cmd/compile: rework induction variable detector

Induction variable detection is still not quite right. I've added
another failing test.

Redo the overflow/underflow detector so it is more obviously correct.

Update #53600
Fixes #53653
Fixes #53663

Change-Id: Id95228e282fdbf6bd80b26e1c41d62e935ba08ff
Reviewed-on: https://go-review.googlesource.com/c/go/+/415874
Run-TryBot: Keith Randall <khr@golang.org>
TryBot-Result: Gopher Robot <gobot@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
Reviewed-by: David Chase <drchase@google.com>
This commit is contained in:
Keith Randall 2022-07-02 11:07:55 -07:00 committed by Heschi Kreinick
parent 53a4152d47
commit 2acd3646fc
6 changed files with 324 additions and 153 deletions

View File

@ -5,6 +5,7 @@
package ssa package ssa
import ( import (
"cmd/compile/internal/base"
"fmt" "fmt"
"math" "math"
) )
@ -90,41 +91,42 @@ func findIndVar(f *Func) []indVar {
continue continue
} }
var flags indVarFlags var ind *Value // induction variable
var ind, max *Value // induction, and maximum var init *Value // starting value
var limit *Value // ending value
// Check thet the control if it either ind </<= max or max >/>= ind. // Check thet the control if it either ind </<= limit or limit </<= ind.
// TODO: Handle 32-bit comparisons. // TODO: Handle 32-bit comparisons.
// TODO: Handle unsigned comparisons? // TODO: Handle unsigned comparisons?
c := b.Controls[0] c := b.Controls[0]
inclusive := false
switch c.Op { switch c.Op {
case OpLeq64: case OpLeq64:
flags |= indVarMaxInc inclusive = true
fallthrough fallthrough
case OpLess64: case OpLess64:
ind, max = c.Args[0], c.Args[1] ind, limit = c.Args[0], c.Args[1]
default: default:
continue continue
} }
// See if this is really an induction variable // See if this is really an induction variable
less := true less := true
min, inc, nxt := parseIndVar(ind) init, inc, nxt := parseIndVar(ind)
if min == nil { if init == nil {
// We failed to parse the induction variable. Before punting, we want to check // We failed to parse the induction variable. Before punting, we want to check
// whether the control op was written with arguments in non-idiomatic order, // whether the control op was written with the induction variable on the RHS
// so that we believe being "max" (the upper bound) is actually the induction // instead of the LHS. This happens for the downwards case, like:
// variable itself. This would happen for code like: // for i := len(n)-1; i >= 0; i--
// for i := 0; len(n) > i; i++ init, inc, nxt = parseIndVar(limit)
min, inc, nxt = parseIndVar(max) if init == nil {
if min == nil {
// No recognied induction variable on either operand // No recognied induction variable on either operand
continue continue
} }
// Ok, the arguments were reversed. Swap them, and remember that we're // Ok, the arguments were reversed. Swap them, and remember that we're
// looking at a ind >/>= loop (so the induction must be decrementing). // looking at a ind >/>= loop (so the induction must be decrementing).
ind, max = max, ind ind, limit = limit, ind
less = false less = false
} }
@ -138,8 +140,8 @@ func findIndVar(f *Func) []indVar {
} }
// Increment sign must match comparison direction. // Increment sign must match comparison direction.
// When incrementing, the termination comparison must be ind </<= max. // When incrementing, the termination comparison must be ind </<= limit.
// When decrementing, the termination comparison must be ind >/>= max. // When decrementing, the termination comparison must be ind >/>= limit.
// See issue 26116. // See issue 26116.
if step > 0 && !less { if step > 0 && !less {
continue continue
@ -148,177 +150,229 @@ func findIndVar(f *Func) []indVar {
continue continue
} }
// If the increment is negative, swap min/max and their flags
if step < 0 {
min, max = max, min
oldf := flags
flags = indVarMaxInc
if oldf&indVarMaxInc == 0 {
flags |= indVarMinExc
}
step = -step
}
if flags&indVarMaxInc != 0 && max.Op == OpConst64 && max.AuxInt+step < max.AuxInt {
// For a <= comparison, we need to make sure that a value equal to
// max can be incremented without overflowing.
// (For a < comparison, the %step check below ensures no overflow.)
continue
}
// Up to now we extracted the induction variable (ind), // Up to now we extracted the induction variable (ind),
// the increment delta (inc), the temporary sum (nxt), // the increment delta (inc), the temporary sum (nxt),
// the minimum value (min) and the maximum value (max). // the initial value (init) and the limiting value (limit).
// //
// We also know that ind has the form (Phi min nxt) where // We also know that ind has the form (Phi init nxt) where
