mirror of
https://github.com/golang/go.git
synced 2025-05-05 15:43:04 +00:00
test: gofmt chan/*.go
These are functional tests, so it is safe to gofmt them. Change-Id: I3067279c1d49809ac6a62054448ab8a6c3de9bda Reviewed-on: https://go-review.googlesource.com/43623 Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
This commit is contained in:
parent
a9bf3b2e19
commit
26a852112d
@ -54,4 +54,3 @@ func main() {
|
||||
AsynchFifo()
|
||||
SynchFifo()
|
||||
}
|
||||
|
||||
|
@ -28,19 +28,19 @@ func main() {
|
||||
<-n // ERROR "receive from non-chan"
|
||||
n <- 2 // ERROR "send to non-chan"
|
||||
|
||||
c <- 0 // ok
|
||||
<-c // ok
|
||||
x, ok := <-c // ok
|
||||
c <- 0 // ok
|
||||
<-c // ok
|
||||
x, ok := <-c // ok
|
||||
_, _ = x, ok
|
||||
|
||||
cr <- 0 // ERROR "send"
|
||||
<-cr // ok
|
||||
x, ok = <-cr // ok
|
||||
cr <- 0 // ERROR "send"
|
||||
<-cr // ok
|
||||
x, ok = <-cr // ok
|
||||
_, _ = x, ok
|
||||
|
||||
cs <- 0 // ok
|
||||
<-cs // ERROR "receive"
|
||||
x, ok = <-cs // ERROR "receive"
|
||||
cs <- 0 // ok
|
||||
<-cs // ERROR "receive"
|
||||
x, ok = <-cs // ERROR "receive"
|
||||
_, _ = x, ok
|
||||
|
||||
select {
|
||||
@ -57,14 +57,14 @@ func main() {
|
||||
_ = x
|
||||
}
|
||||
|
||||
for _ = range cs {// ERROR "receive"
|
||||
for _ = range cs { // ERROR "receive"
|
||||
}
|
||||
|
||||
for range cs {// ERROR "receive"
|
||||
for range cs { // ERROR "receive"
|
||||
}
|
||||
|
||||
close(c)
|
||||
close(cs)
|
||||
close(cr) // ERROR "receive"
|
||||
close(n) // ERROR "invalid operation.*non-chan type"
|
||||
close(cr) // ERROR "receive"
|
||||
close(n) // ERROR "invalid operation.*non-chan type"
|
||||
}
|
||||
|
@ -17,12 +17,12 @@ package main
|
||||
|
||||
import "os"
|
||||
|
||||
type rat struct {
|
||||
num, den int64 // numerator, denominator
|
||||
type rat struct {
|
||||
num, den int64 // numerator, denominator
|
||||
}
|
||||
|
||||
func (u rat) pr() {
|
||||
if u.den==1 {
|
||||
if u.den == 1 {
|
||||
print(u.num)
|
||||
} else {
|
||||
print(u.num, "/", u.den)
|
||||
@ -35,12 +35,12 @@ func (u rat) eq(c rat) bool {
|
||||
}
|
||||
|
||||
type dch struct {
|
||||
req chan int
|
||||
dat chan rat
|
||||
req chan int
|
||||
dat chan rat
|
||||
nam int
|
||||
}
|
||||
|
||||
type dch2 [2] *dch
|
||||
type dch2 [2]*dch
|
||||
|
||||
var chnames string
|
||||
var chnameserial int
|
||||
@ -77,17 +77,17 @@ func mkdch2() *dch2 {
|
||||
// a signal on the release-wait channel tells the next newer
|
||||
// generation to begin servicing out[1].
|
||||
|
||||
func dosplit(in *dch, out *dch2, wait chan int ) {
|
||||
both := false // do not service both channels
|
||||
func dosplit(in *dch, out *dch2, wait chan int) {
|
||||
both := false // do not service both channels
|
||||
|
||||
select {
|
||||
case <-out[0].req:
|
||||
|
||||
|
||||
case <-wait:
|
||||
both = true
|
||||
select {
|
||||
case <-out[0].req:
|
||||
|
||||
|
||||
case <-out[1].req:
|
||||
out[0], out[1] = out[1], out[0]
|
||||
}
|
||||
@ -95,7 +95,7 @@ func dosplit(in *dch, out *dch2, wait chan int ) {
|
||||
|
||||
seqno++
|
||||
in.req <- seqno
|
||||
release := make(chan int)
|
||||
release := make(chan int)
|
||||
go dosplit(in, out, release)
|
||||
dat := <-in.dat
|
||||
out[0].dat <- dat
|
||||
@ -128,17 +128,19 @@ func get(in *dch) rat {
|
||||
|
||||
func getn(in []*dch) []rat {
|
||||
n := len(in)
|
||||
if n != 2 { panic("bad n in getn") }
|
||||
req := new([2] chan int)
|
||||
dat := new([2] chan rat)
|
||||
if n != 2 {
|
||||
panic("bad n in getn")
|
||||
}
|
||||
req := new([2]chan int)
|
||||
dat := new([2]chan rat)
|
||||
out := make([]rat, 2)
|
||||
var i int
|
||||
var it rat
|
||||
for i=0; i<n; i++ {
|
||||
for i = 0; i < n; i++ {
|
||||
req[i] = in[i].req
|
||||
dat[i] = nil
|
||||
}
|
||||
for n=2*n; n>0; n-- {
|
||||
for n = 2 * n; n > 0; n-- {
|
||||
seqno++
|
||||
|
||||
select {
|
||||
@ -178,8 +180,8 @@ func repeat(dat rat, out *dch) {
|
||||
}
|
||||
}
|
||||
|
||||
type PS *dch // power series
|
||||
type PS2 *[2] PS // pair of power series
|
||||
type PS *dch // power series
|
||||
type PS2 *[2]PS // pair of power series
|
||||
|
||||
var Ones PS
|
||||
var Twos PS
|
||||
@ -200,23 +202,27 @@ func mkPS2() *dch2 {
|
||||
|
||||
// Integer gcd; needed for rational arithmetic
|
||||
|
||||
func gcd (u, v int64) int64 {
|
||||
if u < 0 { return gcd(-u, v) }
|
||||
if u == 0 { return v }
|
||||
func gcd(u, v int64) int64 {
|
||||
if u < 0 {
|
||||
return gcd(-u, v)
|
||||
}
|
||||
if u == 0 {
|
||||
return v
|
||||
}
|
||||
return gcd(v%u, u)
|
||||
}
|
||||
|
||||
// Make a rational from two ints and from one int
|
||||
|
||||
func i2tor(u, v int64) rat {
|
||||
g := gcd(u,v)
|
||||
g := gcd(u, v)
|
||||
var r rat
|
||||
if v > 0 {
|
||||
r.num = u/g
|
||||
r.den = v/g
|
||||
r.num = u / g
|
||||
r.den = v / g
|
||||
} else {
|
||||
r.num = -u/g
|
||||
r.den = -v/g
|
||||
r.num = -u / g
|
||||
r.den = -v / g
|
||||
}
|
||||
return r
|
||||
}
|
||||
@ -228,29 +234,30 @@ func itor(u int64) rat {
