cmd/internal/obj: minor refactor of wasmimport code

This CL does some minor refactoring of the code handling
wasmimport.
- Put the WasmImport aux reading and writing code together for
  symmetry.
- Define WasmFuncType, embedded in WasmImport. WasmFuncType could
  also be used (later) for wasmexport.
- Move code generation code to a separate function. The containing
  function is already pretty large.
- Simplify linker code a little bit. The loader convention is to
  return the 0 Sym for nonexistent symbol, instead of a separate
  boolean.

No change in generated code. Passes toolstash -cmp
(GOARCH=wasm GOOS=wasip1 go build -toolexec "toolstash -cmp" -a std cmd).

Change-Id: Idc2514f84a08621333841ae4034b81130e0ce411
Reviewed-on: https://go-review.googlesource.com/c/go/+/603135
Reviewed-by: Than McIntosh <thanm@golang.org>
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
Reviewed-by: David Chase <drchase@google.com>
This commit is contained in:
Cherry Mui 2024-08-05 13:40:18 -04:00
parent a7c7ec5995
commit 03e5d83ca7
6 changed files with 222 additions and 194 deletions

View File

@ -32,6 +32,7 @@ package obj
import (
"bufio"
"bytes"
"cmd/internal/dwarf"
"cmd/internal/goobj"
"cmd/internal/objabi"
@ -496,9 +497,9 @@ type FuncInfo struct {
WrapInfo *LSym // for wrapper, info of wrapped function
JumpTables []JumpTable
FuncInfoSym *LSym
WasmImportSym *LSym
WasmImport *WasmImport
FuncInfoSym *LSym
WasmImport *WasmImport
sehUnwindInfoSym *LSym
}
@ -609,45 +610,118 @@ type WasmImport struct {
// Name holds the WASM imported function name specified by the
// //go:wasmimport directive.
Name string
WasmFuncType // type of the imported function
// aux symbol to pass metadata to the linker, serialization of
// the fields above.
AuxSym *LSym
}
func (wi *WasmImport) CreateAuxSym() {
var b bytes.Buffer
wi.Write(&b)
p := b.Bytes()
wi.AuxSym = &LSym{
Type: objabi.SDATA, // doesn't really matter
P: append([]byte(nil), p...),
Size: int64(len(p)),
}
}
func (wi *WasmImport) Write(w *bytes.Buffer) {
var b [8]byte
writeUint32 := func(x uint32) {
binary.LittleEndian.PutUint32(b[:], x)
w.Write(b[:4])
}
writeString := func(s string) {
writeUint32(uint32(len(s)))
w.WriteString(s)
}
writeString(wi.Module)
writeString(wi.Name)
wi.WasmFuncType.Write(w)
}
func (wi *WasmImport) Read(b []byte) {
readUint32 := func() uint32 {
x := binary.LittleEndian.Uint32(b)
b = b[4:]
return x
}
readString := func() string {
n := readUint32()
s := string(b[:n])
b = b[n:]
return s
}
wi.Module = readString()
wi.Name = readString()
wi.WasmFuncType.Read(b)
}
// WasmFuncType represents a WebAssembly (WASM) function type with
// parameters and results translated into WASM types based on the Go function
// declaration.
type WasmFuncType struct {
// Params holds the imported function parameter fields.
Params []WasmField
// Results holds the imported function result fields.
Results []WasmField
}
func (wi *WasmImport) CreateSym(ctxt *Link) *LSym {
var sym LSym
func (ft *WasmFuncType) Write(w *bytes.Buffer) {
var b [8]byte
writeByte := func(x byte) {
sym.WriteBytes(ctxt, sym.Size, []byte{x})
w.WriteByte(x)
}
writeUint32 := func(x uint32) {
binary.LittleEndian.PutUint32(b[:], x)
sym.WriteBytes(ctxt, sym.Size, b[:4])
w.Write(b[:4])
}
writeInt64 := func(x int64) {
binary.LittleEndian.PutUint64(b[:], uint64(x))
sym.WriteBytes(ctxt, sym.Size, b[:])
w.Write(b[:])
}
writeString := func(s string) {
writeUint32(uint32(len(s)))
sym.WriteString(ctxt, sym.Size, len(s), s)
}
writeString(wi.Module)
writeString(wi.Name)
writeUint32(uint32(len(wi.Params)))
for _, f := range wi.Params {
writeUint32(uint32(len(ft.Params)))
for _, f := range ft.Params {
writeByte(byte(f.Type))
writeInt64(f.Offset)
}
writeUint32(uint32(len(wi.Results)))
for _, f := range wi.Results {
writeUint32(uint32(len(ft.Results)))
for _, f := range ft.Results {
writeByte(byte(f.Type))
writeInt64(f.Offset)
}
}
return &sym
func (ft *WasmFuncType) Read(b []byte) {
readByte := func() byte {
x := b[0]
b = b[1:]
return x
}
readUint32 := func() uint32 {
x := binary.LittleEndian.Uint32(b)
b = b[4:]
return x
}
readInt64 := func() int64 {
x := binary.LittleEndian.Uint64(b)
b = b[8:]
return int64(x)
}
ft.Params = make([]WasmField, readUint32())
for i := range ft.Params {
ft.Params[i].Type = WasmFieldType(readByte())
ft.Params[i].Offset = int64(readInt64())
}
ft.Results = make([]WasmField, readUint32())
for i := range ft.Results {
ft.Results[i].Type = WasmFieldType(readByte())
ft.Results[i].Offset = int64(readInt64())
}
}
type WasmField struct {