// nxt is (Add inc nxt) which means: 1) inc dominates nxt // nxt is (Add inc nxt) which means: 1) inc dominates nxt
// and 2) there is a loop starting at inc and containing nxt. // and 2) there is a loop starting at inc and containing nxt.
// //
// We need to prove that the induction variable is incremented // We need to prove that the induction variable is incremented
// only when it's smaller than the maximum value. // only when it's smaller than the limiting value.
// Two conditions must happen listed below to accept ind // Two conditions must happen listed below to accept ind
// as an induction variable. // as an induction variable.
// First condition: loop entry has a single predecessor, which // First condition: loop entry has a single predecessor, which
// is the header block. This implies that b.Succs[0] is // is the header block. This implies that b.Succs[0] is
// reached iff ind < max. // reached iff ind < limit.
if len(b.Succs[0].b.Preds) != 1 { if len(b.Succs[0].b.Preds) != 1 {
// b.Succs[1] must exit the loop. // b.Succs[1] must exit the loop.
continue continue
} }
// Second condition: b.Succs[0] dominates nxt so that // Second condition: b.Succs[0] dominates nxt so that
// nxt is computed when inc < max, meaning nxt <= max. // nxt is computed when inc < limit.
if !sdom.IsAncestorEq(b.Succs[0].b, nxt.Block) { if !sdom.IsAncestorEq(b.Succs[0].b, nxt.Block) {
// inc+ind can only be reached through the branch that enters the loop. // inc+ind can only be reached through the branch that enters the loop.
continue continue
} }
// We can only guarantee that the loop runs within limits of induction variable // Check for overflow/underflow. We need to make sure that inc never causes
// if (one of) // the induction variable to wrap around.
// (1) the increment is ±1 // We use a function wrapper here for easy return true / return false / keep going logic.
// (2) the limits are constants // This function returns true if the increment will never overflow/underflow.
// (3) loop is of the form k0 upto Known_not_negative-k inclusive, step <= k ok := func() bool {
// (4) loop is of the form k0 upto Known_not_negative-k exclusive, step <= k+1 if step > 0 {
// (5) loop is of the form Known_not_negative downto k0, minint+step < k0 if limit.Op == OpConst64 {
if step > 1 { // Figure out the actual largest value.
ok := false v := limit.AuxInt
if min.Op == OpConst64 && max.Op == OpConst64 { if !inclusive {
if max.AuxInt > min.AuxInt && max.AuxInt%step == min.AuxInt%step { // handle overflow if v == math.MinInt64 {
ok = true return false // < minint is never satisfiable.
}
}
// Handle induction variables of these forms.
// KNN is known-not-negative.
// SIGNED ARITHMETIC ONLY. (see switch on c above)
// Possibilities for KNN are len and cap; perhaps we can infer others.
// for i := 0; i <= KNN-k ; i += k
// for i := 0; i < KNN-(k-1); i += k
// Also handle decreasing.
// "Proof" copied from https://go-review.googlesource.com/c/go/+/104041/10/src/cmd/compile/internal/ssa/loopbce.go#164
//
// In the case of
// // PC is Positive Constant
// L := len(A)-PC
// for i := 0; i < L; i = i+PC
//
// we know:
//
// 0 + PC does not over/underflow.
// len(A)-PC does not over/underflow
// maximum value for L is MaxInt-PC
// i < L <= MaxInt-PC means i + PC < MaxInt hence no overflow.
// To match in SSA:
// if (a) min.Op == OpConst64(k0)
// and (b) k0 >= MININT + step
// and (c) max.Op == OpSubtract(Op{StringLen,SliceLen,SliceCap}, k)
// or (c) max.Op == OpAdd(Op{StringLen,SliceLen,SliceCap}, -k)
// or (c) max.Op == Op{StringLen,SliceLen,SliceCap}
// and (d) if upto loop, require indVarMaxInc && step <= k or !indVarMaxInc && step-1 <= k
if min.Op == OpConst64 && min.AuxInt >= step+math.MinInt64 {
knn := max
k := int64(0)
var kArg *Value
switch max.Op {
case OpSub64:
knn = max.Args[0]
kArg = max.Args[1]
case OpAdd64:
knn = max.Args[0]
kArg = max.Args[1]
if knn.Op == OpConst64 {
knn, kArg = kArg, knn
}
}
switch knn.Op {
case OpSliceLen, OpStringLen, OpSliceCap:
default:
knn = nil
}
if kArg != nil && kArg.Op == OpConst64 {
k = kArg.AuxInt
if max.Op == OpAdd64 {
k = -k
}
}
if k >= 0 && knn != nil {
if inc.AuxInt > 0 { // increasing iteration
// The concern for the relation between step and k is to ensure that iv never exceeds knn
// i.e., iv < knn-(K-1) ==> iv + K <= knn; iv <= knn-K ==> iv +K < knn
if step <= k || flags&indVarMaxInc == 0 && step-1 == k {
ok = true
} }
} else { // decreasing iteration v--
// Will be decrementing from max towards min; max is knn-k; will only attempt decrement if
// knn-k >[=] min; underflow is only a concern if min-step is not smaller than min.
// This all assumes signed integer arithmetic
// This is already assured by the test above: min.AuxInt >= step+math.MinInt64
