe.Alignof(x T) uintptr
if asTypeParam(x.typ) != nil {
check.invalidOpf(call, "unsafe.Alignof undefined for %s", x)
return
}
check.assignment(x, nil, "argument to unsafe.Alignof")
if x.mode == invalid {
return
}
x.mode = constant_
x.val = constant.MakeInt64(check.conf.alignof(x.typ))
x.typ = Typ[Uintptr]
// result is constant - no need to record signature
case _Offsetof:
// unsafe.Offsetof(x T) uintptr, where x must be a selector
// (no argument evaluated yet)
arg0 := call.ArgList[0]
selx, _ := unparen(arg0).(*syntax.SelectorExpr)
if selx == nil {
check.invalidArgf(arg0, "%s is not a selector expression", arg0)
check.use(arg0)
return
}
check.expr(x, selx.X)
if x.mode == invalid {
return
}
base := derefStructPtr(x.typ)
sel := selx.Sel.Value
obj, index, indirect := check.lookupFieldOrMethod(base, false, check.pkg, sel)
switch obj.(type) {
case nil:
check.invalidArgf(x, "%s has no single field %s", base, sel)
return
case *Func:
// TODO(gri) Using derefStructPtr may result in methods being found
// that don't actually exist. An error either way, but the error
// message is confusing. See: https://play.golang.org/p/al75v23kUy ,
// but go/types reports: "invalid argument: x.m is a method value".
check.invalidArgf(arg0, "%s is a method value", arg0)
return
}
if indirect {
check.invalidArgf(x, "field %s is embedded via a pointer in %s", sel, base)
return
}
// TODO(gri) Should we pass x.typ instead of base (and indirect report if derefStructPtr indirected)?
check.recordSelection(selx, FieldVal, base, obj, index, false)
offs := check.conf.offsetof(base, index)
x.mode = constant_
x.val = constant.MakeInt64(offs)
x.typ = Typ[Uintptr]
// result is constant - no need to record signature
case _Sizeof:
// unsafe.Sizeof(x T) uintptr
if asTypeParam(x.typ) != nil {
check.invalidOpf(call, "unsafe.Sizeof undefined for %s", x)
return
}
check.assignment(x, nil, "argument to unsafe.Sizeof")
if x.mode == invalid {
return
}
x.mode = constant_
x.val = constant.MakeInt64(check.conf.sizeof(x.typ))
x.typ = Typ[Uintptr]
// result is constant - no need to record signature
case _Assert:
// assert(pred) causes a typechecker error if pred is false.
// The result of assert is the value of pred if there is no error.
// Note: assert is only available in self-test mode.
if x.mode != constant_ || !isBoolean(x.typ) {
check.invalidArgf(x, "%s is not a boolean constant", x)
return
}
if x.val.Kind() != constant.Bool {
check.errorf(x, "internal error: value of %s should be a boolean constant", x)
return
}
if !constant.BoolVal(x.val) {
check.errorf(call, "%v failed", call)
// compile-time assertion failure - safe to continue
}
// result is constant - no need to record signature
case _Trace:
// trace(x, y, z, ...) dumps the positions, expressions, and
// values of its arguments. The result of trace is the value
// of the first argument.
// Note: trace is only available in self-test mode.
// (no argument evaluated yet)
if nargs == 0 {
check.dump("%v: trace() without arguments", posFor(call))
x.mode = novalue
break
}
var t operand
x1 := x
for _, arg := range call.ArgList {
check.rawExpr(x1, arg, nil) // permit trace for types, e.g.: new(trace(T))
check.dump("%v: %s", posFor(x1), x1)
x1 = &t // use incoming x only for first argument
}
// trace is only available in test mode - no need to record signature
default:
unreachable()
}
return true
}
// applyTypeFunc applies f to x. If x is a type parameter,
// the result is a type parameter constrained by an new
// interface bound. The type bounds for that interface
// are computed by applying f to each of the type bounds
// of x. If any of these applications of f return nil,
// applyTypeFunc returns nil.
// If x is not a type parameter, the result is f(x).
func (check *Checker) applyTypeFunc(f func(Type) Type, x Type) Type {
if tp := asTypeParam(x); tp != nil {
// Test if t satisfies the requirements for the argument
// type and collect possible result types at the same time.
var rtypes []Type
if !tp.Bound().is(func(x Type) bool {
if r := f(x); r != nil {
rtypes = append(rtypes, r)
return true
}
return false
}) {
return nil
}
// TODO(gri) Would it be ok to return just the one type
// if len(rtypes) == 1? What about top-level
// uses of real() where the result is used to
// define type and initialize a variable?
// construct a suitable new type parameter
tpar := NewTypeName(nopos, nil /* = Universe pkg */, "<type parameter>", nil)
ptyp := check.NewTypeParam(tpar, 0, &emptyInterface) // assigns type to tpar as a side-effect
tsum := NewSum(rtypes)
ptyp.bound = &Interface{types: tsum, allMethods: markComplete, allTypes: tsum}
return ptyp
}
return f(x)
}
// makeSig makes a signature for the given argument and result types.
// Default types are used for untyped arguments, and res may be nil.
func makeSig(res Type, args ...Type) *Signature {
list := make([]*Var, len(args))
for i, param := range args {
list[i] = NewVar(nopos, nil, "", Default(param))
}
params := NewTuple(list...)
var result *Tuple
if res != nil {
assert(!isUntyped(res))
result = NewTuple(NewVar(nopos, nil, "", res))
}
return &Signature{params: params, results: result}
}
// implicitArrayDeref returns A if typ is of the form *A and A is an array;
// otherwise it returns typ.
//
func implicitArrayDeref(typ Type) Type {
if p, ok := typ.(*Pointer); ok {
if a := asArray(p.base); a != nil {
return a
}
}
return typ
}
// unparen returns e with any enclosing parentheses stripped.
func unparen(e syntax.Expr) syntax.Expr {
for {
p, ok := e.(*syntax.ParenExpr)
if !ok {
return e
}
e = p.X
}
}

View File

@ -0,0 +1,218 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types2_test
import (
"cmd/compile/internal/syntax"
"fmt"
"testing"
. "cmd/compile/internal/types2"
)
var builtinCalls = []struct {
name, src, sig string
}{
{"append", `var s []int; _ = append(s)`, `func([]int, ...int) []int`},
{"append", `var s []int; _ = append(s, 0)`, `func([]int, ...int) []int`},
{"append", `var s []int; _ = (append)(s, 0)`, `func([]int, ...int) []int`},
{"append", `var s []byte; _ = ((append))(s, 0)`, `func([]byte, ...byte) []byte`},
{"append", `var s []byte; _ = append(s, "foo"...)`, `func([]byte, string...) []byte`},
{"append", `type T []byte; var s T; var str string; _ = append(s, str...)`, `func(p.T, string...) p.T`},
{"append", `type T []byte; type U string; var s T; var str U; _ = append(s, str...)`, `func(p.T, p.U...) p.T`},
{"cap", `var s [10]int; _ = cap(s)`, `invalid type`}, // constant
{"cap", `var s [10]int; _ = cap(&s)`, `invalid type`}, // constant
{"cap", `var s []int64; _ = cap(s)`, `func([]int64) int`},
{"cap", `var c chan<-bool; _ = cap(c)`, `func(chan<- bool) int`},
{"len", `_ = len("foo")`, `invalid type`}, // constant
{"len", `var s string; _ = len(s)`, `func(string) int`},
{"len", `var s [10]int; _ = len(s)`, `invalid type`}, // constant
{"len", `var s [10]int; _ = len(&s)`, `invalid type`}, // constant
{"len", `var s []int64; _ = len(s)`, `func([]int64) int`},
{"len", `var c chan<-bool; _ = len(c)`, `func(chan<- bool) int`},
{"len", `var m map[string]float32; _ = len(m)`, `func(map[string]float32) int`},
{"close", `var c chan int; close(c)`, `func(chan int)`},
{"close", `var c chan<- chan string; close(c)`, `func(chan<- chan string)`},
{"complex", `_ = complex(1, 0)`, `invalid type`}, // constant
{"complex", `var re float32; _ = complex(re, 1.0)`, `func(float32, float32) complex64`},
{"complex", `var im float64; _ = complex(1, im)`, `func(float64, float64) complex128`},
{"complex", `type F32 float32; var re, im F32; _ = complex(re, im)`, `func(p.F32, p.F32) complex64`},
{"complex", `type F64 float64; var re, im F64; _ = complex(re, im)`, `func(p.F64, p.F64) complex128`},
{"copy", `var src, dst []byte; copy(dst, src)`, `func([]byte, []byte) int`},
{"copy", `type T [][]int; var src, dst T; _ = copy(dst, src)`, `func(p.T, p.T) int`},
{"copy", `var src string; var dst []byte; copy(dst, src)`, `func([]byte, string) int`},
{"copy", `type T string; type U []byte; var src T; var dst U; copy(dst, src)`, `func(p.U, p.T) int`},
{"copy", `var dst []byte; copy(dst, "hello")`, `func([]byte, string) int`},
{"delete", `var m map[string]bool; delete(m, "foo")`, `func(map[string]bool, string)`},
{"delete", `type (K string; V int); var m map[K]V; delete(m, "foo")`, `func(map[p.K]p.V, p.K)`},
{"imag", `_ = imag(1i)`, `invalid type`}, // constant
{"imag", `var c complex64; _ = imag(c)`, `func(complex64) float32`},
{"imag", `var c complex128; _ = imag(c)`, `func(complex128) float64`},
{"imag", `type C64 complex64; var c C64; _ = imag(c)`, `func(p.C64) float32`},
{"imag", `type C128 complex128; var c C128; _ = imag(c)`, `func(p.C128) float64`},
{"real", `_ = real(1i)`, `invalid type`}, // constant
{"real", `var c complex64; _ = real(c)`, `func(complex64) float32`},
{"real", `var c complex128; _ = real(c)`, `func(complex128) float64`},
{"real", `type C64 complex64; var c C64; _ = real(c)`, `func(p.C64) float32`},
{"real", `type C128 complex128; var c C128; _ = real(c)`, `func(p.C128) float64`},
{"make", `_ = make([]int, 10)`, `func([]int, int) []int`},
{"make", `type T []byte; _ = make(T, 10, 20)`, `func(p.T, int, int) p.T`},
// issue #37349
{"make", ` _ = make([]int, 0 )`, `func([]int, int) []int`},
{"make", `var l int; _ = make([]int, l )`, `func([]int, int) []int`},
{"make", ` _ = make([]int, 0, 0)`, `func([]int, int, int) []int`},
{"make", `var l int; _ = make([]int, l, 0)`, `func([]int, int, int) []int`},
{"make", `var c int; _ = make([]int, 0, c)`, `func([]int, int, int) []int`},
{"make", `var l, c int; _ = make([]int, l, c)`, `func([]int, int, int) []int`},
// issue #37393
{"make", ` _ = make([]int , 0 )`, `func([]int, int) []int`},
{"make", `var l byte ; _ = make([]int8 , l )`, `func([]int8, byte) []int8`},
{"make", ` _ = make([]int16 , 0, 0)`, `func([]int16, int, int) []int16`},
{"make", `var l int16; _ = make([]string , l, 0)`, `func([]string, int16, int) []string`},
{"make", `var c int32; _ = make([]float64 , 0, c)`, `func([]float64, int, int32) []float64`},
{"make", `var l, c uint ; _ = make([]complex128, l, c)`, `func([]complex128, uint, uint) []complex128`},
{"new", `_ = new(int)`, `func(int) *int`},
{"new", `type T struct{}; _ = new(T)`, `func(p.T) *p.T`},
{"panic", `panic(0)`, `func(interface{})`},
{"panic", `panic("foo")`, `func(interface{})`},
{"print", `print()`, `func()`},
{"print", `print(0)`, `func(int)`},
{"print", `print(1, 2.0, "foo", true)`, `func(int, float64, string, bool)`},
{"println", `println()`, `func()`},
{"println", `println(0)`, `func(int)`},
{"println", `println(1, 2.0, "foo", true)`, `func(int, float64, string, bool)`},
{"recover", `recover()`, `func() interface{}`},
{"recover", `_ = recover()`, `func() interface{}`},
{"Alignof", `_ = unsafe.Alignof(0)`, `invalid type`}, // constant
{"Alignof", `var x struct{}; _ = unsafe.Alignof(x)`, `invalid type`}, // constant
{"Offsetof", `var x struct{f bool}; _ = unsafe.Offsetof(x.f)`, `invalid type`}, // constant
{"Offsetof", `var x struct{_ int; f bool}; _ = unsafe.Offsetof((&x).f)`, `invalid type`}, // constant
{"Sizeof", `_ = unsafe.Sizeof(0)`, `invalid type`}, // constant
{"Sizeof", `var x struct{}; _ = unsafe.Sizeof(x)`, `invalid type`}, // constant
{"assert", `assert(true)`, `invalid type`}, // constant
{"assert", `type B bool; const pred B = 1 < 2; assert(pred)`, `invalid type`}, // constant
// no tests for trace since it produces output as a side-effect
}
func TestBuiltinSignatures(t *testing.T) {
DefPredeclaredTestFuncs()
seen := map[string]bool{"trace": true} // no test for trace built-in; add it manually
for _, call := range builtinCalls {
testBuiltinSignature(t, call.name, call.src, call.sig)
seen[call.name] = true
}
// make sure we didn't miss one
for _, name := range Universe.Names() {
if _, ok := Universe.Lookup(name).(*Builtin); ok && !seen[name] {
t.Errorf("missing test for %s", name)
}
}
for _, name := range Unsafe.Scope().Names() {
if _, ok := Unsafe.Scope().Lookup(name).(*Builtin); ok && !seen[name] {
t.Errorf("missing test for unsafe.%s", name)
}
}
}
func testBuiltinSignature(t *testing.T, name, src0, want string) {
src := fmt.Sprintf(`package p; import "unsafe"; type _ unsafe.Pointer /* use unsafe */; func _() { %s }`, src0)
f, err := parseSrc("", src)
if err != nil {
t.Errorf("%s: %s", src0, err)
return
}
conf := Config{Importer: defaultImporter()}
uses := make(map[*syntax.Name]Object)
types := make(map[syntax.Expr]TypeAndValue)
_, err = conf.Check(f.PkgName.Value, []*syntax.File{f}, &Info{Uses: uses, Types: types})
if err != nil {
t.Errorf("%s: %s", src0, err)
return
}
// find called function
n := 0
var fun syntax.Expr
for x := range types {
if call, _ := x.(*syntax.CallExpr); call != nil {
fun = call.Fun
n++
}
}
if n != 1 {
t.Errorf("%s: got %d CallExprs; want 1", src0, n)
return
}
// check recorded types for fun and descendents (may be parenthesized)
for {
// the recorded type for the built-in must match the wanted signature
typ := types[fun].Type
if typ == nil {
t.Errorf("%s: no type recorded for %s", src0, syntax.String(fun))
return
}
if got := typ.String(); got != want {
t.Errorf("%s: got type %s; want %s", src0, got, want)
return
}
// called function must be a (possibly parenthesized, qualified)
// identifier denoting the expected built-in
switch p := fun.(type) {
case *syntax.Name:
obj := uses[p]
if obj == nil {
t.Errorf("%s: no object found for %s", src0, p.Value)
return
}
bin, _ := obj.(*Builtin)
if bin == nil {
t.Errorf("%s: %s does not denote a built-in", src0, p.Value)
return
}
if bin.Name() != name {
t.Errorf("%s: got built-in %s; want %s", src0, bin.Name(), name)
return
}
return // we're done
case *syntax.ParenExpr:
fun = p.X // unpack
case *syntax.SelectorExpr:
// built-in from package unsafe - ignore details
return // we're done
default:
t.Errorf("%s: invalid function call", src0)
return
}
}
}