View File

@ -621,11 +621,11 @@ func (w *writer) Aux(s *LSym) {
for _, pcSym := range fn.Pcln.Pcdata {
w.aux1(goobj.AuxPcdata, pcSym)
}
if fn.WasmImportSym != nil {
if fn.WasmImportSym.Size == 0 {
if fn.WasmImport != nil {
if fn.WasmImport.AuxSym.Size == 0 {
panic("wasmimport aux sym must have non-zero size")
}
w.aux1(goobj.AuxWasmImport, fn.WasmImportSym)
w.aux1(goobj.AuxWasmImport, fn.WasmImport.AuxSym)
}
} else if v := s.VarInfo(); v != nil {
if v.dwarfInfoSym != nil && v.dwarfInfoSym.Size != 0 {
@ -732,7 +732,7 @@ func nAuxSym(s *LSym) int {
}
n += len(fn.Pcln.Pcdata)
if fn.WasmImport != nil {
if fn.WasmImportSym == nil || fn.WasmImportSym.Size == 0 {
if fn.WasmImport.AuxSym == nil || fn.WasmImport.AuxSym.Size == 0 {
panic("wasmimport aux sym must exist and have non-zero size")
}
n++
@ -797,7 +797,10 @@ func genFuncInfoSyms(ctxt *Link) {
fn.FuncInfoSym = isym
b.Reset()
auxsyms := []*LSym{fn.dwarfRangesSym, fn.dwarfLocSym, fn.dwarfDebugLinesSym, fn.dwarfInfoSym, fn.WasmImportSym}
auxsyms := []*LSym{fn.dwarfRangesSym, fn.dwarfLocSym, fn.dwarfDebugLinesSym, fn.dwarfInfoSym}
if wi := fn.WasmImport; wi != nil {
auxsyms = append(auxsyms, wi.AuxSym)
}
for _, s := range auxsyms {
if s == nil || s.Size == 0 {
continue

View File

@ -458,7 +458,10 @@ func (ctxt *Link) traverseFuncAux(flag traverseFlag, fsym *LSym, fn func(parent
}
}
auxsyms := []*LSym{fninfo.dwarfRangesSym, fninfo.dwarfLocSym, fninfo.dwarfDebugLinesSym, fninfo.dwarfInfoSym, fninfo.WasmImportSym, fninfo.sehUnwindInfoSym}
auxsyms := []*LSym{fninfo.dwarfRangesSym, fninfo.dwarfLocSym, fninfo.dwarfDebugLinesSym, fninfo.dwarfInfoSym, fninfo.sehUnwindInfoSym}
if wi := fninfo.WasmImport; wi != nil {
auxsyms = append(auxsyms, wi.AuxSym)
}
for _, s := range auxsyms {
if s == nil || s.Size == 0 {
continue