ok = true
} }
if init.Op == OpConst64 {
// Use stride to compute a better lower limit.
if init.AuxInt > v {
return false
}
v = addU(init.AuxInt, diff(v, init.AuxInt)/uint64(step)*uint64(step))
}
// It is ok if we can't overflow when incrementing from the largest value.
return !addWillOverflow(v, step)
}
if step == 1 && !inclusive {
// Can't overflow because maxint is never a possible value.
return true
}
// If the limit is not a constant, check to see if it is a
// negative offset from a known non-negative value.
knn, k := findKNN(limit)
if knn == nil || k < 0 {
return false
}
// limit == (something nonnegative) - k. That subtraction can't underflow, so
// we can trust it.
if inclusive {
// ind <= knn - k cannot overflow if step is at most k
return step <= k
}
// ind < knn - k cannot overflow if step is at most k+1
return step <= k+1 && k != math.MaxInt64
} else { // step < 0
if limit.Op == OpConst64 {
// Figure out the actual smallest value.
v := limit.AuxInt
if !inclusive {
if v == math.MaxInt64 {
return false // > maxint is never satisfiable.
}
v++
}
if init.Op == OpConst64 {
// Use stride to compute a better lower limit.
if init.AuxInt < v {
return false
}
v = subU(init.AuxInt, diff(init.AuxInt, v)/uint64(-step)*uint64(-step))
}
// It is ok if we can't underflow when decrementing from the smallest value.
return !subWillUnderflow(v, -step)
}
if step == -1 && !inclusive {
// Can't underflow because minint is never a possible value.
return true
} }
} }
return false
// TODO: other unrolling idioms }
// for i := 0; i < KNN - KNN % k ; i += k
// for i := 0; i < KNN&^(k-1) ; i += k // k a power of 2
// for i := 0; i < KNN&(-k) ; i += k // k a power of 2
if !ok { if ok() {
continue flags := indVarFlags(0)
var min, max *Value
if step > 0 {
min = init
max = limit
if inclusive {
flags |= indVarMaxInc
}
} else {
min = limit
max = init
flags |= indVarMaxInc
if !inclusive {
flags |= indVarMinExc
}
step = -step
} }
if f.pass.debug >= 1 {
printIndVar(b, ind, min, max, step, flags)
}
iv = append(iv, indVar{
ind: ind,
min: min,
max: max,
entry: b.Succs[0].b,
flags: flags,
})
b.Logf("found induction variable %v (inc = %v, min = %v, max = %v)\n", ind, inc, min, max)
} }
if f.pass.debug >= 1 { // TODO: other unrolling idioms
printIndVar(b, ind, min, max, step, flags) // for i := 0; i < KNN - KNN % k ; i += k
} // for i := 0; i < KNN&^(k-1) ; i += k // k a power of 2
// for i := 0; i < KNN&(-k) ; i += k // k a power of 2
iv = append(iv, indVar{
ind: ind,
min: min,
max: max,
entry: b.Succs[0].b,
flags: flags,
})
b.Logf("found induction variable %v (inc = %v, min = %v, max = %v)\n", ind, inc, min, max)
} }
return iv return iv
} }
func dropAdd64(v *Value) (*Value, int64) { // addWillOverflow reports whether x+y would result in a value more than maxint.
if v.Op == OpAdd64 && v.Args[0].Op == OpConst64 { func addWillOverflow(x, y int64) bool {
return v.Args[1], v.Args[0].AuxInt return x+y < x
}
// subWillUnderflow reports whether x-y would result in a value less than minint.
func subWillUnderflow(x, y int64) bool {
return x-y > x
}
// diff returns x-y as a uint64. Requires x>=y.
func diff(x, y int64) uint64 {
if x < y {
base.Fatalf("diff %d - %d underflowed", x, y)
} }
if v.Op == OpAdd64 && v.Args[1].Op == OpConst64 { return uint64(x - y)
return v.Args[0], v.Args[1].AuxInt }
// addU returns x+y. Requires that x+y does not overflow an int64.
func addU(x int64, y uint64) int64 {
if y >= 1<<63 {
if x >= 0 {
base.Fatalf("addU overflowed %d + %d", x, y)
}
x += 1<<63 - 1
x += 1
y -= 1 << 63
} }
return v, 0 if addWillOverflow(x, int64(y)) {
base.Fatalf("addU overflowed %d + %d", x, y)
}
return x + int64(y)
}
// subU returns x-y. Requires that x-y does not underflow an int64.
func subU(x int64, y uint64) int64 {
if y >= 1<<63 {
if x < 0 {
base.Fatalf("subU underflowed %d - %d", x, y)
}
x -= 1<<63 - 1
x -= 1
y -= 1 << 63
}
if subWillUnderflow(x, int64(y)) {
base.Fatalf("subU underflowed %d - %d", x, y)
}
return x - int64(y)
}
// if v is known to be x - c, where x is known to be nonnegative and c is a
// constant, return x, c. Otherwise return nil, 0.
func findKNN(v *Value) (*Value, int64) {
var x, y *Value
x = v
switch v.Op {
case OpSub64:
x = v.Args[0]
y = v.Args[1]
case OpAdd64:
x = v.Args[0]
y = v.Args[1]
if x.Op == OpConst64 {
x, y = y, x
}
}
switch x.Op {
case OpSliceLen, OpStringLen, OpSliceCap:
default:
return nil, 0
}
if y == nil {
return x, 0
}
if y.Op != OpConst64 {
return nil, 0
}
if v.Op == OpAdd64 {
return x, -y.AuxInt
}
return x, y.AuxInt
} }
func printIndVar(b *Block, i, min, max *Value, inc int64, flags indVarFlags) { func printIndVar(b *Block, i, min, max *Value, inc int64, flags indVarFlags) {