|
||||
var zero rat
|
||||
var one rat
|
||||
|
||||
|
||||
// End mark and end test
|
||||
|
||||
var finis rat
|
||||
|
||||
func end(u rat) int64 {
|
||||
if u.den==0 { return 1 }
|
||||
if u.den == 0 {
|
||||
return 1
|
||||
}
|
||||
return 0
|
||||
}
|
||||
|
||||
// Operations on rationals
|
||||
|
||||
func add(u, v rat) rat {
|
||||
g := gcd(u.den,v.den)
|
||||
return i2tor(u.num*(v.den/g)+v.num*(u.den/g),u.den*(v.den/g))
|
||||
g := gcd(u.den, v.den)
|
||||
return i2tor(u.num*(v.den/g)+v.num*(u.den/g), u.den*(v.den/g))
|
||||
}
|
||||
|
||||
func mul(u, v rat) rat {
|
||||
g1 := gcd(u.num,v.den)
|
||||
g2 := gcd(u.den,v.num)
|
||||
g1 := gcd(u.num, v.den)
|
||||
g2 := gcd(u.den, v.num)
|
||||
var r rat
|
||||
r.num = (u.num/g1)*(v.num/g2)
|
||||
r.den = (u.den/g2)*(v.den/g1)
|
||||
r.num = (u.num / g1) * (v.num / g2)
|
||||
r.den = (u.den / g2) * (v.den / g1)
|
||||
return r
|
||||
}
|
||||
|
||||
@ -262,23 +269,25 @@ func sub(u, v rat) rat {
|
||||
return add(u, neg(v))
|
||||
}
|
||||
|
||||
func inv(u rat) rat { // invert a rat
|
||||
if u.num == 0 { panic("zero divide in inv") }
|
||||
func inv(u rat) rat { // invert a rat
|
||||
if u.num == 0 {
|
||||
panic("zero divide in inv")
|
||||
}
|
||||
return i2tor(u.den, u.num)
|
||||
}
|
||||
|
||||
// print eval in floating point of PS at x=c to n terms
|
||||
func evaln(c rat, U PS, n int) {
|
||||
xn := float64(1)
|
||||
x := float64(c.num)/float64(c.den)
|
||||
x := float64(c.num) / float64(c.den)
|
||||
val := float64(0)
|
||||
for i:=0; i<n; i++ {
|
||||
for i := 0; i < n; i++ {
|
||||
u := get(U)
|
||||
if end(u) != 0 {
|
||||
break
|
||||
}
|
||||
val = val + x * float64(u.num)/float64(u.den)
|
||||
xn = xn*x
|
||||
val = val + x*float64(u.num)/float64(u.den)
|
||||
xn = xn * x
|
||||
}
|
||||
print(val, "\n")
|
||||
}
|
||||
@ -286,7 +295,7 @@ func evaln(c rat, U PS, n int) {
|
||||
// Print n terms of a power series
|
||||
func printn(U PS, n int) {
|
||||
done := false
|
||||
for ; !done && n>0; n-- {
|
||||
for ; !done && n > 0; n-- {
|
||||
u := get(U)
|
||||
if end(u) != 0 {
|
||||
done = true
|
||||
@ -299,10 +308,14 @@ func printn(U PS, n int) {
|
||||
|
||||
// Evaluate n terms of power series U at x=c
|
||||
func eval(c rat, U PS, n int) rat {
|
||||
if n==0 { return zero }
|
||||
if n == 0 {
|
||||
return zero
|
||||
}
|
||||
y := get(U)
|
||||
if end(y) != 0 { return zero }
|
||||
return add(y,mul(c,eval(c,U,n-1)))
|
||||
if end(y) != 0 {
|
||||
return zero
|
||||
}
|
||||
return add(y, mul(c, eval(c, U, n-1)))
|
||||
}
|
||||
|
||||
// Power-series constructors return channels on which power
|
||||
@ -313,7 +326,7 @@ func eval(c rat, U PS, n int) rat {
|
||||
|
||||
func Split(U PS) *dch2 {
|
||||
UU := mkdch2()
|
||||
go split(U,UU)
|
||||
go split(U, UU)
|
||||
return UU
|
||||
}
|
||||
|
||||
@ -324,16 +337,16 @@ func Add(U, V PS) PS {
|
||||
var uv []rat
|
||||
for {
|
||||
<-Z.req
|
||||
uv = get2(U,V)
|
||||
switch end(uv[0])+2*end(uv[1]) {
|
||||
uv = get2(U, V)
|
||||
switch end(uv[0]) + 2*end(uv[1]) {
|
||||
case 0:
|
||||
Z.dat <- add(uv[0], uv[1])
|
||||
case 1:
|
||||
Z.dat <- uv[1]
|
||||
copy(V,Z)
|
||||
copy(V, Z)
|
||||
case 2:
|
||||
Z.dat <- uv[0]
|
||||
copy(U,Z)
|
||||
copy(U, Z)
|
||||
case 3:
|
||||
Z.dat <- finis
|
||||
}
|
||||
@ -343,7 +356,7 @@ func Add(U, V PS) PS {
|
||||
}
|
||||
|
||||
// Multiply a power series by a constant
|
||||
func Cmul(c rat,U PS) PS {
|
||||
func Cmul(c rat, U PS) PS {
|
||||
Z := mkPS()
|
||||
go func() {
|
||||
done := false
|
||||
@ -353,7 +366,7 @@ func Cmul(c rat,U PS) PS {
|
||||
if end(u) != 0 {
|
||||
done = true
|
||||
} else {
|
||||
Z.dat <- mul(c,u)
|
||||
Z.dat <- mul(c, u)
|
||||
}
|
||||
}
|
||||
Z.dat <- finis
|
||||
@ -372,8 +385,10 @@ func Sub(U, V PS) PS {
|
||||
func Monmul(U PS, n int) PS {
|
||||
Z := mkPS()
|
||||
go func() {
|
||||
for ; n>0; n-- { put(zero,Z) }
|
||||
copy(U,Z)
|
||||
for ; n > 0; n-- {
|
||||
put(zero, Z)
|
||||
}
|
||||
copy(U, Z)
|
||||
}()
|
||||
return Z
|
||||
}
|
||||
@ -381,25 +396,27 @@ func Monmul(U PS, n int) PS {
|
||||
// Multiply by x
|
||||
|
||||
func Xmul(U PS) PS {
|
||||
return Monmul(U,1)
|
||||
return Monmul(U, 1)
|
||||
}
|
||||
|
||||
func Rep(c rat) PS {
|
||||
Z := mkPS()
|
||||
go repeat(c,Z)
|
||||
go repeat(c, Z)
|
||||
return Z
|
||||
}
|
||||
|
||||
// Monomial c*x^n
|
||||
|
||||
func Mon(c rat, n int) PS {
|
||||
Z:=mkPS()
|
||||
Z := mkPS()
|
||||
go func() {
|
||||
if(c.num!=0) {
|
||||
for ; n>0; n=n-1 { put(zero,Z) }
|
||||
put(c,Z)
|
||||
if c.num != 0 {
|
||||
for ; n > 0; n = n - 1 {
|
||||
put(zero, Z)
|
||||
}
|
||||
put(c, Z)
|
||||
}
|
||||
put(finis,Z)
|
||||
put(finis, Z)
|
||||
}()
|
||||
return Z
|
||||
}
|
||||
@ -407,8 +424,8 @@ func Mon(c rat, n int) PS {
|
||||
func Shift(c rat, U PS) PS {
|
||||
Z := mkPS()
|
||||
go func() {
|
||||
put(c,Z)
|
||||
copy(U,Z)
|
||||
put(c, Z)
|
||||
copy(U, Z)
|
||||
}()
|
||||
return Z
|
||||
}
|
||||
@ -440,20 +457,20 @@ func Poly(a []rat) PS {
|
||||