View File

@ -188,111 +188,8 @@ func preprocess(ctxt *obj.Link, s *obj.LSym, newprog obj.ProgAlloc) {
// If the function exits just to call out to a wasmimport, then
// generate the code to translate from our internal Go-stack
// based call convention to the native webassembly call convention.
if wi := s.Func().WasmImport; wi != nil {
s.Func().WasmImportSym = wi.CreateSym(ctxt)
p := s.Func().Text
if p.Link != nil {
panic("wrapper functions for WASM imports should not have a body")
}
to := obj.Addr{
Type: obj.TYPE_MEM,
Name: obj.NAME_EXTERN,
Sym: s,
}
// If the module that the import is for is our magic "gojs" module, then this
// indicates that the called function understands the Go stack-based call convention
// so we just pass the stack pointer to it, knowing it will read the params directly
// off the stack and push the results into memory based on the stack pointer.
if wi.Module == GojsModule {
// The called function has a signature of 'func(sp int)'. It has access to the memory
// value somewhere to be able to address the memory based on the "sp" value.
p = appendp(p, AGet, regAddr(REG_SP))
p = appendp(p, ACall, to)
p.Mark = WasmImport
} else {
if len(wi.Results) > 1 {
// TODO(evanphx) implement support for the multi-value proposal:
// https://github.com/WebAssembly/multi-value/blob/master/proposals/multi-value/Overview.md
panic("invalid results type") // impossible until multi-value proposal has landed
}
if len(wi.Results) == 1 {
// If we have a result (rather than returning nothing at all), then
// we'll write the result to the Go stack relative to the current stack pointer.
// We cache the current stack pointer value on the wasm stack here and then use
// it after the Call instruction to store the result.
p = appendp(p, AGet, regAddr(REG_SP))
}
for _, f := range wi.Params {
// Each load instructions will consume the value of sp on the stack, so
// we need to read sp for each param. WASM appears to not have a stack dup instruction
// (a strange omission for a stack-based VM), if it did, we'd be using the dup here.
p = appendp(p, AGet, regAddr(REG_SP))
// Offset is the location of the param on the Go stack (ie relative to sp).
// Because of our call convention, the parameters are located an additional 8 bytes
// from sp because we store the return address as an int64 at the bottom of the stack.
// Ie the stack looks like [return_addr, param3, param2, param1, etc]
// Ergo, we add 8 to the true byte offset of the param to skip the return address.
loadOffset := f.Offset + 8
// We're reading the value from the Go stack onto the WASM stack and leaving it there
// for CALL to pick them up.
switch f.Type {
case obj.WasmI32:
p = appendp(p, AI32Load, constAddr(loadOffset))
case obj.WasmI64:
p = appendp(p, AI64Load, constAddr(loadOffset))
case obj.WasmF32:
p = appendp(p, AF32Load, constAddr(loadOffset))
case obj.WasmF64:
p = appendp(p, AF64Load, constAddr(loadOffset))
case obj.WasmPtr:
p = appendp(p, AI64Load, constAddr(loadOffset))
p = appendp(p, AI32WrapI64)
default:
panic("bad param type")
}
}
// The call instruction is marked as being for a wasm import so that a later phase
// will generate relocation information that allows us to patch this with then
// offset of the imported function in the wasm imports.
p = appendp(p, ACall, to)
p.Mark = WasmImport
if len(wi.Results) == 1 {
f := wi.Results[0]
// Much like with the params, we need to adjust the offset we store the result value
// to by 8 bytes to account for the return address on the Go stack.
storeOffset := f.Offset + 8
// This code is paired the code above that reads the stack pointer onto the wasm
// stack. We've done this so we have a consistent view of the sp value as it might
// be manipulated by the call and we want to ignore that manipulation here.
switch f.Type {
case obj.WasmI32:
p = appendp(p, AI32Store, constAddr(storeOffset))
case obj.WasmI64:
p = appendp(p, AI64Store, constAddr(storeOffset))
case obj.WasmF32:
p = appendp(p, AF32Store, constAddr(storeOffset))
case obj.WasmF64:
p = appendp(p, AF64Store, constAddr(storeOffset))
case obj.WasmPtr:
p = appendp(p, AI64ExtendI32U)
p = appendp(p, AI64Store, constAddr(storeOffset))
default:
panic("bad result type")
}
}
}
p = appendp(p, obj.ARET)
if s.Func().WasmImport != nil {
genWasmImportWrapper(s, appendp)
// It should be 0 already, but we'll set it to 0 anyway just to be sure