View File

@ -12,6 +12,7 @@ func main() {
f() f()
g() g()
h() h()
j(math.MinInt64)
} }
func f() { func f() {
for i := int64(math.MaxInt64); i <= math.MaxInt64; i++ { for i := int64(math.MaxInt64); i <= math.MaxInt64; i++ {
@ -40,3 +41,13 @@ func h() {
println(i, i < 0) println(i, i < 0)
} }
} }
//go:noinline
func j(i int64) {
for j := int64(math.MaxInt64); j <= i-1; j++ {
if j < 0 {
break
}
println(j)
}
}

View File

@ -6,3 +6,4 @@ done
9223372036854775805 false 9223372036854775805 false
9223372036854775807 false 9223372036854775807 false
done done
9223372036854775807

View File

@ -0,0 +1,42 @@
// run
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package main
import "math"
func main() {
f()
g()
h()
}
func f() {
for i := int64(math.MinInt64); i >= math.MinInt64; i-- {
if i > 0 {
println("done")
return
}
println(i, i > 0)
}
}
func g() {
for i := int64(math.MinInt64) + 1; i >= math.MinInt64; i-- {
if i > 0 {
println("done")
return
}
println(i, i > 0)
}
}
func h() {
for i := int64(math.MinInt64) + 2; i >= math.MinInt64; i -= 2 {
if i > 0 {
println("done")
return
}
println(i, i > 0)
}
}

View File

@ -0,0 +1,8 @@
-9223372036854775808 false
done
-9223372036854775807 false
-9223372036854775808 false
done
-9223372036854775806 false
-9223372036854775808 false
done