// then UV = u*v + x*(u*VV+v*UU) + x*x*UU*VV
|
||||
|
||||
func Mul(U, V PS) PS {
|
||||
Z:=mkPS()
|
||||
Z := mkPS()
|
||||
go func() {
|
||||
<-Z.req
|
||||
uv := get2(U,V)
|
||||
if end(uv[0])!=0 || end(uv[1]) != 0 {
|
||||
uv := get2(U, V)
|
||||
if end(uv[0]) != 0 || end(uv[1]) != 0 {
|
||||
Z.dat <- finis
|
||||
} else {
|
||||
Z.dat <- mul(uv[0],uv[1])
|
||||
Z.dat <- mul(uv[0], uv[1])
|
||||
UU := Split(U)
|
||||
VV := Split(V)
|
||||
W := Add(Cmul(uv[0],VV[0]),Cmul(uv[1],UU[0]))
|
||||
W := Add(Cmul(uv[0], VV[0]), Cmul(uv[1], UU[0]))
|
||||
<-Z.req
|
||||
Z.dat <- get(W)
|
||||
copy(Add(W,Mul(UU[1],VV[1])),Z)
|
||||
copy(Add(W, Mul(UU[1], VV[1])), Z)
|
||||
}
|
||||
}()
|
||||
return Z
|
||||
@ -462,18 +479,18 @@ func Mul(U, V PS) PS {
|
||||
// Differentiate
|
||||
|
||||
func Diff(U PS) PS {
|
||||
Z:=mkPS()
|
||||
Z := mkPS()
|
||||
go func() {
|
||||
<-Z.req
|
||||
u := get(U)
|
||||
if end(u) == 0 {
|
||||
done:=false
|
||||
for i:=1; !done; i++ {
|
||||
done := false
|
||||
for i := 1; !done; i++ {
|
||||
u = get(U)
|
||||
if end(u) != 0 {
|
||||
done = true
|
||||
} else {
|
||||
Z.dat <- mul(itor(int64(i)),u)
|
||||
Z.dat <- mul(itor(int64(i)), u)
|
||||
<-Z.req
|
||||
}
|
||||
}
|
||||
@ -484,16 +501,18 @@ func Diff(U PS) PS {
|
||||
}
|
||||
|
||||
// Integrate, with const of integration
|
||||
func Integ(c rat,U PS) PS {
|
||||
Z:=mkPS()
|
||||
func Integ(c rat, U PS) PS {
|
||||
Z := mkPS()
|
||||
go func() {
|
||||
put(c,Z)
|
||||
done:=false
|
||||
for i:=1; !done; i++ {
|
||||
put(c, Z)
|
||||
done := false
|
||||
for i := 1; !done; i++ {
|
||||
<-Z.req
|
||||
u := get(U)
|
||||
if end(u) != 0 { done= true }
|
||||
Z.dat <- mul(i2tor(1,int64(i)),u)
|
||||
if end(u) != 0 {
|
||||
done = true
|
||||
}
|
||||
Z.dat <- mul(i2tor(1, int64(i)), u)
|
||||
}
|
||||
Z.dat <- finis
|
||||
}()
|
||||
@ -503,17 +522,17 @@ func Integ(c rat,U PS) PS {
|
||||
// Binomial theorem (1+x)^c
|
||||
|
||||
func Binom(c rat) PS {
|
||||
Z:=mkPS()
|
||||
Z := mkPS()
|
||||
go func() {
|
||||
n := 1
|
||||
t := itor(1)
|
||||
for c.num!=0 {
|
||||
put(t,Z)
|
||||
t = mul(mul(t,c),i2tor(1,int64(n)))
|
||||
c = sub(c,one)
|
||||
for c.num != 0 {
|
||||
put(t, Z)
|
||||
t = mul(mul(t, c), i2tor(1, int64(n)))
|
||||
c = sub(c, one)
|
||||
n++
|
||||
}
|
||||
put(finis,Z)
|
||||
put(finis, Z)
|
||||
}()
|
||||
return Z
|
||||
}
|
||||
@ -527,14 +546,14 @@ func Binom(c rat) PS {
|
||||
// ZZ = -UU*(z+x*ZZ)/u
|
||||
|
||||
func Recip(U PS) PS {
|
||||
Z:=mkPS()
|
||||
Z := mkPS()
|
||||
go func() {
|
||||
ZZ:=mkPS2()
|
||||
ZZ := mkPS2()
|
||||
<-Z.req
|
||||
z := inv(get(U))
|
||||
Z.dat <- z
|
||||
split(Mul(Cmul(neg(z),U),Shift(z,ZZ[0])),ZZ)
|
||||
copy(ZZ[1],Z)
|
||||
split(Mul(Cmul(neg(z), U), Shift(z, ZZ[0])), ZZ)
|
||||
copy(ZZ[1], Z)
|
||||
}()
|
||||
return Z
|
||||
}
|
||||
@ -548,7 +567,7 @@ func Recip(U PS) PS {
|
||||
|
||||
func Exp(U PS) PS {
|
||||
ZZ := mkPS2()
|
||||
split(Integ(one,Mul(ZZ[0],Diff(U))),ZZ)
|
||||
split(Integ(one, Mul(ZZ[0], Diff(U))), ZZ)
|
||||
return ZZ[1]
|
||||
}
|
||||
|
||||
@ -559,7 +578,7 @@ func Exp(U PS) PS {
|
||||
// bug: a nonzero constant term is ignored
|
||||
|
||||
func Subst(U, V PS) PS {
|
||||
Z:= mkPS()
|
||||
Z := mkPS()
|
||||
go func() {
|
||||
VV := Split(V)
|
||||
<-Z.req
|
||||
@ -567,9 +586,9 @@ func Subst(U, V PS) PS {
|
||||
Z.dat <- u
|
||||
if end(u) == 0 {
|
||||
if end(get(VV[0])) != 0 {
|
||||
put(finis,Z)
|
||||
put(finis, Z)
|
||||
} else {
|
||||
copy(Mul(VV[0],Subst(U,VV[1])),Z)
|
||||
copy(Mul(VV[0], Subst(U, VV[1])), Z)
|
||||
}
|
||||
}
|
||||
}()
|
||||
@ -580,7 +599,7 @@ func Subst(U, V PS) PS {
|
||||
// Each Ui is multiplied by c^i and followed by n-1 zeros
|
||||
|
||||
func MonSubst(U PS, c0 rat, n int) PS {
|
||||
Z:= mkPS()
|
||||
Z := mkPS()
|
||||
go func() {
|
||||
c := one
|
||||
for {
|
||||
@ -601,14 +620,13 @@ func MonSubst(U PS, c0 rat, n int) PS {
|
||||
return Z
|
||||
}
|
||||
|
||||
|
||||
func Init() {
|
||||
chnameserial = -1
|
||||
seqno = 0
|
||||
chnames = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
|
||||
zero = itor(0)
|
||||
one = itor(1)
|
||||
finis = i2tor(1,0)
|
||||
finis = i2tor(1, 0)
|
||||
Ones = Rep(one)
|
||||
Twos = Rep(itor(2))
|
||||
}
|
||||
@ -627,7 +645,8 @@ func check(U PS, c rat, count int, str string) {
|
||||
}
|
||||
}
|
||||
|
||||
const N=10
|
||||
const N = 10
|
||||
|
||||
func checka(U PS, a []rat, str string) {
|
||||
for i := 0; i < N; i++ {
|
||||
check(U, a[i], 1, str)
|
||||
@ -636,53 +655,64 @@ func checka(U PS, a []rat, str string) {
|
||||
|
||||
func main() {
|
||||
Init()
|
||||
if len(os.Args) > 1 { // print
|
||||
print("Ones: "); printn(Ones, 10)
|
||||
print("Twos: "); printn(Twos, 10)
|
||||
print("Add: "); printn(Add(Ones, Twos), 10)
|
||||
print("Diff: "); printn(Diff(Ones), 10)
|
||||
print("Integ: "); printn(Integ(zero, Ones), 10)
|
||||
print("CMul: "); printn(Cmul(neg(one), Ones), 10)
|
||||
print("Sub: "); printn(Sub(Ones, Twos), 10)
|
||||