View File

@ -0,0 +1,770 @@
// UNREVIEWED
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements typechecking of call and selector expressions.
package types2
import (
"cmd/compile/internal/syntax"
"strings"
"unicode"
)
// funcInst type-checks a function instantiaton inst and returns the result in x.
// The operand x must be the evaluation of inst.X and its type must be a signature.
func (check *Checker) funcInst(x *operand, inst *syntax.IndexExpr) {
args, ok := check.exprOrTypeList(unpackExpr(inst.Index))
if !ok {
x.mode = invalid
x.expr = inst
return
}
if len(args) > 0 && args[0].mode != typexpr {
check.errorf(args[0], "%s is not a type", args[0])
ok = false
}
// check number of type arguments
n := len(args)
sig := x.typ.(*Signature)
if !check.conf.InferFromConstraints && n != len(sig.tparams) || n > len(sig.tparams) {
check.errorf(args[n-1], "got %d type arguments but want %d", n, len(sig.tparams))
x.mode = invalid
x.expr = inst
return
}
// collect types
targs := make([]Type, n)
poslist := make([]syntax.Pos, n)
for i, a := range args {
if a.mode != typexpr {
// error was reported earlier
x.mode = invalid
x.expr = inst
return
}
targs[i] = a.typ
poslist[i] = a.Pos()
}
// if we don't have enough type arguments, use constraint type inference
var inferred bool
if n < len(sig.tparams) {
var failed int
targs, failed = check.inferB(sig.tparams, targs)
if targs == nil {
// error was already reported
x.mode = invalid
x.expr = inst
return
}
if failed >= 0 {
// at least one type argument couldn't be inferred
assert(targs[failed] == nil)
tpar := sig.tparams[failed]
check.errorf(inst, "cannot infer %s (%s) (%s)", tpar.name, tpar.pos, targs)
x.mode = invalid
x.expr = inst
return
}
// all type arguments were inferred sucessfully
if debug {
for _, targ := range targs {
assert(targ != nil)
}
}
n = len(targs)
inferred = true
}
assert(n == len(sig.tparams))
// instantiate function signature
for i, typ := range targs {
// some positions may be missing if types are inferred
var pos syntax.Pos
if i < len(poslist) {
pos = poslist[i]
}
check.ordinaryType(pos, typ)
}
res := check.instantiate(x.Pos(), sig, targs, poslist).(*Signature)
assert(res.tparams == nil) // signature is not generic anymore
if inferred {
check.recordInferred(inst, targs, res)
}
x.typ = res
x.mode = value
x.expr = inst
}
func (check *Checker) call(x *operand, call *syntax.CallExpr) exprKind {
check.exprOrType(x, call.Fun)
switch x.mode {
case invalid:
check.use(call.ArgList...)
x.expr = call
return statement
case typexpr:
// conversion
T := x.typ
x.mode = invalid
switch n := len(call.ArgList); n {
case 0:
check.errorf(call, "missing argument in conversion to %s", T)
case 1:
check.expr(x, call.ArgList[0])
if x.mode != invalid {
if t := asInterface(T); t != nil {
check.completeInterface(nopos, t)
if t.IsConstraint() {
check.errorf(call, "cannot use interface %s in conversion (contains type list or is comparable)", T)
break
}
}
if call.HasDots {
check.errorf(call.ArgList[0], "invalid use of ... in type conversion to %s", T)
break
}
check.conversion(x, T)
}
default:
check.use(call.ArgList...)
check.errorf(call.ArgList[n-1], "too many arguments in conversion to %s", T)
}
x.expr = call
return conversion
case builtin:
id := x.id
if !check.builtin(x, call, id) {
x.mode = invalid
}
x.expr = call
// a non-constant result implies a function call
if x.mode != invalid && x.mode != constant_ {
check.hasCallOrRecv = true
}
return predeclaredFuncs[id].kind
default:
// function/method call
cgocall := x.mode == cgofunc
sig := asSignature(x.typ)
if sig == nil {
check.invalidOpf(x, "cannot call non-function %s", x)
x.mode = invalid
x.expr = call
return statement
}
// evaluate arguments
args, ok := check.exprOrTypeList(call.ArgList)
if !ok {
x.mode = invalid
x.expr = call
return expression
}
sig = check.arguments(call, sig, args)
// determine result
switch sig.results.Len() {
case 0:
x.mode = novalue
case 1:
if cgocall {
x.mode = commaerr
} else {
x.mode = value
}
x.typ = sig.results.vars[0].typ // unpack tuple
default:
x.mode = value
x.typ = sig.results
}
x.expr = call
check.hasCallOrRecv = true
// if type inference failed, a parametrized result must be invalidated
// (operands cannot have a parametrized type)
if x.mode == value && len(sig.tparams) > 0 && isParameterized(sig.tparams, x.typ) {
x.mode = invalid
}
return statement
}
}
// exprOrTypeList returns a list of operands and reports an error if the
// list contains a mix of values and types (ignoring invalid operands).
// TODO(gri) Now we can split this into exprList and typeList.
func (check *Checker) exprOrTypeList(elist []syntax.Expr) (xlist []*operand, ok bool) {
ok = true
switch len(elist) {
case 0:
// nothing to do
case 1:
// single (possibly comma-ok) value or type, or function returning multiple values
e := elist[0]
var x operand
check.multiExprOrType(&x, e)
if t, ok := x.typ.(*Tuple); ok && x.mode != invalid && x.mode != typexpr {
// multiple values
xlist = make([]*operand, t.Len())
for i, v := range t.vars {
xlist[i] = &operand{mode: value, expr: e, typ: v.typ}
}
break
}
check.instantiatedOperand(&x)
// exactly one (possibly invalid or comma-ok) value or type
xlist = []*operand{&x}
default:
// multiple (possibly invalid) values or types
xlist = make([]*operand, len(elist))
ntypes := 0
for i, e := range elist {
var x operand
check.exprOrType(&x, e)
xlist[i] = &x
switch x.mode {
case invalid:
ntypes = len(xlist) // make 'if' condition fail below (no additional error in this case)
case typexpr:
ntypes++
check.instantiatedOperand(&x)
}
}
if 0 < ntypes && ntypes < len(xlist) {
check.errorf(xlist[0], "mix of value and type expressions")
ok = false
}
}
return
}
func (check *Checker) exprList(elist []syntax.Expr, allowCommaOk bool) (xlist []*operand, commaOk bool) {
switch len(elist) {
case 0:
// nothing to do
case 1:
// single (possibly comma-ok) value, or function returning multiple values
e := elist[0]
var x operand
check.multiExpr(&x, e)
if t, ok := x.typ.(*Tuple); ok && x.mode != invalid {
// multiple values
xlist = make([]*operand, t.Len())
for i, v := range t.vars {
xlist[i] = &operand{mode: value, expr: e, typ: v.typ}
}
break
}
// exactly one (possibly invalid or comma-ok) value
xlist = []*operand{&x}
if allowCommaOk && (x.mode == mapindex || x.mode == commaok || x.mode == commaerr) {
x.mode = value
xlist = append(xlist, &operand{mode: value, expr: e, typ: Typ[UntypedBool]})
commaOk = true
}
default:
// multiple (possibly invalid) values
xlist = make([]*operand, len(elist))
for i, e := range elist {
var x operand
check.expr(&x, e)
xlist[i] = &x
}
}
return
}
func (check *Checker) arguments(call *syntax.CallExpr, sig *Signature, args []*operand) (rsig *Signature) {
rsig = sig
// TODO(gri) try to eliminate this extra verification loop
for _, a := range args {
switch a.mode {
case typexpr:
check.errorf(a, "%s used as value", a)
return
case invalid:
return
}
}
// Function call argument/parameter count requirements
//
// | standard call | dotdotdot call |
// --------------+------------------+----------------+
// standard func | nargs == npars | invalid |
// --------------+------------------+----------------+
// variadic func | nargs >= npars-1 | nargs == npars |
// --------------+------------------+----------------+
nargs := len(args)
npars := sig.params.Len()
ddd := call.HasDots
// set up parameters
sig_params := sig.params // adjusted for variadic functions (may be nil for empty parameter lists!)
adjusted := false // indicates if sig_params is different from t.params
if sig.variadic {
if ddd {
// variadic_func(a, b, c...)
if len(call.ArgList) == 1 && nargs > 1 {
// f()... is not permitted if f() is multi-valued
//check.errorf(call.Ellipsis, "cannot use ... with %d-valued %s", nargs, call.ArgList[0])
check.errorf(call, "cannot use ... with %d-valued %s", nargs, call.ArgList[0])
return
}
} else {
// variadic_func(a, b, c)
if nargs >= npars-1 {
// Create custom parameters for arguments: keep
// the first npars-1 parameters and add one for
// each argument mapping to the ... parameter.
vars := make([]*Var, npars-1) // npars > 0 for variadic functions
copy(vars, sig.params.vars)
last := sig.params.vars[npars-1]
typ := last.typ.(*Slice).elem
for len(vars) < nargs {
vars = append(vars, NewParam(last.pos, last.pkg, last.name, typ))
}
sig_params = NewTuple(vars...) // possibly nil!
adjusted = true
npars = nargs
} else {
// nargs < npars-1
npars-- // for correct error message below
}
}
} else {
if ddd {
// standard_func(a, b, c...)
//check.errorf(call.Ellipsis, "cannot use ... in call to non-variadic %s", call.Fun)
check.errorf(call, "cannot use ... in call to non-variadic %s", call.Fun)
return
}
// standard_func(a, b, c)
}
// check argument count
switch {
case nargs < npars:
check.errorf(call, "not enough arguments in call to %s", call.Fun)
return
case nargs > npars:
check.errorf(args[npars], "too many arguments in call to %s", call.Fun) // report at first extra argument
return
}
// infer type arguments and instantiate signature if necessary
if len(sig.tparams) > 0 {
// TODO(gri) provide position information for targs so we can feed
// it to the instantiate call for better error reporting
targs, failed := check.infer(sig.tparams, sig_params, args)
if targs == nil {
return // error already reported
}
if failed >= 0 {
// Some type arguments couldn't be inferred. Use
// bounds type inference to try to make progress.
if check.conf.InferFromConstraints {
targs, failed = check.inferB(sig.tparams, targs)
if targs == nil {
return // error already reported
}
}
if failed >= 0 {
// at least one type argument couldn't be inferred
assert(targs[failed] == nil)
tpar := sig.tparams[failed]
// TODO(gri) here we'd like to use the position of the call's ')'
check.errorf(call.Pos(), "cannot infer %s (%s) (%s)", tpar.name, tpar.pos, targs)
return
}
}
// all type arguments were inferred sucessfully