View File

@ -3,6 +3,8 @@
package main package main
import "math"
func f0a(a []int) int { func f0a(a []int) int {
x := 0 x := 0
for i := range a { // ERROR "Induction variable: limits \[0,\?\), increment 1$" for i := range a { // ERROR "Induction variable: limits \[0,\?\), increment 1$"
@ -281,8 +283,8 @@ func d2(a [100]int) [100]int {
func d3(a [100]int) [100]int { func d3(a [100]int) [100]int {
for i := 0; i <= 99; i++ { // ERROR "Induction variable: limits \[0,99\], increment 1$" for i := 0; i <= 99; i++ { // ERROR "Induction variable: limits \[0,99\], increment 1$"
for j := 0; j <= i-1; j++ { // ERROR "Induction variable: limits \[0,\?\], increment 1$" for j := 0; j <= i-1; j++ {
a[j] = 0 // ERROR "Proved IsInBounds$" a[j] = 0
a[j+1] = 0 // ERROR "Proved IsInBounds$" a[j+1] = 0 // ERROR "Proved IsInBounds$"
a[j+2] = 0 a[j+2] = 0
} }
@ -290,7 +292,61 @@ func d3(a [100]int) [100]int {
return a return a
} }
func nobce1() { func d4() {
for i := int64(math.MaxInt64 - 9); i < math.MaxInt64-2; i += 4 { // ERROR "Induction variable: limits \[9223372036854775798,9223372036854775805\), increment 4$"
useString("foo")
}
for i := int64(math.MaxInt64 - 8); i < math.MaxInt64-2; i += 4 { // ERROR "Induction variable: limits \[9223372036854775799,9223372036854775805\), increment 4$"
useString("foo")
}
for i := int64(math.MaxInt64 - 7); i < math.MaxInt64-2; i += 4 {
useString("foo")
}
for i := int64(math.MaxInt64 - 6); i < math.MaxInt64-2; i += 4 { // ERROR "Induction variable: limits \[9223372036854775801,9223372036854775805\), increment 4$"
useString("foo")
}
for i := int64(math.MaxInt64 - 9); i <= math.MaxInt64-2; i += 4 { // ERROR "Induction variable: limits \[9223372036854775798,9223372036854775805\], increment 4$"
useString("foo")
}
for i := int64(math.MaxInt64 - 8); i <= math.MaxInt64-2; i += 4 { // ERROR "Induction variable: limits \[9223372036854775799,9223372036854775805\], increment 4$"
useString("foo")
}
for i := int64(math.MaxInt64 - 7); i <= math.MaxInt64-2; i += 4 {
useString("foo")
}
for i := int64(math.MaxInt64 - 6); i <= math.MaxInt64-2; i += 4 {
useString("foo")
}
}
func d5() {
for i := int64(math.MinInt64 + 9); i > math.MinInt64+2; i -= 4 { // ERROR "Induction variable: limits \(-9223372036854775806,-9223372036854775799\], increment 4"
useString("foo")
}
for i := int64(math.MinInt64 + 8); i > math.MinInt64+2; i -= 4 { // ERROR "Induction variable: limits \(-9223372036854775806,-9223372036854775800\], increment 4"
useString("foo")
}
for i := int64(math.MinInt64 + 7); i > math.MinInt64+2; i -= 4 {
useString("foo")
}
for i := int64(math.MinInt64 + 6); i > math.MinInt64+2; i -= 4 { // ERROR "Induction variable: limits \(-9223372036854775806,-9223372036854775802\], increment 4"
useString("foo")
}
for i := int64(math.MinInt64 + 9); i >= math.MinInt64+2; i -= 4 { // ERROR "Induction variable: limits \[-9223372036854775806,-9223372036854775799\], increment 4"
useString("foo")
}
for i := int64(math.MinInt64 + 8); i >= math.MinInt64+2; i -= 4 { // ERROR "Induction variable: limits \[-9223372036854775806,-9223372036854775800\], increment 4"
useString("foo")
}
for i := int64(math.MinInt64 + 7); i >= math.MinInt64+2; i -= 4 {
useString("foo")
}
for i := int64(math.MinInt64 + 6); i >= math.MinInt64+2; i -= 4 {
useString("foo")
}
}
func bce1() {
// tests overflow of max-min // tests overflow of max-min
a := int64(9223372036854774057) a := int64(9223372036854774057)
b := int64(-1547) b := int64(-1547)
@ -300,8 +356,7 @@ func nobce1() {
panic("invalid test: modulos should differ") panic("invalid test: modulos should differ")
} }
for i := b; i < a; i += z { for i := b; i < a; i += z { // ERROR "Induction variable: limits \[-1547,9223372036854774057\), increment 1337"
// No induction variable is possible because i will overflow a first iteration.
useString("foobar") useString("foobar")
} }
} }