print("Mul: "); printn(Mul(Ones, Ones), 10)
|
||||
print("Exp: "); printn(Exp(Ones), 15)
|
||||
print("MonSubst: "); printn(MonSubst(Ones, neg(one), 2), 10)
|
||||
print("ATan: "); printn(Integ(zero, MonSubst(Ones, neg(one), 2)), 10)
|
||||
} else { // test
|
||||
if len(os.Args) > 1 { // print
|
||||
print("Ones: ")
|
||||
printn(Ones, 10)
|
||||
print("Twos: ")
|
||||
printn(Twos, 10)
|
||||
print("Add: ")
|
||||
printn(Add(Ones, Twos), 10)
|
||||
print("Diff: ")
|
||||
printn(Diff(Ones), 10)
|
||||
print("Integ: ")
|
||||
printn(Integ(zero, Ones), 10)
|
||||
print("CMul: ")
|
||||
printn(Cmul(neg(one), Ones), 10)
|
||||
print("Sub: ")
|
||||
printn(Sub(Ones, Twos), 10)
|
||||
print("Mul: ")
|
||||
printn(Mul(Ones, Ones), 10)
|
||||
print("Exp: ")
|
||||
printn(Exp(Ones), 15)
|
||||
print("MonSubst: ")
|
||||
printn(MonSubst(Ones, neg(one), 2), 10)
|
||||
print("ATan: ")
|
||||
printn(Integ(zero, MonSubst(Ones, neg(one), 2)), 10)
|
||||
} else { // test
|
||||
check(Ones, one, 5, "Ones")
|
||||
check(Add(Ones, Ones), itor(2), 0, "Add Ones Ones") // 1 1 1 1 1
|
||||
check(Add(Ones, Ones), itor(2), 0, "Add Ones Ones") // 1 1 1 1 1
|
||||
check(Add(Ones, Twos), itor(3), 0, "Add Ones Twos") // 3 3 3 3 3
|
||||
a := make([]rat, N)
|
||||
d := Diff(Ones)
|
||||
for i:=0; i < N; i++ {
|
||||
a[i] = itor(int64(i+1))
|
||||
for i := 0; i < N; i++ {
|
||||
a[i] = itor(int64(i + 1))
|
||||
}
|
||||
checka(d, a, "Diff") // 1 2 3 4 5
|
||||
checka(d, a, "Diff") // 1 2 3 4 5
|
||||
in := Integ(zero, Ones)
|
||||
a[0] = zero // integration constant
|
||||
for i:=1; i < N; i++ {
|
||||
a[0] = zero // integration constant
|
||||
for i := 1; i < N; i++ {
|
||||
a[i] = i2tor(1, int64(i))
|
||||
}
|
||||
checka(in, a, "Integ") // 0 1 1/2 1/3 1/4 1/5
|
||||
check(Cmul(neg(one), Twos), itor(-2), 10, "CMul") // -1 -1 -1 -1 -1
|
||||
check(Sub(Ones, Twos), itor(-1), 0, "Sub Ones Twos") // -1 -1 -1 -1 -1
|
||||
checka(in, a, "Integ") // 0 1 1/2 1/3 1/4 1/5
|
||||
check(Cmul(neg(one), Twos), itor(-2), 10, "CMul") // -1 -1 -1 -1 -1
|
||||
check(Sub(Ones, Twos), itor(-1), 0, "Sub Ones Twos") // -1 -1 -1 -1 -1
|
||||
m := Mul(Ones, Ones)
|
||||
for i:=0; i < N; i++ {
|
||||
a[i] = itor(int64(i+1))
|
||||
for i := 0; i < N; i++ {
|
||||
a[i] = itor(int64(i + 1))
|
||||
}
|
||||
checka(m, a, "Mul") // 1 2 3 4 5
|
||||
checka(m, a, "Mul") // 1 2 3 4 5
|
||||
e := Exp(Ones)
|
||||
a[0] = itor(1)
|
||||
a[1] = itor(1)
|
||||
a[2] = i2tor(3,2)
|
||||
a[3] = i2tor(13,6)
|
||||
a[4] = i2tor(73,24)
|
||||
a[5] = i2tor(167,40)
|
||||
a[6] = i2tor(4051,720)
|
||||
a[7] = i2tor(37633,5040)
|
||||
a[8] = i2tor(43817,4480)
|
||||
a[9] = i2tor(4596553,362880)
|
||||
checka(e, a, "Exp") // 1 1 3/2 13/6 73/24
|
||||
a[2] = i2tor(3, 2)
|
||||
a[3] = i2tor(13, 6)
|
||||
a[4] = i2tor(73, 24)
|
||||
a[5] = i2tor(167, 40)
|
||||
a[6] = i2tor(4051, 720)
|
||||
a[7] = i2tor(37633, 5040)
|
||||
a[8] = i2tor(43817, 4480)
|
||||
a[9] = i2tor(4596553, 362880)
|
||||
checka(e, a, "Exp") // 1 1 3/2 13/6 73/24
|
||||
at := Integ(zero, MonSubst(Ones, neg(one), 2))
|
||||
for c, i := 1, 0; i < N; i++ {
|
||||
if i%2 == 0 {
|
||||
@ -692,20 +722,20 @@ func main() {
|
||||
c *= -1
|
||||
}
|
||||
}
|
||||
checka(at, a, "ATan") // 0 -1 0 -1/3 0 -1/5
|
||||
/*
|
||||
t := Revert(Integ(zero, MonSubst(Ones, neg(one), 2)))
|
||||
a[0] = zero
|
||||
a[1] = itor(1)
|
||||
a[2] = zero
|
||||
a[3] = i2tor(1,3)
|
||||
a[4] = zero
|
||||
a[5] = i2tor(2,15)
|
||||
a[6] = zero
|
||||
a[7] = i2tor(17,315)
|
||||
a[8] = zero
|
||||
a[9] = i2tor(62,2835)
|
||||
checka(t, a, "Tan") // 0 1 0 1/3 0 2/15
|
||||
*/
|
||||
checka(at, a, "ATan") // 0 -1 0 -1/3 0 -1/5
|
||||
/*
|
||||
t := Revert(Integ(zero, MonSubst(Ones, neg(one), 2)))
|
||||
a[0] = zero
|
||||
a[1] = itor(1)
|
||||
a[2] = zero
|
||||
a[3] = i2tor(1,3)
|
||||
a[4] = zero
|
||||
a[5] = i2tor(2,15)
|
||||
a[6] = zero
|
||||
a[7] = i2tor(17,315)
|
||||
a[8] = zero
|
||||
a[9] = i2tor(62,2835)
|
||||
checka(t, a, "Tan") // 0 1 0 1/3 0 2/15
|
||||
*/
|
||||
}
|
||||
}
|
||||
|
@ -21,8 +21,8 @@ package main
|
||||
|
||||
import "os"
|
||||
|
||||
type rat struct {
|
||||
num, den int64 // numerator, denominator
|
||||
type rat struct {
|
||||
num, den int64 // numerator, denominator
|
||||
}
|
||||
|
||||
type item interface {
|
||||
@ -30,8 +30,8 @@ type item interface {
|
||||
eq(c item) bool
|
||||
}
|
||||
|
||||
func (u *rat) pr(){
|
||||
if u.den==1 {
|
||||
func (u *rat) pr() {
|
||||
if u.den == 1 {
|
||||
print(u.num)
|
||||
} else {
|
||||
print(u.num, "/", u.den)
|
||||
@ -45,12 +45,12 @@ func (u *rat) eq(c item) bool {
|
||||
}
|
||||
|
||||
type dch struct {
|
||||
req chan int
|
||||
dat chan item
|
||||
req chan int
|
||||
dat chan item
|
||||
nam int
|
||||
}
|
||||
|
||||
type dch2 [2] *dch
|
||||
type dch2 [2]*dch
|
||||
|
||||
var chnames string
|
||||
var chnameserial int
|
||||
@ -87,25 +87,25 @@ func mkdch2() *dch2 {
|
||||
// a signal on the release-wait channel tells the next newer
|
||||
// generation to begin servicing out[1].