if debug {
for _, targ := range targs {
assert(targ != nil)
}
}
//check.dump("### inferred targs = %s", targs)
// compute result signature
rsig = check.instantiate(call.Pos(), sig, targs, nil).(*Signature)
assert(rsig.tparams == nil) // signature is not generic anymore
check.recordInferred(call, targs, rsig)
// Optimization: Only if the parameter list was adjusted do we
// need to compute it from the adjusted list; otherwise we can
// simply use the result signature's parameter list.
if adjusted {
sig_params = check.subst(call.Pos(), sig_params, makeSubstMap(sig.tparams, targs)).(*Tuple)
} else {
sig_params = rsig.params
}
}
// check arguments
for i, a := range args {
check.assignment(a, sig_params.vars[i].typ, "argument")
}
return
}
var cgoPrefixes = [...]string{
"_Ciconst_",
"_Cfconst_",
"_Csconst_",
"_Ctype_",
"_Cvar_", // actually a pointer to the var
"_Cfpvar_fp_",
"_Cfunc_",
"_Cmacro_", // function to evaluate the expanded expression
}
func (check *Checker) selector(x *operand, e *syntax.SelectorExpr) {
// these must be declared before the "goto Error" statements
var (
obj Object
index []int
indirect bool
)
sel := e.Sel.Value
// If the identifier refers to a package, handle everything here
// so we don't need a "package" mode for operands: package names
// can only appear in qualified identifiers which are mapped to
// selector expressions.
if ident, ok := e.X.(*syntax.Name); ok {
obj := check.lookup(ident.Value)
if pname, _ := obj.(*PkgName); pname != nil {
assert(pname.pkg == check.pkg)
check.recordUse(ident, pname)
pname.used = true
pkg := pname.imported
var exp Object
funcMode := value
if pkg.cgo {
// cgo special cases C.malloc: it's
// rewritten to _CMalloc and does not
// support two-result calls.
if sel == "malloc" {
sel = "_CMalloc"
} else {
funcMode = cgofunc
}
for _, prefix := range cgoPrefixes {
// cgo objects are part of the current package (in file
// _cgo_gotypes.go). Use regular lookup.
_, exp = check.scope.LookupParent(prefix+sel, check.pos)
if exp != nil {
break
}
}
if exp == nil {
check.errorf(e.Sel, "%s not declared by package C", sel)
goto Error
}
check.objDecl(exp, nil)
} else {
exp = pkg.scope.Lookup(sel)
if exp == nil {
if !pkg.fake {
if check.conf.CompilerErrorMessages {
check.errorf(e.Sel, "undefined: %s.%s", pkg.name, sel)
} else {
check.errorf(e.Sel, "%s not declared by package %s", sel, pkg.name)
}
}
goto Error
}
if !exp.Exported() {
check.errorf(e.Sel, "%s not exported by package %s", sel, pkg.name)
// ok to continue
}
}
check.recordUse(e.Sel, exp)
// Simplified version of the code for *syntax.Names:
// - imported objects are always fully initialized
switch exp := exp.(type) {
case *Const:
assert(exp.Val() != nil)
x.mode = constant_
x.typ = exp.typ
x.val = exp.val
case *TypeName:
x.mode = typexpr
x.typ = exp.typ
case *Var:
x.mode = variable
x.typ = exp.typ
if pkg.cgo && strings.HasPrefix(exp.name, "_Cvar_") {
x.typ = x.typ.(*Pointer).base
}
case *Func:
x.mode = funcMode
x.typ = exp.typ
if pkg.cgo && strings.HasPrefix(exp.name, "_Cmacro_") {
x.mode = value
x.typ = x.typ.(*Signature).results.vars[0].typ
}
case *Builtin:
x.mode = builtin
x.typ = exp.typ
x.id = exp.id
default:
check.dump("%v: unexpected object %v", posFor(e.Sel), exp)
unreachable()
}
x.expr = e
return
}
}
check.exprOrType(x, e.X)
if x.mode == invalid {
goto Error
}
check.instantiatedOperand(x)
obj, index, indirect = check.lookupFieldOrMethod(x.typ, x.mode == variable, check.pkg, sel)
if obj == nil {
switch {
case index != nil:
// TODO(gri) should provide actual type where the conflict happens
check.errorf(e.Sel, "ambiguous selector %s.%s", x.expr, sel)
case indirect:
check.errorf(e.Sel, "cannot call pointer method %s on %s", sel, x.typ)
default:
var why string
if tpar := asTypeParam(x.typ); tpar != nil {
// Type parameter bounds don't specify fields, so don't mention "field".
switch obj := tpar.Bound().obj.(type) {
case nil:
why = check.sprintf("type bound for %s has no method %s", x.typ, sel)
case *TypeName:
why = check.sprintf("interface %s has no method %s", obj.name, sel)
}
} else {
why = check.sprintf("type %s has no field or method %s", x.typ, sel)
}
// Check if capitalization of sel matters and provide better error message in that case.
if len(sel) > 0 {
var changeCase string
if r := rune(sel[0]); unicode.IsUpper(r) {
changeCase = string(unicode.ToLower(r)) + sel[1:]
} else {
changeCase = string(unicode.ToUpper(r)) + sel[1:]
}
if obj, _, _ = check.lookupFieldOrMethod(x.typ, x.mode == variable, check.pkg, changeCase); obj != nil {
why += ", but does have " + changeCase
}
}
check.errorf(e.Sel, "%s.%s undefined (%s)", x.expr, sel, why)
}
goto Error
}
// methods may not have a fully set up signature yet
if m, _ := obj.(*Func); m != nil {
// check.dump("### found method %s", m)
check.objDecl(m, nil)
// If m has a parameterized receiver type, infer the type parameter
// values from the actual receiver provided and then substitute the
// type parameters in the signature accordingly.
// TODO(gri) factor this code out
sig := m.typ.(*Signature)
if len(sig.rparams) > 0 {
//check.dump("### recv typ = %s", x.typ)
//check.dump("### method = %s rparams = %s tparams = %s", m, sig.rparams, sig.tparams)
// The method may have a pointer receiver, but the actually provided receiver
// may be a (hopefully addressable) non-pointer value, or vice versa. Here we
// only care about inferring receiver type parameters; to make the inference
// work, match up pointer-ness of receiver and argument.
arg := x
if ptrRecv := isPointer(sig.recv.typ); ptrRecv != isPointer(arg.typ) {
copy := *arg
if ptrRecv {
copy.typ = NewPointer(arg.typ)
} else {
copy.typ = arg.typ.(*Pointer).base
}
arg = &copy
}
targs, failed := check.infer(sig.rparams, NewTuple(sig.recv), []*operand{arg})
//check.dump("### inferred targs = %s", targs)
if failed >= 0 {
// We may reach here if there were other errors (see issue #40056).
// check.infer will report a follow-up error.
// TODO(gri) avoid the follow-up error or provide better explanation.
goto Error
}
// Don't modify m. Instead - for now - make a copy of m and use that instead.
// (If we modify m, some tests will fail; possibly because the m is in use.)
// TODO(gri) investigate and provide a correct explanation here
copy := *m
copy.typ = check.subst(e.Pos(), m.typ, makeSubstMap(sig.rparams, targs))
obj = &copy
}
// TODO(gri) we also need to do substitution for parameterized interface methods
// (this breaks code in testdata/linalg.go2 at the moment)
// 12/20/2019: Is this TODO still correct?
}
if x.mode == typexpr {
// method expression
m, _ := obj.(*Func)
if m == nil {
// TODO(gri) should check if capitalization of sel matters and provide better error message in that case
check.errorf(e.Sel, "%s.%s undefined (type %s has no method %s)", x.expr, sel, x.typ, sel)
goto Error
}
check.recordSelection(e, MethodExpr, x.typ, m, index, indirect)
// the receiver type becomes the type of the first function
// argument of the method expression's function type
var params []*Var
sig := m.typ.(*Signature)
if sig.params != nil {
params = sig.params.vars
}
x.mode = value
x.typ = &Signature{
tparams: sig.tparams,
params: NewTuple(append([]*Var{NewVar(nopos, check.pkg, "_", x.typ)}, params...)...),
results: sig.results,
variadic: sig.variadic,
}
check.addDeclDep(m)
} else {
// regular selector
switch obj := obj.(type) {
case *Var:
check.recordSelection(e, FieldVal, x.typ, obj, index, indirect)
if x.mode == variable || indirect {
x.mode = variable
} else {
x.mode = value
}
x.typ = obj.typ
case *Func:
// TODO(gri) If we needed to take into account the receiver's
// addressability, should we report the type &(x.typ) instead?
check.recordSelection(e, MethodVal, x.typ, obj, index, indirect)
x.mode = value
// remove receiver
sig := *obj.typ.(*Signature)
sig.recv = nil
x.typ = &sig
check.addDeclDep(obj)
default:
unreachable()
}
}
// everything went well
x.expr = e
return
Error:
x.mode = invalid
x.expr = e
}
// use type-checks each argument.
// Useful to make sure expressions are evaluated
// (and variables are "used") in the presence of other errors.
// The arguments may be nil.
// TODO(gri) make this accept a []syntax.Expr and use an unpack function when we have a ListExpr?
func (check *Checker) use(arg ...syntax.Expr) {
var x operand
for _, e := range arg {
// Certain AST fields may legally be nil (e.g., the ast.SliceExpr.High field).
if e == nil {
continue
}
if l, _ := e.(*syntax.ListExpr); l != nil {
check.use(l.ElemList...)
continue
}
check.rawExpr(&x, e, nil)
}
}
// useLHS is like use, but doesn't "use" top-level identifiers.
// It should be called instead of use if the arguments are
// expressions on the lhs of an assignment.
// The arguments must not be nil.
func (check *Checker) useLHS(arg ...syntax.Expr) {
var x operand
for _, e := range arg {
// If the lhs is an identifier denoting a variable v, this assignment
// is not a 'use' of v. Remember current value of v.used and restore
// after evaluating the lhs via check.rawExpr.
var v *Var
var v_used bool
if ident, _ := unparen(e).(*syntax.Name); ident != nil {
// never type-check the blank name on the lhs
if ident.Value == "_" {
continue
}
if _, obj := check.scope.LookupParent(ident.Value, nopos); obj != nil {
// It's ok to mark non-local variables, but ignore variables
// from other packages to avoid potential race conditions with
// dot-imported variables.
if w, _ := obj.(*Var); w != nil && w.pkg == check.pkg {
v = w
v_used = v.used
}
}
}
check.rawExpr(&x, e, nil)
if v != nil {
v.used = v_used // restore v.used
}
}
}
// instantiatedOperand reports an error of x is an uninstantiated (generic) type and sets x.typ to Typ[Invalid].
func (check *Checker) instantiatedOperand(x *operand) {
if x.mode == typexpr && isGeneric(x.typ) {
check.errorf(x, "cannot use generic type %s without instantiation", x.typ)
x.typ = Typ[Invalid]
}
}