// that the code below which adds frame expansion code to the function body
@ -894,6 +791,115 @@ func preprocess(ctxt *obj.Link, s *obj.LSym, newprog obj.ProgAlloc) {
}
}
// Generate function body for wasmimport wrapper function.
func genWasmImportWrapper(s *obj.LSym, appendp func(p *obj.Prog, as obj.As, args ...obj.Addr) *obj.Prog) {
wi := s.Func().WasmImport
wi.CreateAuxSym()
p := s.Func().Text
if p.Link != nil {
panic("wrapper functions for WASM imports should not have a body")
}
to := obj.Addr{
Type: obj.TYPE_MEM,
Name: obj.NAME_EXTERN,
Sym: s,
}
// If the module that the import is for is our magic "gojs" module, then this
// indicates that the called function understands the Go stack-based call convention
// so we just pass the stack pointer to it, knowing it will read the params directly
// off the stack and push the results into memory based on the stack pointer.
if wi.Module == GojsModule {
// The called function has a signature of 'func(sp int)'. It has access to the memory
// value somewhere to be able to address the memory based on the "sp" value.
p = appendp(p, AGet, regAddr(REG_SP))
p = appendp(p, ACall, to)
p.Mark = WasmImport
} else {
if len(wi.Results) > 1 {
// TODO(evanphx) implement support for the multi-value proposal:
// https://github.com/WebAssembly/multi-value/blob/master/proposals/multi-value/Overview.md
panic("invalid results type") // impossible until multi-value proposal has landed
}
if len(wi.Results) == 1 {
// If we have a result (rather than returning nothing at all), then
// we'll write the result to the Go stack relative to the current stack pointer.
// We cache the current stack pointer value on the wasm stack here and then use
// it after the Call instruction to store the result.
p = appendp(p, AGet, regAddr(REG_SP))
}
for _, f := range wi.Params {
// Each load instructions will consume the value of sp on the stack, so
// we need to read sp for each param. WASM appears to not have a stack dup instruction
// (a strange omission for a stack-based VM), if it did, we'd be using the dup here.
p = appendp(p, AGet, regAddr(REG_SP))
// Offset is the location of the param on the Go stack (ie relative to sp).
// Because of our call convention, the parameters are located an additional 8 bytes
// from sp because we store the return address as an int64 at the bottom of the stack.
// Ie the stack looks like [return_addr, param3, param2, param1, etc]
// Ergo, we add 8 to the true byte offset of the param to skip the return address.
loadOffset := f.Offset + 8
// We're reading the value from the Go stack onto the WASM stack and leaving it there
// for CALL to pick them up.
switch f.Type {
case obj.WasmI32:
p = appendp(p, AI32Load, constAddr(loadOffset))
case obj.WasmI64:
p = appendp(p, AI64Load, constAddr(loadOffset))
case obj.WasmF32:
p = appendp(p, AF32Load, constAddr(loadOffset))
case obj.WasmF64:
p = appendp(p, AF64Load, constAddr(loadOffset))
case obj.WasmPtr:
p = appendp(p, AI64Load, constAddr(loadOffset))
p = appendp(p, AI32WrapI64)
default:
panic("bad param type")
}
}
// The call instruction is marked as being for a wasm import so that a later phase
// will generate relocation information that allows us to patch this with then
// offset of the imported function in the wasm imports.
p = appendp(p, ACall, to)
p.Mark = WasmImport
if len(wi.Results) == 1 {
f := wi.Results[0]
// Much like with the params, we need to adjust the offset we store the result value
// to by 8 bytes to account for the return address on the Go stack.
storeOffset := f.Offset + 8
// This code is paired the code above that reads the stack pointer onto the wasm
// stack. We've done this so we have a consistent view of the sp value as it might
// be manipulated by the call and we want to ignore that manipulation here.
switch f.Type {
case obj.WasmI32:
p = appendp(p, AI32Store, constAddr(storeOffset))
case obj.WasmI64:
p = appendp(p, AI64Store, constAddr(storeOffset))
case obj.WasmF32:
p = appendp(p, AF32Store, constAddr(storeOffset))
case obj.WasmF64:
p = appendp(p, AF64Store, constAddr(storeOffset))
case obj.WasmPtr:
p = appendp(p, AI64ExtendI32U)
p = appendp(p, AI64Store, constAddr(storeOffset))
default:
panic("bad result type")
}
}
}
p = appendp(p, obj.ARET)
}
func constAddr(value int64) obj.Addr {
return obj.Addr{Type: obj.TYPE_CONST, Offset: value}
}