|
||||
|
||||
func dosplit(in *dch, out *dch2, wait chan int ){
|
||||
both := false // do not service both channels
|
||||
func dosplit(in *dch, out *dch2, wait chan int) {
|
||||
both := false // do not service both channels
|
||||
|
||||
select {
|
||||
case <-out[0].req:
|
||||
|
||||
|
||||
case <-wait:
|
||||
both = true
|
||||
select {
|
||||
case <-out[0].req:
|
||||
|
||||
|
||||
case <-out[1].req:
|
||||
out[0],out[1] = out[1], out[0]
|
||||
out[0], out[1] = out[1], out[0]
|
||||
}
|
||||
}
|
||||
|
||||
seqno++
|
||||
in.req <- seqno
|
||||
release := make(chan int)
|
||||
release := make(chan int)
|
||||
go dosplit(in, out, release)
|
||||
dat := <-in.dat
|
||||
out[0].dat <- dat
|
||||
@ -117,13 +117,13 @@ func dosplit(in *dch, out *dch2, wait chan int ){
|
||||
release <- 0
|
||||
}
|
||||
|
||||
func split(in *dch, out *dch2){
|
||||
func split(in *dch, out *dch2) {
|
||||
release := make(chan int)
|
||||
go dosplit(in, out, release)
|
||||
release <- 0
|
||||
}
|
||||
|
||||
func put(dat item, out *dch){
|
||||
func put(dat item, out *dch) {
|
||||
<-out.req
|
||||
out.dat <- dat
|
||||
}
|
||||
@ -137,21 +137,23 @@ func get(in *dch) *rat {
|
||||
// Get one item from each of n demand channels
|
||||
|
||||
func getn(in []*dch) []item {
|
||||
n:=len(in)
|
||||
if n != 2 { panic("bad n in getn") }
|
||||
req := make([] chan int, 2)
|
||||
dat := make([] chan item, 2)
|
||||
n := len(in)
|
||||
if n != 2 {
|
||||
panic("bad n in getn")
|
||||
}
|
||||
req := make([]chan int, 2)
|
||||
dat := make([]chan item, 2)
|
||||
out := make([]item, 2)
|
||||
var i int
|
||||
var it item
|
||||
for i=0; i<n; i++ {
|
||||
for i = 0; i < n; i++ {
|
||||
req[i] = in[i].req
|
||||
dat[i] = nil
|
||||
}
|
||||
for n=2*n; n>0; n-- {
|
||||
for n = 2 * n; n > 0; n-- {
|
||||
seqno++
|
||||
|
||||
select{
|
||||
select {
|
||||
case req[0] <- seqno:
|
||||
dat[0] = in[0].dat
|
||||
req[0] = nil
|
||||
@ -171,25 +173,25 @@ func getn(in []*dch) []item {
|
||||
|
||||
// Get one item from each of 2 demand channels
|
||||
|
||||
func get2(in0 *dch, in1 *dch) []item {
|
||||
func get2(in0 *dch, in1 *dch) []item {
|
||||
return getn([]*dch{in0, in1})
|
||||
}
|
||||
|
||||
func copy(in *dch, out *dch){
|
||||
func copy(in *dch, out *dch) {
|
||||
for {
|
||||
<-out.req
|
||||
out.dat <- get(in)
|
||||
}
|
||||
}
|
||||
|
||||
func repeat(dat item, out *dch){
|
||||
func repeat(dat item, out *dch) {
|
||||
for {
|
||||
put(dat, out)
|
||||
}
|
||||
}
|
||||
|
||||
type PS *dch // power series
|
||||
type PS2 *[2] PS // pair of power series
|
||||
type PS *dch // power series
|
||||
type PS2 *[2]PS // pair of power series
|
||||
|
||||
var Ones PS
|
||||
var Twos PS
|
||||
@ -210,93 +212,100 @@ func mkPS2() *dch2 {
|
||||
|
||||
// Integer gcd; needed for rational arithmetic
|
||||
|
||||
func gcd (u, v int64) int64{
|
||||
if u < 0 { return gcd(-u, v) }
|
||||
if u == 0 { return v }
|
||||
func gcd(u, v int64) int64 {
|
||||
if u < 0 {
|
||||
return gcd(-u, v)
|
||||
}
|
||||
if u == 0 {
|
||||
return v
|
||||
}
|
||||
return gcd(v%u, u)
|
||||
}
|
||||
|
||||
// Make a rational from two ints and from one int
|
||||
|
||||
func i2tor(u, v int64) *rat{
|
||||
g := gcd(u,v)
|
||||
func i2tor(u, v int64) *rat {
|
||||
g := gcd(u, v)
|
||||
r := new(rat)
|
||||
if v > 0 {
|
||||
r.num = u/g
|
||||
r.den = v/g
|
||||
r.num = u / g
|
||||
r.den = v / g
|
||||
} else {
|
||||
r.num = -u/g
|
||||
r.den = -v/g
|
||||
r.num = -u / g
|
||||
r.den = -v / g
|
||||
}
|
||||
return r
|
||||
}
|
||||
|
||||
func itor(u int64) *rat{
|
||||
func itor(u int64) *rat {
|
||||
return i2tor(u, 1)
|
||||
}
|
||||
|
||||
var zero *rat
|
||||
var one *rat
|
||||
|
||||
|
||||
// End mark and end test
|
||||
|
||||
var finis *rat
|
||||
|
||||
func end(u *rat) int64 {
|
||||
if u.den==0 { return 1 }
|
||||
if u.den == 0 {
|
||||
return 1
|
||||
}
|
||||
return 0
|
||||
}
|
||||
|
||||
// Operations on rationals
|
||||
|
||||
func add(u, v *rat) *rat {
|
||||
g := gcd(u.den,v.den)
|
||||
return i2tor(u.num*(v.den/g)+v.num*(u.den/g),u.den*(v.den/g))
|
||||
g := gcd(u.den, v.den)
|
||||
return i2tor(u.num*(v.den/g)+v.num*(u.den/g), u.den*(v.den/g))
|
||||
}
|
||||
|
||||
func mul(u, v *rat) *rat{
|
||||
g1 := gcd(u.num,v.den)
|
||||
g2 := gcd(u.den,v.num)
|
||||
func mul(u, v *rat) *rat {
|
||||
g1 := gcd(u.num, v.den)
|
||||
g2 := gcd(u.den, v.num)
|
||||
r := new(rat)
|
||||
r.num =(u.num/g1)*(v.num/g2)
|
||||
r.den = (u.den/g2)*(v.den/g1)
|
||||
r.num = (u.num / g1) * (v.num / g2)
|
||||
r.den = (u.den / g2) * (v.den / g1)
|
||||
return r
|
||||
}
|
||||
|
||||
func neg(u *rat) *rat{
|
||||
func neg(u *rat) *rat {
|
||||
return i2tor(-u.num, u.den)
|
||||
}
|
||||
|
||||
func sub(u, v *rat) *rat{
|
||||
func sub(u, v *rat) *rat {
|
||||
return add(u, neg(v))
|
||||
}
|
||||
|
||||
func inv(u *rat) *rat{ // invert a rat
|
||||
if u.num == 0 { panic("zero divide in inv") }
|
||||
func inv(u *rat) *rat { // invert a rat
|
||||
if u.num == 0 {
|
||||
panic("zero divide in inv")
|
||||
}
|
||||
return i2tor(u.den, u.num)
|
||||
}
|
||||
|
||||
// print eval in floating point of PS at x=c to n terms
|
||||
func Evaln(c *rat, U PS, n int) {
|
||||
xn := float64(1)
|
||||