View File

@ -0,0 +1,455 @@
// UNREVIEWED
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements the Check function, which drives type-checking.
package types2
import (
"cmd/compile/internal/syntax"
"errors"
"fmt"
"go/constant"
)
var nopos syntax.Pos
// debugging/development support
const debug = true // leave on during development
// If forceStrict is set, the type-checker enforces additional
// rules not specified by the Go 1 spec, but which will
// catch guaranteed run-time errors if the respective
// code is executed. In other words, programs passing in
// strict mode are Go 1 compliant, but not all Go 1 programs
// will pass in strict mode. The additional rules are:
//
// - A type assertion x.(T) where T is an interface type
// is invalid if any (statically known) method that exists
// for both x and T have different signatures.
//
const forceStrict = false
// If methodTypeParamsOk is set, type parameters are
// permitted in method declarations (in interfaces, too).
// Generalization and experimental feature.
const methodTypeParamsOk = true
// exprInfo stores information about an untyped expression.
type exprInfo struct {
isLhs bool // expression is lhs operand of a shift with delayed type-check
mode operandMode
typ *Basic
val constant.Value // constant value; or nil (if not a constant)
}
// A context represents the context within which an object is type-checked.
type context struct {
decl *declInfo // package-level declaration whose init expression/function body is checked
scope *Scope // top-most scope for lookups
pos syntax.Pos // if valid, identifiers are looked up as if at position pos (used by Eval)
iota constant.Value // value of iota in a constant declaration; nil otherwise
errpos syntax.Pos // if valid, identifier position of a constant with inherited initializer
sig *Signature // function signature if inside a function; nil otherwise
isPanic map[*syntax.CallExpr]bool // set of panic call expressions (used for termination check)
hasLabel bool // set if a function makes use of labels (only ~1% of functions); unused outside functions
hasCallOrRecv bool // set if an expression contains a function call or channel receive operation
}
// lookup looks up name in the current context and returns the matching object, or nil.
func (ctxt *context) lookup(name string) Object {
_, obj := ctxt.scope.LookupParent(name, ctxt.pos)
return obj
}
// An importKey identifies an imported package by import path and source directory
// (directory containing the file containing the import). In practice, the directory
// may always be the same, or may not matter. Given an (import path, directory), an
// importer must always return the same package (but given two different import paths,
// an importer may still return the same package by mapping them to the same package
// paths).
type importKey struct {
path, dir string
}
// A dotImportKey describes a dot-imported object in the given scope.
type dotImportKey struct {
scope *Scope
obj Object
}
// A Checker maintains the state of the type checker.
// It must be created with NewChecker.
type Checker struct {
// package information
// (initialized by NewChecker, valid for the life-time of checker)
conf *Config
pkg *Package
*Info
version version // accepted language version
nextId uint64 // unique Id for type parameters (first valid Id is 1)
objMap map[Object]*declInfo // maps package-level objects and (non-interface) methods to declaration info
impMap map[importKey]*Package // maps (import path, source directory) to (complete or fake) package
posMap map[*Interface][]syntax.Pos // maps interface types to lists of embedded interface positions
typMap map[string]*Named // maps an instantiated named type hash to a *Named type
pkgCnt map[string]int // counts number of imported packages with a given name (for better error messages)
// information collected during type-checking of a set of package files
// (initialized by Files, valid only for the duration of check.Files;
// maps and lists are allocated on demand)
files []*syntax.File // list of package files
imports []*PkgName // list of imported packages
dotImportMap map[dotImportKey]*PkgName // maps dot-imported objects to the package they were dot-imported through
firstErr error // first error encountered
methods map[*TypeName][]*Func // maps package scope type names to associated non-blank (non-interface) methods
untyped map[syntax.Expr]exprInfo // map of expressions without final type
delayed []func() // stack of delayed action segments; segments are processed in FIFO order
finals []func() // list of final actions; processed at the end of type-checking the current set of files
objPath []Object // path of object dependencies during type inference (for cycle reporting)
// context within which the current object is type-checked
// (valid only for the duration of type-checking a specific object)
context
// debugging
indent int // indentation for tracing
}
// addDeclDep adds the dependency edge (check.decl -> to) if check.decl exists
func (check *Checker) addDeclDep(to Object) {
from := check.decl
if from == nil {
return // not in a package-level init expression
}
if _, found := check.objMap[to]; !found {
return // to is not a package-level object
}
from.addDep(to)
}
func (check *Checker) rememberUntyped(e syntax.Expr, lhs bool, mode operandMode, typ *Basic, val constant.Value) {
m := check.untyped
if m == nil {
m = make(map[syntax.Expr]exprInfo)
check.untyped = m
}
m[e] = exprInfo{lhs, mode, typ, val}
}
// later pushes f on to the stack of actions that will be processed later;
// either at the end of the current statement, or in case of a local constant
// or variable declaration, before the constant or variable is in scope
// (so that f still sees the scope before any new declarations).
func (check *Checker) later(f func()) {
check.delayed = append(check.delayed, f)
}
// atEnd adds f to the list of actions processed at the end
// of type-checking, before initialization order computation.
// Actions added by atEnd are processed after any actions
// added by later.
func (check *Checker) atEnd(f func()) {
check.finals = append(check.finals, f)
}
// push pushes obj onto the object path and returns its index in the path.
func (check *Checker) push(obj Object) int {
check.objPath = append(check.objPath, obj)
return len(check.objPath) - 1
}
// pop pops and returns the topmost object from the object path.
func (check *Checker) pop() Object {
i := len(check.objPath) - 1
obj := check.objPath[i]
check.objPath[i] = nil
check.objPath = check.objPath[:i]
return obj
}
// NewChecker returns a new Checker instance for a given package.
// Package files may be added incrementally via checker.Files.
func NewChecker(conf *Config, pkg *Package, info *Info) *Checker {
// make sure we have a configuration
if conf == nil {
conf = new(Config)
}
// make sure we have an info struct
if info == nil {
info = new(Info)
}
version, err := parseGoVersion(conf.GoVersion)
if err != nil {
panic(fmt.Sprintf("invalid Go version %q (%v)", conf.GoVersion, err))
}
return &Checker{
conf: conf,
pkg: pkg,
Info: info,
version: version,
nextId: 1,
objMap: make(map[Object]*declInfo),
impMap: make(map[importKey]*Package),
posMap: make(map[*Interface][]syntax.Pos),
typMap: make(map[string]*Named),
pkgCnt: make(map[string]int),
}
}
// initFiles initializes the files-specific portion of checker.
// The provided files must all belong to the same package.
func (check *Checker) initFiles(files []*syntax.File) {
// start with a clean slate (check.Files may be called multiple times)
check.files = nil
check.imports = nil
check.dotImportMap = nil
check.firstErr = nil
check.methods = nil
check.untyped = nil
check.delayed = nil
check.finals = nil
// determine package name and collect valid files
pkg := check.pkg
for _, file := range files {
switch name := file.PkgName.Value; pkg.name {
case "":
if name != "_" {
pkg.name = name
} else {
check.errorf(file.PkgName, "invalid package name _")
}
fallthrough
case name:
check.files = append(check.files, file)
default:
check.errorf(file, "package %s; expected %s", name, pkg.name)
// ignore this file
}
}
}
// A bailout panic is used for early termination.
type bailout struct{}
func (check *Checker) handleBailout(err *error) {
switch p := recover().(type) {
case nil, bailout:
// normal return or early exit
*err = check.firstErr
default:
// re-panic
panic(p)
}
}
// Files checks the provided files as part of the checker's package.
func (check *Checker) Files(files []*syntax.File) error { return check.checkFiles(files) }
var errBadCgo = errors.New("cannot use FakeImportC and go115UsesCgo together")
func (check *Checker) checkFiles(files []*syntax.File) (err error) {
if check.conf.FakeImportC && check.conf.go115UsesCgo {
return errBadCgo
}
defer check.handleBailout(&err)
print := func(msg string) {
if check.conf.Trace {
fmt.Println(msg)
}
}
print("== initFiles ==")
check.initFiles(files)
print("== collectObjects ==")
check.collectObjects()
print("== packageObjects ==")
check.packageObjects()
print("== processDelayed ==")
check.processDelayed(0) // incl. all functions
check.processFinals()
print("== initOrder ==")
check.initOrder()
if !check.conf.DisableUnusedImportCheck {
print("== unusedImports ==")
check.unusedImports()
}
// no longer needed - release memory
check.imports = nil
check.dotImportMap = nil
print("== recordUntyped ==")
check.recordUntyped()
if check.Info != nil {
print("== sanitizeInfo ==")
sanitizeInfo(check.Info)
}
check.pkg.complete = true
// TODO(gri) There's more memory we should release at this point.
return
}
// processDelayed processes all delayed actions pushed after top.
func (check *Checker) processDelayed(top int) {
// If each delayed action pushes a new action, the
// stack will continue to grow during this loop.
// However, it is only processing functions (which
// are processed in a delayed fashion) that may
// add more actions (such as nested functions), so
// this is a sufficiently bounded process.
for i := top; i < len(check.delayed); i++ {
check.delayed[i]() // may append to check.delayed
}
assert(top <= len(check.delayed)) // stack must not have shrunk
check.delayed = check.delayed[:top]
}
func (check *Checker) processFinals() {
n := len(check.finals)
for _, f := range check.finals {
f() // must not append to check.finals
}
if len(check.finals) != n {
panic("internal error: final action list grew")
}
}
func (check *Checker) recordUntyped() {
if !debug && check.Types == nil {
return // nothing to do
}
for x, info := range check.untyped {
if debug && isTyped(info.typ) {
check.dump("%v: %s (type %s) is typed", posFor(x), x, info.typ)
unreachable()
}
check.recordTypeAndValue(x, info.mode, info.typ, info.val)
}
}
func (check *Checker) recordTypeAndValue(x syntax.Expr, mode operandMode, typ Type, val constant.Value) {
assert(x != nil)
assert(typ != nil)
if mode == invalid {
return // omit
}
if mode == constant_ {
assert(val != nil)
assert(typ == Typ[Invalid] || isConstType(typ))
}
if m := check.Types; m != nil {
m[x] = TypeAndValue{mode, typ, val}
}
}
func (check *Checker) recordBuiltinType(f syntax.Expr, sig *Signature) {
// f must be a (possibly parenthesized) identifier denoting a built-in
// (built-ins in package unsafe always produce a constant result and
// we don't record their signatures, so we don't see qualified idents
// here): record the signature for f and possible children.
for {
check.recordTypeAndValue(f, builtin, sig, nil)
switch p := f.(type) {
case *syntax.Name:
return // we're done
case *syntax.ParenExpr:
f = p.X
default:
unreachable()
}
}
}
func (check *Checker) recordCommaOkTypes(x syntax.Expr, a [2]Type) {
assert(x != nil)
if a[0] == nil || a[1] == nil {
return
}
assert(isTyped(a[0]) && isTyped(a[1]) && (isBoolean(a[1]) || a[1] == universeError))
if m := check.Types; m != nil {
for {
tv := m[x]
assert(tv.Type != nil) // should have been recorded already
pos := x.Pos()
tv.Type = NewTuple(
NewVar(pos, check.pkg, "", a[0]),
NewVar(pos, check.pkg, "", a[1]),
)
m[x] = tv
// if x is a parenthesized expression (p.X), update p.X
p, _ := x.(*syntax.ParenExpr)
if p == nil {
break
}
x = p.X
}
}
}
func (check *Checker) recordInferred(call syntax.Expr, targs []Type, sig *Signature) {
assert(call != nil)
assert(sig != nil)
if m := check.Inferred; m != nil {
m[call] = Inferred{targs, sig}
}
}
func (check *Checker) recordDef(id *syntax.Name, obj Object) {
assert(id != nil)
if m := check.Defs; m != nil {
m[id] = obj
}
}
func (check *Checker) recordUse(id *syntax.Name, obj Object) {
assert(id != nil)
assert(obj != nil)
if m := check.Uses; m != nil {
m[id] = obj
}
}
func (check *Checker) recordImplicit(node syntax.Node, obj Object) {
assert(node != nil)
assert(obj != nil)
if m := check.Implicits; m != nil {
m[node] = obj
}
}
func (check *Checker) recordSelection(x *syntax.SelectorExpr, kind SelectionKind, recv Type, obj Object, index []int, indirect bool) {
assert(obj != nil && (recv == nil || len(index) > 0))
check.recordUse(x.Sel, obj)
if m := check.Selections; m != nil {
m[x] = &Selection{kind, recv, obj, index, indirect}
}
}
func (check *Checker) recordScope(node syntax.Node, scope *Scope) {
assert(node != nil)
assert(scope != nil)
if m := check.Scopes; m != nil {
m[node] = scope
}
}