View File

@ -1620,21 +1620,11 @@ func (l *Loader) Aux(i Sym, j int) Aux {
// contains the information necessary for the linker to add a WebAssembly
// import statement.
// (https://webassembly.github.io/spec/core/syntax/modules.html#imports)
func (l *Loader) WasmImportSym(fnSymIdx Sym) (Sym, bool) {
func (l *Loader) WasmImportSym(fnSymIdx Sym) Sym {
if l.SymType(fnSymIdx) != sym.STEXT {
log.Fatalf("error: non-function sym %d/%s t=%s passed to WasmImportSym", fnSymIdx, l.SymName(fnSymIdx), l.SymType(fnSymIdx).String())
}
r, li := l.toLocal(fnSymIdx)
auxs := r.Auxs(li)
for i := range auxs {
a := &auxs[i]
switch a.Type() {
case goobj.AuxWasmImport:
return l.resolve(r, a.Sym()), true
}
}
return 0, false
return l.aux1(fnSymIdx, goobj.AuxWasmImport)
}
// SEHUnwindSym returns the auxiliary SEH unwind symbol associated with

View File

@ -12,7 +12,6 @@ import (
"cmd/link/internal/ld"
"cmd/link/internal/loader"
"cmd/link/internal/sym"
"encoding/binary"
"fmt"
"internal/abi"
"internal/buildcfg"
@ -61,55 +60,8 @@ type wasmFuncType struct {
}
func readWasmImport(ldr *loader.Loader, s loader.Sym) obj.WasmImport {
reportError := func(err error) { panic(fmt.Sprintf("failed to read WASM import in sym %v: %v", s, err)) }
data := ldr.Data(s)
readUint32 := func() (v uint32) {
v = binary.LittleEndian.Uint32(data)
data = data[4:]
return
}
readUint64 := func() (v uint64) {
v = binary.LittleEndian.Uint64(data)
data = data[8:]
return
}
readByte := func() byte {
if len(data) == 0 {
reportError(io.EOF)
}
b := data[0]
data = data[1:]
return b
}
readString := func() string {
n := readUint32()
s := string(data[:n])
data = data[n:]
return s
}
var wi obj.WasmImport
wi.Module = readString()
wi.Name = readString()
wi.Params = make([]obj.WasmField, readUint32())
for i := range wi.Params {
wi.Params[i].Type = obj.WasmFieldType(readByte())
wi.Params[i].Offset = int64(readUint64())
}
wi.Results = make([]obj.WasmField, readUint32())
for i := range wi.Results {
wi.Results[i].Type = obj.WasmFieldType(readByte())
wi.Results[i].Offset = int64(readUint64())
}
wi.Read(ldr.Data(s))
return wi
}
@ -207,8 +159,8 @@ func asmb2(ctxt *ld.Link, ldr *loader.Loader) {
for ri := 0; ri < relocs.Count(); ri++ {
r := relocs.At(ri)
if r.Type() == objabi.R_WASMIMPORT {
if lsym, ok := ldr.WasmImportSym(fn); ok {
wi := readWasmImport(ldr, lsym)
if wsym := ldr.WasmImportSym(fn); wsym != 0 {
wi := readWasmImport(ldr, wsym)
hostImportMap[fn] = int64(len(hostImports))
hostImports = append(hostImports, &wasmFunc{
Module: wi.Module,