x := float64(c.num)/float64(c.den)
|
||||
x := float64(c.num) / float64(c.den)
|
||||
val := float64(0)
|
||||
for i:=0; i<n; i++ {
|
||||
for i := 0; i < n; i++ {
|
||||
u := get(U)
|
||||
if end(u) != 0 {
|
||||
break
|
||||
}
|
||||
val = val + x * float64(u.num)/float64(u.den)
|
||||
xn = xn*x
|
||||
val = val + x*float64(u.num)/float64(u.den)
|
||||
xn = xn * x
|
||||
}
|
||||
print(val, "\n")
|
||||
}
|
||||
|
||||
// Print n terms of a power series
|
||||
func Printn(U PS, n int){
|
||||
func Printn(U PS, n int) {
|
||||
done := false
|
||||
for ; !done && n>0; n-- {
|
||||
for ; !done && n > 0; n-- {
|
||||
u := get(U)
|
||||
if end(u) != 0 {
|
||||
done = true
|
||||
@ -307,16 +316,20 @@ func Printn(U PS, n int){
|
||||
print(("\n"))
|
||||
}
|
||||
|
||||
func Print(U PS){
|
||||
Printn(U,1000000000)
|
||||
func Print(U PS) {
|
||||
Printn(U, 1000000000)
|
||||
}
|
||||
|
||||
// Evaluate n terms of power series U at x=c
|
||||
func eval(c *rat, U PS, n int) *rat{
|
||||
if n==0 { return zero }
|
||||
func eval(c *rat, U PS, n int) *rat {
|
||||
if n == 0 {
|
||||
return zero
|
||||
}
|
||||
y := get(U)
|
||||
if end(y) != 0 { return zero }
|
||||
return add(y,mul(c,eval(c,U,n-1)))
|
||||
if end(y) != 0 {
|
||||
return zero
|
||||
}
|
||||
return add(y, mul(c, eval(c, U, n-1)))
|
||||
}
|
||||
|
||||
// Power-series constructors return channels on which power
|
||||
@ -325,29 +338,29 @@ func eval(c *rat, U PS, n int) *rat{
|
||||
|
||||
// Make a pair of power series identical to a given power series
|
||||
|
||||
func Split(U PS) *dch2{
|
||||
func Split(U PS) *dch2 {
|
||||
UU := mkdch2()
|
||||
go split(U,UU)
|
||||
go split(U, UU)
|
||||
return UU
|
||||
}
|
||||
|
||||
// Add two power series
|
||||
func Add(U, V PS) PS{
|
||||
func Add(U, V PS) PS {
|
||||
Z := mkPS()
|
||||
go func(U, V, Z PS){
|
||||
var uv [] item
|
||||
go func(U, V, Z PS) {
|
||||
var uv []item
|
||||
for {
|
||||
<-Z.req
|
||||
uv = get2(U,V)
|
||||
switch end(uv[0].(*rat))+2*end(uv[1].(*rat)) {
|
||||
uv = get2(U, V)
|
||||
switch end(uv[0].(*rat)) + 2*end(uv[1].(*rat)) {
|
||||
case 0:
|
||||
Z.dat <- add(uv[0].(*rat), uv[1].(*rat))
|
||||
case 1:
|
||||
Z.dat <- uv[1]
|
||||
copy(V,Z)
|
||||
copy(V, Z)
|
||||
case 2:
|
||||
Z.dat <- uv[0]
|
||||
copy(U,Z)
|
||||
copy(U, Z)
|
||||
case 3:
|
||||
Z.dat <- finis
|
||||
}
|
||||
@ -357,9 +370,9 @@ func Add(U, V PS) PS{
|
||||
}
|
||||
|
||||
// Multiply a power series by a constant
|
||||
func Cmul(c *rat,U PS) PS{
|
||||
func Cmul(c *rat, U PS) PS {
|
||||
Z := mkPS()
|
||||
go func(c *rat, U, Z PS){
|
||||
go func(c *rat, U, Z PS) {
|
||||
done := false
|
||||
for !done {
|
||||
<-Z.req
|
||||
@ -367,7 +380,7 @@ func Cmul(c *rat,U PS) PS{
|
||||
if end(u) != 0 {
|
||||
done = true
|
||||
} else {
|
||||
Z.dat <- mul(c,u)
|
||||
Z.dat <- mul(c, u)
|
||||
}
|
||||
}
|
||||
Z.dat <- finis
|
||||
@ -377,52 +390,56 @@ func Cmul(c *rat,U PS) PS{
|
||||
|
||||
// Subtract
|
||||
|
||||
func Sub(U, V PS) PS{
|
||||
func Sub(U, V PS) PS {
|
||||
return Add(U, Cmul(neg(one), V))
|
||||
}
|
||||
|
||||
// Multiply a power series by the monomial x^n
|
||||
|
||||
func Monmul(U PS, n int) PS{
|
||||
func Monmul(U PS, n int) PS {
|
||||
Z := mkPS()
|
||||
go func(n int, U PS, Z PS){
|
||||
for ; n>0; n-- { put(zero,Z) }
|
||||
copy(U,Z)
|
||||
go func(n int, U PS, Z PS) {
|
||||
for ; n > 0; n-- {
|
||||
put(zero, Z)
|
||||
}
|
||||
copy(U, Z)
|
||||
}(n, U, Z)
|
||||
return Z
|
||||
}
|
||||
|
||||
// Multiply by x
|
||||
|
||||
func Xmul(U PS) PS{
|
||||
return Monmul(U,1)
|
||||
func Xmul(U PS) PS {
|
||||
return Monmul(U, 1)
|
||||
}
|
||||
|
||||
func Rep(c *rat) PS{
|
||||
func Rep(c *rat) PS {
|
||||
Z := mkPS()
|
||||
go repeat(c,Z)
|
||||
go repeat(c, Z)
|
||||
return Z
|
||||
}
|
||||
|
||||
// Monomial c*x^n
|
||||
|
||||
func Mon(c *rat, n int) PS{
|
||||
Z:=mkPS()
|
||||
go func(c *rat, n int, Z PS){
|
||||
if(c.num!=0) {
|
||||
for ; n>0; n=n-1 { put(zero,Z) }
|
||||
put(c,Z)
|
||||
func Mon(c *rat, n int) PS {
|
||||
Z := mkPS()
|
||||
go func(c *rat, n int, Z PS) {
|
||||
if c.num != 0 {
|
||||
for ; n > 0; n = n - 1 {
|
||||
put(zero, Z)
|
||||
}
|
||||
put(c, Z)
|
||||
}
|
||||
put(finis,Z)
|
||||
put(finis, Z)
|
||||
}(c, n, Z)
|
||||
return Z
|
||||
}
|
||||
|
||||
func Shift(c *rat, U PS) PS{
|
||||
func Shift(c *rat, U PS) PS {
|
||||
Z := mkPS()
|
||||
go func(c *rat, U, Z PS){
|
||||
put(c,Z)
|
||||
copy(U,Z)
|
||||
go func(c *rat, U, Z PS) {
|
||||
put(c, Z)
|
||||
copy(U, Z)
|
||||
}(c, U, Z)
|
||||
return Z
|
||||
}
|
||||
@ -453,21 +470,21 @@ func Poly(a [] *rat) PS{
|
||||
// let V = v + x*VV
|
||||
// then UV = u*v + x*(u*VV+v*UU) + x*x*UU*VV
|
||||
|
||||
func Mul(U, V PS) PS{
|
||||
Z:=mkPS()
|
||||
go func(U, V, Z PS){
|
||||
func Mul(U, V PS) PS {
|
||||
Z := mkPS()
|
||||
go func(U, V, Z PS) {
|
||||
<-Z.req
|
||||
uv := get2(U,V)
|
||||
if end(uv[0].(*rat))!=0 || end(uv[1].(*rat)) != 0 {
|
||||
uv := get2(U, V)
|
||||
if end(uv[0].(*rat)) != 0 || end(uv[1].(*rat)) != 0 {
|
||||
Z.dat <- finis
|
||||
} else {
|
||||
Z.dat <- mul(uv[0].(*rat),uv[1].(*rat))
|
||||
Z.dat <- mul(uv[0].(*rat), uv[1].(*rat))
|
||||
UU := Split(U)
|
||||
VV := Split(V)
|
||||