View File

@ -0,0 +1,298 @@
// UNREVIEWED
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements a typechecker test harness. The packages specified
// in tests are typechecked. Error messages reported by the typechecker are
// compared against the error messages expected in the test files.
//
// Expected errors are indicated in the test files by putting a comment
// of the form /* ERROR "rx" */ immediately following an offending token.
// The harness will verify that an error matching the regular expression
// rx is reported at that source position. Consecutive comments may be
// used to indicate multiple errors for the same token position.
//
// For instance, the following test file indicates that a "not declared"
// error should be reported for the undeclared variable x:
//
// package p
// func f() {
// _ = x /* ERROR "not declared" */ + 1
// }
// TODO(gri) Also collect strict mode errors of the form /* STRICT ... */
// and test against strict mode.
package types2_test
import (
"cmd/compile/internal/syntax"
"flag"
"fmt"
"internal/testenv"
"io/ioutil"
"os"
"path/filepath"
"regexp"
"strings"
"testing"
. "cmd/compile/internal/types2"
)
var (
haltOnError = flag.Bool("halt", false, "halt on error")
listErrors = flag.Bool("errlist", false, "list errors")
testFiles = flag.String("files", "", "comma-separated list of test files")
goVersion = flag.String("lang", "", "Go language version (e.g. \"go1.12\"")
)
func parseFiles(t *testing.T, filenames []string, mode syntax.Mode) ([]*syntax.File, []error) {
var files []*syntax.File
var errlist []error
errh := func(err error) { errlist = append(errlist, err) }
for _, filename := range filenames {
file, err := syntax.ParseFile(filename, errh, nil, mode)
if file == nil {
t.Fatalf("%s: %s", filename, err)
}
files = append(files, file)
}
return files, errlist
}
func unpackError(err error) syntax.Error {
switch err := err.(type) {
case syntax.Error:
return err
case Error:
return syntax.Error{Pos: err.Pos, Msg: err.Msg}
default:
return syntax.Error{Msg: err.Error()}
}
}
func delta(x, y uint) uint {
switch {
case x < y:
return y - x
case x > y:
return x - y
default:
return 0
}
}
// goVersionRx matches a Go version string using '_', e.g. "go1_12".
var goVersionRx = regexp.MustCompile(`^go[1-9][0-9]*_(0|[1-9][0-9]*)$`)
// asGoVersion returns a regular Go language version string
// if s is a Go version string using '_' rather than '.' to
// separate the major and minor version numbers (e.g. "go1_12").
// Otherwise it returns the empty string.
func asGoVersion(s string) string {
if goVersionRx.MatchString(s) {
return strings.Replace(s, "_", ".", 1)
}
return ""
}
func checkFiles(t *testing.T, sources []string, goVersion string, colDelta uint, trace bool) {
if len(sources) == 0 {
t.Fatal("no source files")
}
var mode syntax.Mode
if strings.HasSuffix(sources[0], ".go2") {
mode |= syntax.AllowGenerics
}
// parse files and collect parser errors
files, errlist := parseFiles(t, sources, mode)
pkgName := "<no package>"
if len(files) > 0 {
pkgName = files[0].PkgName.Value
}
// if no Go version is given, consider the package name
if goVersion == "" {
goVersion = asGoVersion(pkgName)
}
if *listErrors && len(errlist) > 0 {
t.Errorf("--- %s:", pkgName)
for _, err := range errlist {
t.Error(err)
}
}
// typecheck and collect typechecker errors
var conf Config
conf.GoVersion = goVersion
conf.AcceptMethodTypeParams = true
conf.InferFromConstraints = true
// special case for importC.src
if len(sources) == 1 && strings.HasSuffix(sources[0], "importC.src") {
conf.FakeImportC = true
}
conf.Trace = trace
conf.Importer = defaultImporter()
conf.Error = func(err error) {
if *haltOnError {
defer panic(err)
}
if *listErrors {
t.Error(err)
return
}
// Ignore secondary error messages starting with "\t";
// they are clarifying messages for a primary error.
if !strings.Contains(err.Error(), ": \t") {
errlist = append(errlist, err)
}
}
conf.Check(pkgName, files, nil)
if *listErrors {
return
}
// collect expected errors
errmap := make(map[string]map[uint][]syntax.Error)
for _, filename := range sources {
f, err := os.Open(filename)
if err != nil {
t.Error(err)
continue
}
if m := syntax.ErrorMap(f); len(m) > 0 {
errmap[filename] = m
}
f.Close()
}
// match against found errors
for _, err := range errlist {
got := unpackError(err)
// find list of errors for the respective error line
filename := got.Pos.Base().Filename()
filemap := errmap[filename]
var line uint
var list []syntax.Error
if filemap != nil {
line = got.Pos.Line()
list = filemap[line]
}
// list may be nil
// one of errors in list should match the current error
index := -1 // list index of matching message, if any
for i, want := range list {
rx, err := regexp.Compile(want.Msg)
if err != nil {
t.Errorf("%s:%d:%d: %v", filename, line, want.Pos.Col(), err)
continue
}
if rx.MatchString(got.Msg) {
index = i
break
}
}
if index < 0 {
t.Errorf("%s: no error expected: %q", got.Pos, got.Msg)
continue
}
// column position must be within expected colDelta
want := list[index]
if delta(got.Pos.Col(), want.Pos.Col()) > colDelta {
t.Errorf("%s: got col = %d; want %d", got.Pos, got.Pos.Col(), want.Pos.Col())
}
// eliminate from list
if n := len(list) - 1; n > 0 {
// not the last entry - swap in last element and shorten list by 1
list[index] = list[n]
filemap[line] = list[:n]
} else {
// last entry - remove list from filemap
delete(filemap, line)
}
// if filemap is empty, eliminate from errmap
if len(filemap) == 0 {
delete(errmap, filename)
}
}
// there should be no expected errors left
if len(errmap) > 0 {
t.Errorf("--- %s: unreported errors:", pkgName)
for filename, filemap := range errmap {
for line, list := range filemap {
for _, err := range list {
t.Errorf("%s:%d:%d: %s", filename, line, err.Pos.Col(), err.Msg)
}
}
}
}
}
// TestCheck is for manual testing of selected input files, provided with -files.
// The accepted Go language version can be controlled with the -lang flag.
func TestCheck(t *testing.T) {
if *testFiles == "" {
return
}
testenv.MustHaveGoBuild(t)
DefPredeclaredTestFuncs()
checkFiles(t, strings.Split(*testFiles, ","), *goVersion, 0, testing.Verbose())
}
func TestTestdata(t *testing.T) { DefPredeclaredTestFuncs(); testDir(t, 75, "testdata") } // TODO(gri) narrow column tolerance
func TestExamples(t *testing.T) { testDir(t, 0, "examples") }
func TestFixedbugs(t *testing.T) { testDir(t, 0, "fixedbugs") }
func testDir(t *testing.T, colDelta uint, dir string) {
testenv.MustHaveGoBuild(t)
fis, err := ioutil.ReadDir(dir)
if err != nil {
t.Error(err)
return
}
for count, fi := range fis {
path := filepath.Join(dir, fi.Name())
// if fi is a directory, its files make up a single package
if fi.IsDir() {
if testing.Verbose() {
fmt.Printf("%3d %s\n", count, path)
}
fis, err := ioutil.ReadDir(path)
if err != nil {
t.Error(err)
continue
}
files := make([]string, len(fis))
for i, fi := range fis {
// if fi is a directory, checkFiles below will complain
files[i] = filepath.Join(path, fi.Name())
if testing.Verbose() {
fmt.Printf("\t%s\n", files[i])
}
}
checkFiles(t, files, "", colDelta, false)
continue
}
// otherwise, fi is a stand-alone file
if testing.Verbose() {
fmt.Printf("%3d %s\n", count, path)
}
checkFiles(t, []string{path}, "", colDelta, false)
}
}

View File

@ -0,0 +1,166 @@
// UNREVIEWED
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements typechecking of conversions.
package types2
import (
"go/constant"
"unicode"
)
// Conversion type-checks the conversion T(x).
// The result is in x.
func (check *Checker) conversion(x *operand, T Type) {
constArg := x.mode == constant_
var ok bool
switch {
case constArg && isConstType(T):
// constant conversion
switch t := asBasic(T); {
case representableConst(x.val, check, t, &x.val):
ok = true
case isInteger(x.typ) && isString(t):
codepoint := unicode.ReplacementChar
if i, ok := constant.Uint64Val(x.val); ok && i <= unicode.MaxRune {
codepoint = rune(i)
}
x.val = constant.MakeString(string(codepoint))
ok = true
}
case x.convertibleTo(check, T):
// non-constant conversion
x.mode = value
ok = true
}
if !ok {
check.errorf(x, "cannot convert %s to %s", x, T)
x.mode = invalid
return
}
// The conversion argument types are final. For untyped values the
// conversion provides the type, per the spec: "A constant may be
// given a type explicitly by a constant declaration or conversion,...".
if isUntyped(x.typ) {
final := T
// - For conversions to interfaces, except for untyped nil arguments,
// use the argument's default type.
// - For conversions of untyped constants to non-constant types, also
// use the default type (e.g., []byte("foo") should report string
// not []byte as type for the constant "foo").
// - For integer to string conversions, keep the argument type.
// (See also the TODO below.)
if x.typ == Typ[UntypedNil] {
// ok
} else if IsInterface(T) || constArg && !isConstType(T) {
final = Default(x.typ)
} else if isInteger(x.typ) && isString(T) {
final = x.typ
}
check.updateExprType(x.expr, final, true)
}
x.typ = T
}
// TODO(gri) convertibleTo checks if T(x) is valid. It assumes that the type
// of x is fully known, but that's not the case for say string(1<<s + 1.0):
// Here, the type of 1<<s + 1.0 will be UntypedFloat which will lead to the
// (correct!) refusal of the conversion. But the reported error is essentially
// "cannot convert untyped float value to string", yet the correct error (per
// the spec) is that we cannot shift a floating-point value: 1 in 1<<s should
// be converted to UntypedFloat because of the addition of 1.0. Fixing this
// is tricky because we'd have to run updateExprType on the argument first.
// (Issue #21982.)
// convertibleTo reports whether T(x) is valid.
// The check parameter may be nil if convertibleTo is invoked through an
// exported API call, i.e., when all methods have been type-checked.
func (x *operand) convertibleTo(check *Checker, T Type) bool {
// "x is assignable to T"
if x.assignableTo(check, T, nil) {
return true
}
// "x's type and T have identical underlying types if tags are ignored"
V := x.typ
Vu := under(V)
Tu := under(T)
if check.identicalIgnoreTags(Vu, Tu) {
return true
}
// "x's type and T are unnamed pointer types and their pointer base types
// have identical underlying types if tags are ignored"
if V, ok := V.(*Pointer); ok {
if T, ok := T.(*Pointer); ok {
if check.identicalIgnoreTags(under(V.base), under(T.base)) {
return true
}
}
}
// "x's type and T are both integer or floating point types"
if isIntegerOrFloat(V) && isIntegerOrFloat(T) {
return true
}
// "x's type and T are both complex types"
if isComplex(V) && isComplex(T) {
return true
}
// "x is an integer or a slice of bytes or runes and T is a string type"
if (isInteger(V) || isBytesOrRunes(Vu)) && isString(T) {
return true
}
// "x is a string and T is a slice of bytes or runes"
if isString(V) && isBytesOrRunes(Tu) {
return true
}
// package unsafe:
// "any pointer or value of underlying type uintptr can be converted into a unsafe.Pointer"
if (isPointer(Vu) || isUintptr(Vu)) && isUnsafePointer(T) {
return true
}
// "and vice versa"
if isUnsafePointer(V) && (isPointer(Tu) || isUintptr(Tu)) {
return true
}
return false
}
func isUintptr(typ Type) bool {
t := asBasic(typ)
return t != nil && t.kind == Uintptr
}
func isUnsafePointer(typ Type) bool {
// TODO(gri): Is this asBasic(typ) instead of typ.(*Basic) correct?
// (The former calls under(), while the latter doesn't.)
// The spec does not say so, but gc claims it is. See also
// issue 6326.
t := asBasic(typ)
return t != nil && t.kind == UnsafePointer
}
func isPointer(typ Type) bool {
return asPointer(typ) != nil
}
func isBytesOrRunes(typ Type) bool {
if s := asSlice(typ); s != nil {
t := asBasic(s.elem)
return t != nil && (t.kind == Byte || t.kind == Rune)
}
return false
}