W := Add(Cmul(uv[0].(*rat),VV[0]),Cmul(uv[1].(*rat),UU[0]))
|
||||
W := Add(Cmul(uv[0].(*rat), VV[0]), Cmul(uv[1].(*rat), UU[0]))
|
||||
<-Z.req
|
||||
Z.dat <- get(W)
|
||||
copy(Add(W,Mul(UU[1],VV[1])),Z)
|
||||
copy(Add(W, Mul(UU[1], VV[1])), Z)
|
||||
}
|
||||
}(U, V, Z)
|
||||
return Z
|
||||
@ -475,19 +492,19 @@ func Mul(U, V PS) PS{
|
||||
|
||||
// Differentiate
|
||||
|
||||
func Diff(U PS) PS{
|
||||
Z:=mkPS()
|
||||
go func(U, Z PS){
|
||||
func Diff(U PS) PS {
|
||||
Z := mkPS()
|
||||
go func(U, Z PS) {
|
||||
<-Z.req
|
||||
u := get(U)
|
||||
if end(u) == 0 {
|
||||
done:=false
|
||||
for i:=1; !done; i++ {
|
||||
done := false
|
||||
for i := 1; !done; i++ {
|
||||
u = get(U)
|
||||
if end(u) != 0 {
|
||||
done=true
|
||||
done = true
|
||||
} else {
|
||||
Z.dat <- mul(itor(int64(i)),u)
|
||||
Z.dat <- mul(itor(int64(i)), u)
|
||||
<-Z.req
|
||||
}
|
||||
}
|
||||
@ -498,16 +515,18 @@ func Diff(U PS) PS{
|
||||
}
|
||||
|
||||
// Integrate, with const of integration
|
||||
func Integ(c *rat,U PS) PS{
|
||||
Z:=mkPS()
|
||||
go func(c *rat, U, Z PS){
|
||||
put(c,Z)
|
||||
done:=false
|
||||
for i:=1; !done; i++ {
|
||||
func Integ(c *rat, U PS) PS {
|
||||
Z := mkPS()
|
||||
go func(c *rat, U, Z PS) {
|
||||
put(c, Z)
|
||||
done := false
|
||||
for i := 1; !done; i++ {
|
||||
<-Z.req
|
||||
u := get(U)
|
||||
if end(u) != 0 { done= true }
|
||||
Z.dat <- mul(i2tor(1,int64(i)),u)
|
||||
if end(u) != 0 {
|
||||
done = true
|
||||
}
|
||||
Z.dat <- mul(i2tor(1, int64(i)), u)
|
||||
}
|
||||
Z.dat <- finis
|
||||
}(c, U, Z)
|
||||
@ -516,18 +535,18 @@ func Integ(c *rat,U PS) PS{
|
||||
|
||||
// Binomial theorem (1+x)^c
|
||||
|
||||
func Binom(c *rat) PS{
|
||||
Z:=mkPS()
|
||||
go func(c *rat, Z PS){
|
||||
func Binom(c *rat) PS {
|
||||
Z := mkPS()
|
||||
go func(c *rat, Z PS) {
|
||||
n := 1
|
||||
t := itor(1)
|
||||
for c.num!=0 {
|
||||
put(t,Z)
|
||||
t = mul(mul(t,c),i2tor(1,int64(n)))
|
||||
c = sub(c,one)
|
||||
for c.num != 0 {
|
||||
put(t, Z)
|
||||
t = mul(mul(t, c), i2tor(1, int64(n)))
|
||||
c = sub(c, one)
|
||||
n++
|
||||
}
|
||||
put(finis,Z)
|
||||
put(finis, Z)
|
||||
}(c, Z)
|
||||
return Z
|
||||
}
|
||||
@ -540,15 +559,15 @@ func Binom(c *rat) PS{
|
||||
// u*ZZ + z*UU +x*UU*ZZ = 0
|
||||
// ZZ = -UU*(z+x*ZZ)/u
|
||||
|
||||
func Recip(U PS) PS{
|
||||
Z:=mkPS()
|
||||
go func(U, Z PS){
|
||||
ZZ:=mkPS2()
|
||||
func Recip(U PS) PS {
|
||||
Z := mkPS()
|
||||
go func(U, Z PS) {
|
||||
ZZ := mkPS2()
|
||||
<-Z.req
|
||||
z := inv(get(U))
|
||||
Z.dat <- z
|
||||
split(Mul(Cmul(neg(z),U),Shift(z,ZZ[0])),ZZ)
|
||||
copy(ZZ[1],Z)
|
||||
split(Mul(Cmul(neg(z), U), Shift(z, ZZ[0])), ZZ)
|
||||
copy(ZZ[1], Z)
|
||||
}(U, Z)
|
||||
return Z
|
||||
}
|
||||
@ -560,9 +579,9 @@ func Recip(U PS) PS{
|
||||
// DZ = Z*DU
|
||||
// integrate to get Z
|
||||
|
||||
func Exp(U PS) PS{
|
||||
func Exp(U PS) PS {
|
||||
ZZ := mkPS2()
|
||||
split(Integ(one,Mul(ZZ[0],Diff(U))),ZZ)
|
||||
split(Integ(one, Mul(ZZ[0], Diff(U))), ZZ)
|
||||
return ZZ[1]
|
||||
}
|
||||
|
||||
@ -573,7 +592,7 @@ func Exp(U PS) PS{
|
||||
// bug: a nonzero constant term is ignored
|
||||
|
||||
func Subst(U, V PS) PS {
|
||||
Z:= mkPS()
|
||||
Z := mkPS()
|
||||
go func(U, V, Z PS) {
|
||||
VV := Split(V)
|
||||
<-Z.req
|
||||
@ -581,9 +600,9 @@ func Subst(U, V PS) PS {
|
||||
Z.dat <- u
|
||||
if end(u) == 0 {
|
||||
if end(get(VV[0])) != 0 {
|
||||
put(finis,Z)
|
||||
put(finis, Z)
|
||||
} else {
|
||||
copy(Mul(VV[0],Subst(U,VV[1])),Z)
|
||||
copy(Mul(VV[0], Subst(U, VV[1])), Z)
|
||||
}
|
||||
}
|
||||
}(U, V, Z)
|
||||
@ -594,7 +613,7 @@ func Subst(U, V PS) PS {
|
||||
// Each Ui is multiplied by c^i and followed by n-1 zeros
|
||||
|
||||
func MonSubst(U PS, c0 *rat, n int) PS {
|
||||
Z:= mkPS()
|
||||
Z := mkPS()
|
||||
go func(U, Z PS, c0 *rat, n int) {
|
||||
c := one
|
||||
for {
|
||||
@ -615,14 +634,13 @@ func MonSubst(U PS, c0 *rat, n int) PS {
|
||||
return Z
|
||||
}
|
||||
|
||||
|
||||
func Init() {
|
||||
chnameserial = -1
|
||||
seqno = 0
|
||||
chnames = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
|
||||
zero = itor(0)
|
||||
one = itor(1)
|
||||
finis = i2tor(1,0)
|
||||
finis = i2tor(1, 0)
|
||||
Ones = Rep(one)
|
||||
Twos = Rep(itor(2))
|
||||
}
|
||||
@ -641,7 +659,8 @@ func check(U PS, c *rat, count int, str string) {
|
||||
}
|
||||
}
|
||||
|
||||
const N=10
|
||||
const N = 10
|
||||
|
||||
func checka(U PS, a []*rat, str string) {
|
||||
for i := 0; i < N; i++ {
|
||||
check(U, a[i], 1, str)
|
||||
@ -650,53 +669,64 @@ func checka(U PS, a []*rat, str string) {
|
||||
|
||||
func main() {
|
||||
Init()
|
||||
if len(os.Args) > 1 { // print
|
||||
print("Ones: "); Printn(Ones, 10)
|
||||
print("Twos: "); Printn(Twos, 10)
|
||||
print("Add: "); Printn(Add(Ones, Twos), 10)
|
||||
print("Diff: "); Printn(Diff(Ones), 10)
|
||||
print("Integ: "); Printn(Integ(zero, Ones), 10)
|
||||
print("CMul: "); Printn(Cmul(neg(one), Ones), 10)
|
||||
print("Sub: "); Printn(Sub(Ones, Twos), 10)
|
||||
print("Mul: "); Printn(Mul(Ones, Ones), 10)
|
||||
print("Exp: "); Printn(Exp(Ones), 15)
|
||||
print("MonSubst: "); Printn(MonSubst(Ones, neg(one), 2), 10)
|
||||
print("ATan: "); Printn(Integ(zero, MonSubst(Ones, neg(one), 2)), 10)
|
||||
} else { // test
|
||||
if len(os.Args) > 1 { // print
|
||||
print("Ones: ")
|
||||
Printn(Ones, 10)
|
||||
print("Twos: ")
|
||||
Printn(Twos, 10)
|
||||
print("Add: ")
|
||||
Printn(Add(Ones, Twos), 10)
|
||||
print("Diff: ")
|
||||
Printn(Diff(Ones), 10)
|
||||
print("Integ: ")
|
||||
Printn(Integ(zero, Ones), 10)
|
||||
print("CMul: ")
|
||||
Printn(Cmul(neg(one), Ones), 10)
|
||||
print("Sub: ")
|
||||
Printn(Sub(Ones, Twos), 10)
|
||||
print("Mul: ")
|
||||
Printn(Mul(Ones, Ones), 10)
|
||||
print("Exp: ")
|
||||
Printn(Exp(Ones), 15)
|
||||
print("MonSubst: ")
|
||||
Printn(MonSubst(Ones, neg(one), 2), 10)
|
||||
print("ATan: ")
|
||||
Printn(Integ(zero, MonSubst(Ones, neg(one), 2)), 10)
|
||||
} else { // test
|
||||
check(Ones, one, 5, "Ones")
|
||||
check(Add(Ones, Ones), itor(2), 0, "Add Ones Ones") // 1 1 1 1 1
|
||||
check(Add(Ones, Ones), itor(2), 0, "Add Ones Ones") // 1 1 1 1 1
|
||||
check(Add(Ones, Twos), itor(3), 0, "Add Ones Twos") // 3 3 3 3 3
|
||||
a := make([]*rat, N)
|
||||
d := Diff(Ones)
|
||||
for i:=0; i < N; i++ {
|
||||
a[i] = itor(int64(i+1))
|
||||
for i := 0; i < N; i++ {
|
||||
a[i] = itor(int64(i + 1))
|
||||
}
|
||||
checka(d, a, "Diff") // 1 2 3 4 5
|
||||
checka(d, a, "Diff") // 1 2 3 4 5
|
||||
in := Integ(zero, Ones)
|
||||
a[0] = zero // integration constant
|
||||
for i:=1; i < N; i++ {
|
||||
a[0] = zero // integration constant
|
||||
for i := 1; i < N; i++ {
|
||||
a[i] = i2tor(1, int64(i))
|
||||
}
|
||||
checka(in, a, "Integ") // 0 1 1/2 1/3 1/4 1/5
|
||||
check(Cmul(neg(one), Twos), itor(-2), 10, "CMul") // -1 -1 -1 -1 -1
|
||||
check(Sub(Ones, Twos), itor(-1), 0, "Sub Ones Twos") // -1 -1 -1 -1 -1
|
||||
checka(in, a, "Integ") // 0 1 1/2 1/3 1/4 1/5
|
||||
check(Cmul(neg(one), Twos), itor(-2), 10, "CMul") // -1 -1 -1 -1 -1
|
||||
check(Sub(Ones, Twos), itor(-1), 0, "Sub Ones Twos") // -1 -1 -1 -1 -1
|
||||
m := Mul(Ones, Ones)
|
||||
for i:=0; i < N; i++ {
|
||||
a[i] = itor(int64(i+1))
|
||||
for i := 0; i < N; i++ {
|
||||
a[i] = itor(int64(i + 1))
|
||||
}
|
||||
checka(m, a, "Mul") // 1 2 3 4 5
|
||||
checka(m, a, "Mul") // 1 2 3 4 5
|
||||
e := Exp(Ones)
|
||||
a[0] = itor(1)
|
||||
a[1] = itor(1)
|
||||
a[2] = i2tor(3,2)
|
||||
a[3] = i2tor(13,6)
|
||||
a[4] = i2tor(73,24)
|
||||
a[5] = i2tor(167,40)
|
||||
a[6] = i2tor(4051,720)
|
||||
a[7] = i2tor(37633,5040)
|
||||
a[8] = i2tor(43817,4480)
|
||||
a[9] = i2tor(4596553,362880)
|
||||
checka(e, a, "Exp") // 1 1 3/2 13/6 73/24
|
||||
a[2] = i2tor(3, 2)
|
||||
a[3] = i2tor(13, 6)
|
||||
a[4] = i2tor(73, 24)
|
||||
a[5] = i2tor(167, 40)
|
||||
a[6] = i2tor(4051, 720)
|
||||
a[7] = i2tor(37633, 5040)
|
||||
a[8] = i2tor(43817, 4480)
|
||||
a[9] = i2tor(4596553, 362880)
|
||||
checka(e, a, "Exp") // 1 1 3/2 13/6 73/24
|
||||
at := Integ(zero, MonSubst(Ones, neg(one), 2))
|
||||
for c, i := 1, 0; i < N; i++ {
|
||||
if i%2 == 0 {
|
||||
@ -706,20 +736,20 @@ func main() {
|
||||
c *= -1
|
||||
}
|
||||
}
|
||||
checka(at, a, "ATan"); // 0 -1 0 -1/3 0 -1/5
|
||||
/*
|
||||
t := Revert(Integ(zero, MonSubst(Ones, neg(one), 2)))
|
||||
a[0] = zero
|
||||
a[1] = itor(1)
|
||||
a[2] = zero
|
||||
a[3] = i2tor(1,3)
|
||||
a[4] = zero
|
||||
a[5] = i2tor(2,15)
|
||||
a[6] = zero
|
||||
a[7] = i2tor(17,315)
|
||||
a[8] = zero
|
||||
a[9] = i2tor(62,2835)
|
||||
checka(t, a, "Tan") // 0 1 0 1/3 0 2/15
|
||||
*/
|
||||
checka(at, a, "ATan") // 0 -1 0 -1/3 0 -1/5
|
||||
/*
|
||||
t := Revert(Integ(zero, MonSubst(Ones, neg(one), 2)))
|
||||
a[0] = zero
|
||||
a[1] = itor(1)
|
||||
a[2] = zero
|
||||
a[3] = i2tor(1,3)
|
||||
a[4] = zero
|
||||
a[5] = i2tor(2,15)
|
||||
a[6] = zero
|
||||
a[7] = i2tor(17,315)
|
||||
a[8] = zero
|
||||
a[9] = i2tor(62,2835)
|
||||
checka(t, a, "Tan") // 0 1 0 1/3 0 2/15
|
||||
*/
|
||||
}
|
||||
}
|
||||
|
@ -14,12 +14,10 @@ import "time"
|
||||
const always = "function did not"
|
||||
const never = "function did"
|
||||
|
||||
|
||||
func unreachable() {
|
||||
panic("control flow shouldn't reach here")
|
||||
}
|
||||
|
||||
|
||||
// Calls f and verifies that f always/never panics depending on signal.
|
||||
func testPanic(signal string, f func()) {
|
||||
defer func() {
|
||||
@ -34,7 +32,6 @@ func testPanic(signal string, f func()) {
|
||||
f()
|
||||
}
|
||||
|
||||
|
||||
// Calls f and empirically verifies that f always/never blocks depending on signal.
|
||||
func testBlock(signal string, f func()) {
|
||||
c := make(chan string)
|
||||
@ -51,7 +48,6 @@ func testBlock(signal string, f func()) {
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
func main() {
|
||||
const async = 1 // asynchronous channels
|
||||
var nilch chan int
|
||||
@ -114,8 +110,7 @@ func main() {
|
||||
|
||||
// empty selects always block
|
||||
testBlock(always, func() {
|
||||
select {
|
||||
}
|
||||
select {}
|
||||
})
|
||||
|
||||
// selects with only nil channels always block
|
||||
|
@ -30,7 +30,7 @@ func chanchan() {
|
||||
|
||||
func sendprec() {
|
||||
c := make(chan bool, 1)
|
||||
c <- false || true // not a syntax error: same as c <- (false || true)
|
||||
c <- false || true // not a syntax error: same as c <- (false || true)
|
||||
if !<-c {
|
||||
panic("sent false")
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user