View File

@ -0,0 +1,978 @@
// UNREVIEWED
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types2
import (
"cmd/compile/internal/syntax"
"fmt"
"go/constant"
)
func (check *Checker) reportAltDecl(obj Object) {
if pos := obj.Pos(); pos.IsKnown() {
// We use "other" rather than "previous" here because
// the first declaration seen may not be textually
// earlier in the source.
check.errorf(pos, "\tother declaration of %s", obj.Name()) // secondary error, \t indented
}
}
func (check *Checker) declare(scope *Scope, id *syntax.Name, obj Object, pos syntax.Pos) {
// spec: "The blank identifier, represented by the underscore
// character _, may be used in a declaration like any other
// identifier but the declaration does not introduce a new
// binding."
if obj.Name() != "_" {
if alt := scope.Insert(obj); alt != nil {
check.errorf(obj.Pos(), "%s redeclared in this block", obj.Name())
check.reportAltDecl(alt)
return
}
obj.setScopePos(pos)
}
if id != nil {
check.recordDef(id, obj)
}
}
// pathString returns a string of the form a->b-> ... ->g for a path [a, b, ... g].
func pathString(path []Object) string {
var s string
for i, p := range path {
if i > 0 {
s += "->"
}
s += p.Name()
}
return s
}
// objDecl type-checks the declaration of obj in its respective (file) context.
// For the meaning of def, see Checker.definedType, in typexpr.go.
func (check *Checker) objDecl(obj Object, def *Named) {
if check.conf.Trace && obj.Type() == nil {
if check.indent == 0 {
fmt.Println() // empty line between top-level objects for readability
}
check.trace(obj.Pos(), "-- checking %s (%s, objPath = %s)", obj, obj.color(), pathString(check.objPath))
check.indent++
defer func() {
check.indent--
check.trace(obj.Pos(), "=> %s (%s)", obj, obj.color())
}()
}
// Checking the declaration of obj means inferring its type
// (and possibly its value, for constants).
// An object's type (and thus the object) may be in one of
// three states which are expressed by colors:
//
// - an object whose type is not yet known is painted white (initial color)
// - an object whose type is in the process of being inferred is painted grey
// - an object whose type is fully inferred is painted black
//
// During type inference, an object's color changes from white to grey
// to black (pre-declared objects are painted black from the start).
// A black object (i.e., its type) can only depend on (refer to) other black
// ones. White and grey objects may depend on white and black objects.
// A dependency on a grey object indicates a cycle which may or may not be
// valid.
//
// When objects turn grey, they are pushed on the object path (a stack);
// they are popped again when they turn black. Thus, if a grey object (a
// cycle) is encountered, it is on the object path, and all the objects
// it depends on are the remaining objects on that path. Color encoding
// is such that the color value of a grey object indicates the index of
// that object in the object path.
// During type-checking, white objects may be assigned a type without
// traversing through objDecl; e.g., when initializing constants and
// variables. Update the colors of those objects here (rather than
// everywhere where we set the type) to satisfy the color invariants.
if obj.color() == white && obj.Type() != nil {
obj.setColor(black)
return
}
switch obj.color() {
case white:
assert(obj.Type() == nil)
// All color values other than white and black are considered grey.
// Because black and white are < grey, all values >= grey are grey.
// Use those values to encode the object's index into the object path.
obj.setColor(grey + color(check.push(obj)))
defer func() {
check.pop().setColor(black)
}()
case black:
assert(obj.Type() != nil)
return
default:
// Color values other than white or black are considered grey.
fallthrough
case grey:
// We have a cycle.
// In the existing code, this is marked by a non-nil type
// for the object except for constants and variables whose
// type may be non-nil (known), or nil if it depends on the
// not-yet known initialization value.
// In the former case, set the type to Typ[Invalid] because
// we have an initialization cycle. The cycle error will be
// reported later, when determining initialization order.
// TODO(gri) Report cycle here and simplify initialization
// order code.
switch obj := obj.(type) {
case *Const:
if check.cycle(obj) || obj.typ == nil {
obj.typ = Typ[Invalid]
}
case *Var:
if check.cycle(obj) || obj.typ == nil {
obj.typ = Typ[Invalid]
}
case *TypeName:
if check.cycle(obj) {
// break cycle
// (without this, calling underlying()
// below may lead to an endless loop
// if we have a cycle for a defined
// (*Named) type)
obj.typ = Typ[Invalid]
}
case *Func:
if check.cycle(obj) {
// Don't set obj.typ to Typ[Invalid] here
// because plenty of code type-asserts that
// functions have a *Signature type. Grey
// functions have their type set to an empty
// signature which makes it impossible to
// initialize a variable with the function.
}
default:
unreachable()
}
assert(obj.Type() != nil)
return
}
d := check.objMap[obj]
if d == nil {
check.dump("%v: %s should have been declared", obj.Pos(), obj)
unreachable()
}
// save/restore current context and setup object context
defer func(ctxt context) {
check.context = ctxt
}(check.context)
check.context = context{
scope: d.file,
}
// Const and var declarations must not have initialization
// cycles. We track them by remembering the current declaration
// in check.decl. Initialization expressions depending on other
// consts, vars, or functions, add dependencies to the current
// check.decl.
switch obj := obj.(type) {
case *Const:
check.decl = d // new package-level const decl
check.constDecl(obj, d.vtyp, d.init, d.inherited)
case *Var:
check.decl = d // new package-level var decl
check.varDecl(obj, d.lhs, d.vtyp, d.init)
case *TypeName:
// invalid recursive types are detected via path
check.typeDecl(obj, d.tdecl, def)
check.collectMethods(obj) // methods can only be added to top-level types
case *Func:
// functions may be recursive - no need to track dependencies
check.funcDecl(obj, d)
default:
unreachable()
}
}
// cycle checks if the cycle starting with obj is valid and
// reports an error if it is not.
func (check *Checker) cycle(obj Object) (isCycle bool) {
// The object map contains the package scope objects and the non-interface methods.
if debug {
info := check.objMap[obj]
inObjMap := info != nil && (info.fdecl == nil || info.fdecl.Recv == nil) // exclude methods
isPkgObj := obj.Parent() == check.pkg.scope
if isPkgObj != inObjMap {
check.dump("%v: inconsistent object map for %s (isPkgObj = %v, inObjMap = %v)", obj.Pos(), obj, isPkgObj, inObjMap)
unreachable()
}
}
// Count cycle objects.
assert(obj.color() >= grey)
start := obj.color() - grey // index of obj in objPath
cycle := check.objPath[start:]
nval := 0 // number of (constant or variable) values in the cycle
ndef := 0 // number of type definitions in the cycle
for _, obj := range cycle {
switch obj := obj.(type) {
case *Const, *Var:
nval++
case *TypeName:
// Determine if the type name is an alias or not. For
// package-level objects, use the object map which
// provides syntactic information (which doesn't rely
// on the order in which the objects are set up). For
// local objects, we can rely on the order, so use
// the object's predicate.
// TODO(gri) It would be less fragile to always access
// the syntactic information. We should consider storing
// this information explicitly in the object.
var alias bool
if d := check.objMap[obj]; d != nil {
alias = d.tdecl.Alias // package-level object
} else {
alias = obj.IsAlias() // function local object
}
if !alias {
ndef++
}
case *Func:
// ignored for now
default:
unreachable()
}
}
if check.conf.Trace {
check.trace(obj.Pos(), "## cycle detected: objPath = %s->%s (len = %d)", pathString(cycle), obj.Name(), len(cycle))
check.trace(obj.Pos(), "## cycle contains: %d values, %d type definitions", nval, ndef)
defer func() {
if isCycle {
check.trace(obj.Pos(), "=> error: cycle is invalid")
}
}()
}
// A cycle involving only constants and variables is invalid but we
// ignore them here because they are reported via the initialization
// cycle check.
if nval == len(cycle) {
return false
}
// A cycle involving only types (and possibly functions) must have at least
// one type definition to be permitted: If there is no type definition, we
// have a sequence of alias type names which will expand ad infinitum.
if nval == 0 && ndef > 0 {
return false // cycle is permitted
}
check.cycleError(cycle)
return true
}
type typeInfo uint
// validType verifies that the given type does not "expand" infinitely
// producing a cycle in the type graph. Cycles are detected by marking
// defined types.
// (Cycles involving alias types, as in "type A = [10]A" are detected
// earlier, via the objDecl cycle detection mechanism.)
func (check *Checker) validType(typ Type, path []Object) typeInfo {
const (
unknown typeInfo = iota
marked
valid
invalid
)
switch t := typ.(type) {
case *Array:
return check.validType(t.elem, path)
case *Struct:
for _, f := range t.fields {
if check.validType(f.typ, path) == invalid {
return invalid
}
}
case *Interface:
for _, etyp := range t.embeddeds {
if check.validType(etyp, path) == invalid {
return invalid
}
}
case *Named:
// don't touch the type if it is from a different package or the Universe scope
// (doing so would lead to a race condition - was issue #35049)
if t.obj.pkg != check.pkg {
return valid
}
// don't report a 2nd error if we already know the type is invalid
// (e.g., if a cycle was detected earlier, via Checker.underlying).
if t.underlying == Typ[Invalid] {
t.info = invalid
return invalid
}
switch t.info {
case unknown:
t.info = marked
t.info = check.validType(t.orig, append(path, t.obj)) // only types of current package added to path
case marked:
// cycle detected
for i, tn := range path {
if t.obj.pkg != check.pkg {
panic("internal error: type cycle via package-external type")
}
if tn == t.obj {
check.cycleError(path[i:])
t.info = invalid
return t.info
}
}
panic("internal error: cycle start not found")
}
return t.info
case *instance:
return check.validType(t.expand(), path)
}
return valid
}
// cycleError reports a declaration cycle starting with
// the object in cycle that is "first" in the source.
func (check *Checker) cycleError(cycle []Object) {
// TODO(gri) Should we start with the last (rather than the first) object in the cycle
// since that is the earliest point in the source where we start seeing the
// cycle? That would be more consistent with other error messages.
i := firstInSrc(cycle)
obj := cycle[i]
if check.conf.CompilerErrorMessages {
check.errorf(obj.Pos(), "invalid recursive type %s", obj.Name())
} else {
check.errorf(obj.Pos(), "illegal cycle in declaration of %s", obj.Name())
}
for range cycle {
check.errorf(obj.Pos(), "\t%s refers to", obj.Name()) // secondary error, \t indented
i++
if i >= len(cycle) {
i = 0
}
obj = cycle[i]
}
check.errorf(obj.Pos(), "\t%s", obj.Name())
}
// TODO(gri) This functionality should probably be with the Pos implementation.
func cmpPos(p, q syntax.Pos) int {
// TODO(gri) is RelFilename correct here?
pname := p.RelFilename()
qname := q.RelFilename()
switch {
case pname < qname:
return -1
case pname > qname:
return +1
}
pline := p.Line()
qline := q.Line()
switch {
case pline < qline:
return -1
case pline > qline:
return +1
}
pcol := p.Col()
qcol := q.Col()
switch {
case pcol < qcol:
return -1
case pcol > qcol:
return +1
}
return 0
}
// firstInSrc reports the index of the object with the "smallest"
// source position in path. path must not be empty.
func firstInSrc(path []Object) int {
fst, pos := 0, path[0].Pos()
for i, t := range path[1:] {
if cmpPos(t.Pos(), pos) < 0 {
fst, pos = i+1, t.Pos()
}
}
return fst
}
func (check *Checker) constDecl(obj *Const, typ, init syntax.Expr, inherited bool) {
assert(obj.typ == nil)
// use the correct value of iota and errpos
defer func(iota constant.Value, errpos syntax.Pos) {
check.iota = iota
check.errpos = errpos
}(check.iota, check.errpos)
check.iota = obj.val
check.errpos = nopos
// provide valid constant value under all circumstances
obj.val = constant.MakeUnknown()
// determine type, if any
if typ != nil {
t := check.typ(typ)
if !isConstType(t) {
// don't report an error if the type is an invalid C (defined) type
// (issue #22090)
if under(t) != Typ[Invalid] {
check.errorf(typ, "invalid constant type %s", t)
}
obj.typ = Typ[Invalid]
return
}
obj.typ = t
}
// check initialization
var x operand
if init != nil {
if inherited {
// The initialization expression is inherited from a previous
// constant declaration, and (error) positions refer to that
// expression and not the current constant declaration. Use
// the constant identifier position for any errors during
// init expression evaluation since that is all we have
// (see issues #42991, #42992).
check.errpos = obj.pos
}
check.expr(&x, init)
}
check.initConst(obj, &x)
}
func (check *Checker) varDecl(obj *Var, lhs []*Var, typ, init syntax.Expr) {
assert(obj.typ == nil)
// If we have undefined variable types due to errors,
// mark variables as used to avoid follow-on errors.
// Matches compiler behavior.
defer func() {
if obj.typ == Typ[Invalid] {
obj.used = true
}
for _, lhs := range lhs {
if lhs.typ == Typ[Invalid] {
lhs.used = true
}
}
}()
// determine type, if any
if typ != nil {
obj.typ = check.varType(typ)
// We cannot spread the type to all lhs variables if there
// are more than one since that would mark them as checked
// (see Checker.objDecl) and the assignment of init exprs,
// if any, would not be checked.
//
// TODO(gri) If we have no init expr, we should distribute
// a given type otherwise we need to re-evalate the type
// expr for each lhs variable, leading to duplicate work.
}
// check initialization
if init == nil {
if typ == nil {
// error reported before by arityMatch
obj.typ = Typ[Invalid]
}
return
}
if lhs == nil || len(lhs) == 1 {
assert(lhs == nil || lhs[0] == obj)
var x operand
check.expr(&x, init)
check.initVar(obj, &x, "variable declaration")
return
}
if debug {
// obj must be one of lhs
found := false
for _, lhs := range lhs {
if obj == lhs {
found = true
break
}
}
if !found {
panic("inconsistent lhs")
}
}
// We have multiple variables on the lhs and one init expr.
// Make sure all variables have been given the same type if
// one was specified, otherwise they assume the type of the
// init expression values (was issue #15755).
if typ != nil {
for _, lhs := range lhs {
lhs.typ = obj.typ
}
}
check.initVars(lhs, []syntax.Expr{init}, nopos)
}
// under returns the expanded underlying type of n0; possibly by following
// forward chains of named types. If an underlying type is found, resolve
// the chain by setting the underlying type for each defined type in the
// chain before returning it. If no underlying type is found or a cycle
// is detected, the result is Typ[Invalid]. If a cycle is detected and
// n0.check != nil, the cycle is reported.
func (n0 *Named) under() Type {
u := n0.underlying
if u == nil {
return Typ[Invalid]
}
// If the underlying type of a defined type is not a defined
// type, then that is the desired underlying type.
n := asNamed(u)
if n == nil {
return u // common case
}
// Otherwise, follow the forward chain.
seen := map[*Named]int{n0: 0}
path := []Object{n0.obj}
for {
u = n.underlying
if u == nil {
u = Typ[Invalid]
break
}
n1 := asNamed(u)
if n1 == nil {
break // end of chain
}
seen[n] = len(seen)
path = append(path, n.obj)
n = n1
if i, ok := seen[n]; ok {
// cycle
// TODO(gri) revert this to a method on Checker. Having a possibly
// nil Checker on Named and TypeParam is too subtle.
if n0.check != nil {
n0.check.cycleError(path[i:])
}
u = Typ[Invalid]
break
}
}
for n := range seen {
// We should never have to update the underlying type of an imported type;
// those underlying types should have been resolved during the import.
// Also, doing so would lead to a race condition (was issue #31749).
// Do this check always, not just in debug more (it's cheap).
if n0.check != nil && n.obj.pkg != n0.check.pkg {
panic("internal error: imported type with unresolved underlying type")
}
n.underlying = u
}
return u
}
func (n *Named) setUnderlying(typ Type) {
if n != nil {
n.underlying = typ
}
}
func (check *Checker) typeDecl(obj *TypeName, tdecl *syntax.TypeDecl, def *Named) {
assert(obj.typ == nil)
check.later(func() {
check.validType(obj.typ, nil)
})
alias := tdecl.Alias
if alias && tdecl.TParamList != nil {
// The parser will ensure this but we may still get an invalid AST.
// Complain and continue as regular type definition.
check.errorf(tdecl, "generic type cannot be alias")
alias = false
}
if alias {
// type alias declaration
if !check.allowVersion(obj.pkg, 1, 9) {
check.errorf(tdecl, "type aliases requires go1.9 or later")
}
obj.typ = Typ[Invalid]
obj.typ = check.anyType(tdecl.Type)
} else {
// defined type declaration
named := &Named{check: check, obj: obj}
def.setUnderlying(named)
obj.typ = named // make sure recursive type declarations terminate
if tdecl.TParamList != nil {
check.openScope(tdecl, "type parameters")
defer check.closeScope()
named.tparams = check.collectTypeParams(tdecl.TParamList)
}
// determine underlying type of named
named.orig = check.definedType(tdecl.Type, named)
// The underlying type of named may be itself a named type that is
// incomplete:
//
// type (
// A B
// B *C
// C A
// )
//
// The type of C is the (named) type of A which is incomplete,
// and which has as its underlying type the named type B.
// Determine the (final, unnamed) underlying type by resolving
// any forward chain.
// TODO(gri) Investigate if we can just use named.origin here
// and rely on lazy computation of the underlying type.
named.underlying = under(named)
}
}
func (check *Checker) collectTypeParams(list []*syntax.Field) (tparams []*TypeName) {
// Type parameter lists should not be empty. The parser will
// complain but we still may get an incorrect AST: ignore it.
if len(list) == 0 {
return
}
// Declare type parameters up-front, with empty interface as type bound.
// The scope of type parameters starts at the beginning of the type parameter
// list (so we can have mutually recursive parameterized interfaces).
for _, f := range list {
tparams = check.declareTypeParam(tparams, f.Name)
}
var bound Type
for i, j := 0, 0; i < len(list); i = j {
f := list[i]
// determine the range of type parameters list[i:j] with identical type bound
// (declared as in (type a, b, c B))
j = i + 1
for j < len(list) && list[j].Type == f.Type {
j++
}
// this should never be the case, but be careful
if f.Type == nil {
continue
}
// The predeclared identifier "any" is visible only as a constraint
// in a type parameter list. Look for it before general constraint
// resolution.
if tident, _ := f.Type.(*syntax.Name); tident != nil && tident.Value == "any" && check.lookup("any") == nil {
bound = universeAny
} else {
bound = check.typ(f.Type)
}
// type bound must be an interface
// TODO(gri) We should delay the interface check because
// we may not have a complete interface yet:
// type C(type T C) interface {}
// (issue #39724).
if _, ok := under(bound).(*Interface); ok {
// set the type bounds
for i < j {
tparams[i].typ.(*TypeParam).bound = bound
i++
}
} else if bound != Typ[Invalid] {
check.errorf(f.Type, "%s is not an interface", bound)
}
}
return
}
func (check *Checker) declareTypeParam(tparams []*TypeName, name *syntax.Name) []*TypeName {
tpar := NewTypeName(name.Pos(), check.pkg, name.Value, nil)
check.NewTypeParam(tpar, len(tparams), &emptyInterface) // assigns type to tpar as a side-effect
check.declare(check.scope, name, tpar, check.scope.pos) // TODO(gri) check scope position
tparams = append(tparams, tpar)
if check.conf.Trace {
check.trace(name.Pos(), "type param = %v", tparams[len(tparams)-1])
}
return tparams
}
func (check *Checker) collectMethods(obj *TypeName) {
// get associated methods
// (Checker.collectObjects only collects methods with non-blank names;
// Checker.resolveBaseTypeName ensures that obj is not an alias name
// if it has attached methods.)
methods := check.methods[obj]
if methods == nil {
return
}
delete(check.methods, obj)
assert(!check.objMap[obj].tdecl.Alias) // don't use TypeName.IsAlias (requires fully set up object)
// use an objset to check for name conflicts
var mset objset
// spec: "If the base type is a struct type, the non-blank method
// and field names must be distinct."
base := asNamed(obj.typ) // shouldn't fail but be conservative
if base != nil {
if t, _ := base.underlying.(*Struct); t != nil {
for _, fld := range t.fields {
if fld.name != "_" {
assert(mset.insert(fld) == nil)
}
}
}
// Checker.Files may be called multiple times; additional package files
// may add methods to already type-checked types. Add pre-existing methods
// so that we can detect redeclarations.
for _, m := range base.methods {
assert(m.name != "_")
assert(mset.insert(m) == nil)
}
}
// add valid methods
for _, m := range methods {
// spec: "For a base type, the non-blank names of methods bound
// to it must be unique."
assert(m.name != "_")
if alt := mset.insert(m); alt != nil {
switch alt.(type) {
case *Var:
check.errorf(m.pos, "field and method with the same name %s", m.name)
case *Func:
if check.conf.CompilerErrorMessages {
check.errorf(m.pos, "%s.%s redeclared in this block", obj.Name(), m.name)
} else {
check.errorf(m.pos, "method %s already declared for %s", m.name, obj)
}
default:
unreachable()
}
check.reportAltDecl(alt)
continue
}
if base != nil {
base.methods = append(base.methods, m)
}
}
}
func (check *Checker) funcDecl(obj *Func, decl *declInfo) {
assert(obj.typ == nil)
// func declarations cannot use iota
assert(check.iota == nil)
sig := new(Signature)
obj.typ = sig // guard against cycles
// Avoid cycle error when referring to method while type-checking the signature.
// This avoids a nuisance in the best case (non-parameterized receiver type) and
// since the method is not a type, we get an error. If we have a parameterized
// receiver type, instantiating the receiver type leads to the instantiation of
// its methods, and we don't want a cycle error in that case.
// TODO(gri) review if this is correct and/or whether we still need this?
saved := obj.color_
obj.color_ = black
fdecl := decl.fdecl
check.funcType(sig, fdecl.Recv, fdecl.TParamList, fdecl.Type)
obj.color_ = saved
// function body must be type-checked after global declarations
// (functions implemented elsewhere have no body)
if !check.conf.IgnoreFuncBodies && fdecl.Body != nil {
check.later(func() {
check.funcBody(decl, obj.name, sig, fdecl.Body, nil)
})
}
}
func (check *Checker) declStmt(list []syntax.Decl) {
pkg := check.pkg
first := -1 // index of first ConstDecl in the current group, or -1
var last *syntax.ConstDecl // last ConstDecl with init expressions, or nil
for index, decl := range list {
if _, ok := decl.(*syntax.ConstDecl); !ok {
first = -1 // we're not in a constant declaration
}
switch s := decl.(type) {
case *syntax.ConstDecl:
top := len(check.delayed)
// iota is the index of the current constDecl within the group
if first < 0 || list[index-1].(*syntax.ConstDecl).Group != s.Group {
first = index
last = nil
}
iota := constant.MakeInt64(int64(index - first))
// determine which initialization expressions to use
inherited := true
switch {
case s.Type != nil || s.Values != nil:
last = s
inherited = false
case last == nil:
last = new(syntax.ConstDecl) // make sure last exists
inherited = false
}
// declare all constants
lhs := make([]*Const, len(s.NameList))
values := unpackExpr(last.Values)
for i, name := range s.NameList {
obj := NewConst(name.Pos(), pkg, name.Value, nil, iota)
lhs[i] = obj
var init syntax.Expr
if i < len(values) {
init = values[i]
}
check.constDecl(obj, last.Type, init, inherited)
}
// Constants must always have init values.
check.arity(s.Pos(), s.NameList, values, true, inherited)
// process function literals in init expressions before scope changes
check.processDelayed(top)
// spec: "The scope of a constant or variable identifier declared
// inside a function begins at the end of the ConstSpec or VarSpec
// (ShortVarDecl for short variable declarations) and ends at the
// end of the innermost containing block."
scopePos := endPos(s)
for i, name := range s.NameList {
check.declare(check.scope, name, lhs[i], scopePos)
}
case *syntax.VarDecl:
top := len(check.delayed)
lhs0 := make([]*Var, len(s.NameList))
for i, name := range s.NameList {
lhs0[i] = NewVar(name.Pos(), pkg, name.Value, nil)
}
// initialize all variables
values := unpackExpr(s.Values)
for i, obj := range lhs0 {
var lhs []*Var
var init syntax.Expr
switch len(values) {
case len(s.NameList):
// lhs and rhs match
init = values[i]
case 1:
// rhs is expected to be a multi-valued expression
lhs = lhs0
init = values[0]
default:
if i < len(values) {
init = values[i]
}
}
check.varDecl(obj, lhs, s.Type, init)
if len(values) == 1 {
// If we have a single lhs variable we are done either way.
// If we have a single rhs expression, it must be a multi-
// valued expression, in which case handling the first lhs
// variable will cause all lhs variables to have a type
// assigned, and we are done as well.
if debug {
for _, obj := range lhs0 {
assert(obj.typ != nil)
}
}
break
}
}
// If we have no type, we must have values.
if s.Type == nil || values != nil {
check.arity(s.Pos(), s.NameList, values, false, false)
}
// process function literals in init expressions before scope changes
check.processDelayed(top)
// declare all variables
// (only at this point are the variable scopes (parents) set)
scopePos := endPos(s) // see constant declarations
for i, name := range s.NameList {
// see constant declarations
check.declare(check.scope, name, lhs0[i], scopePos)
}
case *syntax.TypeDecl:
obj := NewTypeName(s.Name.Pos(), pkg, s.Name.Value, nil)
// spec: "The scope of a type identifier declared inside a function
// begins at the identifier in the TypeSpec and ends at the end of
// the innermost containing block."
scopePos := s.Name.Pos()
check.declare(check.scope, s.Name, obj, scopePos)
// mark and unmark type before calling typeDecl; its type is still nil (see Checker.objDecl)
obj.setColor(grey + color(check.push(obj)))
check.typeDecl(obj, s, nil)
check.pop().setColor(black)
default:
check.invalidASTf(s, "unknown syntax.Decl node %T", s)
}
}
}

View File

@ -0,0 +1,172 @@
// UNREVIEWED
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements various error reporters.
package types2
import (
"bytes"
"cmd/compile/internal/syntax"
"fmt"
"strconv"
"strings"
)
func unimplemented() {
panic("unimplemented")
}
func assert(p bool) {
if !p {
panic("assertion failed")
}
}
func unreachable() {
panic("unreachable")
}
func (check *Checker) qualifier(pkg *Package) string {
// Qualify the package unless it's the package being type-checked.
if pkg != check.pkg {
// If the same package name was used by multiple packages, display the full path.
if check.pkgCnt[pkg.name] > 1 {
return strconv.Quote(pkg.path)
}
return pkg.name
}
return ""
}
func (check *Checker) sprintf(format string, args ...interface{}) string {
for i, arg := range args {
switch a := arg.(type) {
case nil:
arg = "<nil>"
case operand:
panic("internal error: should always pass *operand")
case *operand:
arg = operandString(a, check.qualifier)
case syntax.Pos:
arg = a.String()
case syntax.Expr:
arg = syntax.String(a)
case Object:
arg = ObjectString(a, check.qualifier)
case Type:
arg = TypeString(a, check.qualifier)
}
args[i] = arg
}
return fmt.Sprintf(format, args...)
}
func (check *Checker) trace(pos syntax.Pos, format string, args ...interface{}) {
fmt.Printf("%s:\t%s%s\n",
pos,
strings.Repeat(". ", check.indent),
check.sprintf(format, args...),
)
}
// dump is only needed for debugging
func (check *Checker) dump(format string, args ...interface{}) {
fmt.Println(check.sprintf(format, args...))
}
func (check *Checker) err(pos syntax.Pos, msg string, soft bool) {
// Cheap trick: Don't report errors with messages containing
// "invalid operand" or "invalid type" as those tend to be
// follow-on errors which don't add useful information. Only
// exclude them if these strings are not at the beginning,
// and only if we have at least one error already reported.
if check.firstErr != nil && (strings.Index(msg, "invalid operand") > 0 || strings.Index(msg, "invalid type") > 0) {
return
}
// If we are encountering an error while evaluating an inherited
// constant initialization expression, pos is the position of in
// the original expression, and not of the currently declared
// constant identifier. Use the provided errpos instead.
// TODO(gri) We may also want to augment the error message and
// refer to the position (pos) in the original expression.
if check.errpos.IsKnown() {
assert(check.iota != nil)
pos = check.errpos
}
err := Error{pos, stripAnnotations(msg), msg, soft}
if check.firstErr == nil {
check.firstErr = err
}
if check.conf.Trace {
check.trace(pos, "ERROR: %s", msg)
}
f := check.conf.Error
if f == nil {
panic(bailout{}) // report only first error
}
f(err)
}
type poser interface {
Pos() syntax.Pos
}
func (check *Checker) error(at poser, msg string) {
check.err(posFor(at), msg, false)
}
func (check *Checker) errorf(at poser, format string, args ...interface{}) {
check.err(posFor(at), check.sprintf(format, args...), false)
}
func (check *Checker) softErrorf(at poser, format string, args ...interface{}) {
check.err(posFor(at), check.sprintf(format, args...), true)
}
func (check *Checker) invalidASTf(at poser, format string, args ...interface{}) {
check.errorf(at, "invalid AST: "+format, args...)
}
func (check *Checker) invalidArgf(at poser, format string, args ...interface{}) {
check.errorf(at, "invalid argument: "+format, args...)
}
func (check *Checker) invalidOpf(at poser, format string, args ...interface{}) {
check.errorf(at, "invalid operation: "+format, args...)
}
// posFor reports the left (= start) position of at.
func posFor(at poser) syntax.Pos {
switch x := at.(type) {
case *operand:
if x.expr != nil {
return startPos(x.expr)
}
case syntax.Node:
return startPos(x)
}
return at.Pos()
}
// stripAnnotations removes internal (type) annotations from s.
func stripAnnotations(s string) string {
// Would like to use strings.Builder but it's not available in Go 1.4.
var b bytes.Buffer
for _, r := range s {
// strip #'s and subscript digits
if r != instanceMarker && !('₀' <= r && r < '₀'+10) { // '₀' == U+2080
b.WriteRune(r)
}
}
if b.Len() < len(s) {
return b.String()
}
return s
}

View File

@ -0,0 +1,25 @@
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package types2
import "testing"
func TestStripAnnotations(t *testing.T) {
for _, test := range []struct {
in, want string
}{
{"", ""},
{" ", " "},
{"foo", "foo"},
{"foo₀", "foo"},
{"foo(T₀)", "foo(T)"},
{"#foo(T₀)", "foo(T)"},
} {
got := stripAnnotations(test.in)
if got != test.want {
t.Errorf("%q: got %q; want %q", test.in, got, test.want)
}
}
}

View File

@ -0,0 +1,269 @@
// UNREVIEWED
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Only run where builders (build.golang.org) have
// access to compiled packages for import.
//
// +build !arm,!arm64
package types2_test
// This file shows examples of basic usage of the go/types API.
//
// To locate a Go package, use (*go/build.Context).Import.
// To load, parse, and type-check a complete Go program
// from source, use golang.org/x/tools/go/loader.
import (
"bytes"
"cmd/compile/internal/syntax"
"cmd/compile/internal/types2"
"fmt"
"log"
"regexp"
"sort"
"strings"
)
// ExampleScope prints the tree of Scopes of a package created from a
// set of parsed files.
func ExampleScope() {
// Parse the source files for a package.
var files []*syntax.File
for _, file := range []struct{ name, input string }{
{"main.go", `
package main
import "fmt"
func main() {
freezing := FToC(-18)
fmt.Println(freezing, Boiling) }
`},
{"celsius.go", `
package main
import "fmt"
type Celsius float64
func (c Celsius) String() string { return fmt.Sprintf("%g°C", c) }
func FToC(f float64) Celsius { return Celsius(f - 32 / 9 * 5) }
const Boiling Celsius = 100
func Unused() { {}; {{ var x int; _ = x }} } // make sure empty block scopes get printed
`},
} {
f, err := parseSrc(file.name, file.input)
if err != nil {
log.Fatal(err)
}
files = append(files, f)
}
// Type-check a package consisting of these files.
// Type information for the imported "fmt" package
// comes from $GOROOT/pkg/$GOOS_$GOOARCH/fmt.a.
conf := types2.Config{Importer: defaultImporter()}
pkg, err := conf.Check("temperature", files, nil)
if err != nil {
log.Fatal(err)
}
// Print the tree of scopes.
// For determinism, we redact addresses.
var buf bytes.Buffer
pkg.Scope().WriteTo(&buf, 0, true)
rx := regexp.MustCompile(` 0x[a-fA-F0-9]*`)
fmt.Println(rx.ReplaceAllString(buf.String(), ""))
// Output:
// package "temperature" scope {
// . const temperature.Boiling temperature.Celsius
// . type temperature.Celsius float64
// . func temperature.FToC(f float64) temperature.Celsius
// . func temperature.Unused()
// . func temperature.main()
// . main.go scope {
// . . package fmt
// . . function scope {
// . . . var freezing temperature.Celsius
// . . }
// . }
// . celsius.go scope {
// . . package fmt
// . . function scope {
// . . . var c temperature.Celsius
// . . }
// . . function scope {
// . . . var f float64
// . . }
// . . function scope {
// . . . block scope {
// . . . }
// . . . block scope {
// . . . . block scope {
// . . . . . var x int
// . . . . }
// . . . }
// . . }
// . }
// }
}
// ExampleInfo prints various facts recorded by the type checker in a
// types2.Info struct: definitions of and references to each named object,
// and the type, value, and mode of every expression in the package.
func ExampleInfo() {
// Parse a single source file.
const input = `
package fib
type S string
var a, b, c = len(b), S(c), "hello"
func fib(x int) int {
if x < 2 {
return x
}
return fib(x-1) - fib(x-2)
}`
f, err := parseSrc("fib.go", input)
if err != nil {
log.Fatal(err)
}
// Type-check the package.
// We create an empty map for each kind of input
// we're interested in, and Check populates them.
info := types2.Info{
Types: make(map[syntax.Expr]types2.TypeAndValue),
Defs: make(map[*syntax.Name]types2.Object),
Uses: make(map[*syntax.Name]types2.Object),
}
var conf types2.Config
pkg, err := conf.Check("fib", []*syntax.File{f}, &info)
if err != nil {
log.Fatal(err)
}
// Print package-level variables in initialization order.
fmt.Printf("InitOrder: %v\n\n", info.InitOrder)
// For each named object, print the line and
// column of its definition and each of its uses.
fmt.Println("Defs and Uses of each named object:")
usesByObj := make(map[types2.Object][]string)
for id, obj := range info.Uses {
posn := id.Pos()
lineCol := fmt.Sprintf("%d:%d", posn.Line(), posn.Col())
usesByObj[obj] = append(usesByObj[obj], lineCol)
}
var items []string
for obj, uses := range usesByObj {
sort.Strings(uses)
item := fmt.Sprintf("%s:\n defined at %s\n used at %s",
types2.ObjectString(obj, types2.RelativeTo(pkg)),
obj.Pos(),
strings.Join(uses, ", "))
items = append(items, item)
}
sort.Strings(items) // sort by line:col, in effect
fmt.Println(strings.Join(items, "\n"))
fmt.Println()
// TODO(gri) Enable once positions are updated/verified
// fmt.Println("Types and Values of each expression:")
// items = nil
// for expr, tv := range info.Types {
// var buf bytes.Buffer
// posn := expr.Pos()
// tvstr := tv.Type.String()
// if tv.Value != nil {
// tvstr += " = " + tv.Value.String()
// }
// // line:col | expr | mode : type = value
// fmt.Fprintf(&buf, "%2d:%2d | %-19s | %-7s : %s",
// posn.Line(), posn.Col(), types2.ExprString(expr),
// mode(tv), tvstr)
// items = append(items, buf.String())
// }
// sort.Strings(items)
// fmt.Println(strings.Join(items, "\n"))
// Output:
// InitOrder: [c = "hello" b = S(c) a = len(b)]
//
// Defs and Uses of each named object:
// builtin len:
// defined at <unknown position>
// used at 6:15
// func fib(x int) int:
// defined at fib.go:8:6
// used at 12:20, 12:9
// type S string:
// defined at fib.go:4:6
// used at 6:23
// type int:
// defined at <unknown position>
// used at 8:12, 8:17
// type string:
// defined at <unknown position>
// used at 4:8
// var b S:
// defined at fib.go:6:8
// used at 6:19
// var c string:
// defined at fib.go:6:11
// used at 6:25
// var x int:
// defined at fib.go:8:10
// used at 10:10, 12:13, 12:24, 9:5
// TODO(gri) Enable once positions are updated/verified
// Types and Values of each expression:
// 4: 8 | string | type : string
// 6:15 | len | builtin : func(string) int
// 6:15 | len(b) | value : int
// 6:19 | b | var : fib.S
// 6:23 | S | type : fib.S
// 6:23 | S(c) | value : fib.S
// 6:25 | c | var : string
// 6:29 | "hello" | value : string = "hello"
// 8:12 | int | type : int
// 8:17 | int | type : int
// 9: 5 | x | var : int
// 9: 5 | x < 2 | value : untyped bool
// 9: 9 | 2 | value : int = 2
// 10:10 | x | var : int
// 12: 9 | fib | value : func(x int) int
// 12: 9 | fib(x - 1) | value : int
// 12: 9 | fib(x - 1) - fib(x - 2) | value : int
// 12:13 | x | var : int
// 12:13 | x - 1 | value : int
// 12:15 | 1 | value : int = 1
// 12:20 | fib | value : func(x int) int
// 12:20 | fib(x - 2) | value : int
// 12:24 | x | var : int
// 12:24 | x - 2 | value : int
// 12:26 | 2 | value : int = 2
}
func mode(tv types2.TypeAndValue) string {
switch {
case tv.IsVoid():
return "void"
case tv.IsType():
return "type"
case tv.IsBuiltin():
return "builtin"
case tv.IsNil():
return "nil"
case tv.Assignable():
if tv.Addressable() {
return "var"
}
return "mapindex"
case tv.IsValue():
return "value"
default:
return "unknown"
}
}

Some files were not shown because too many files have changed in this diff Show More