mirror of
https://github.com/golang/go.git
synced 2025-05-05 15:43:04 +00:00
cmd/compile: rework induction variable detector
Induction variable detection is still not quite right. I've added another failing test. Redo the overflow/underflow detector so it is more obviously correct. Update #53600 Fixes #53653 Fixes #53663 Change-Id: Id95228e282fdbf6bd80b26e1c41d62e935ba08ff Reviewed-on: https://go-review.googlesource.com/c/go/+/415874 Run-TryBot: Keith Randall <khr@golang.org> TryBot-Result: Gopher Robot <gobot@golang.org> Reviewed-by: Russ Cox <rsc@golang.org> Reviewed-by: David Chase <drchase@google.com>
This commit is contained in:
parent
53a4152d47
commit
2acd3646fc
@ -5,6 +5,7 @@
|
|||||||
package ssa
|
package ssa
|
||||||
|
|
||||||
import (
|
import (
|
||||||
|
"cmd/compile/internal/base"
|
||||||
"fmt"
|
"fmt"
|
||||||
"math"
|
"math"
|
||||||
)
|
)
|
||||||
@ -90,41 +91,42 @@ func findIndVar(f *Func) []indVar {
|
|||||||
continue
|
continue
|
||||||
}
|
}
|
||||||
|
|
||||||
var flags indVarFlags
|
var ind *Value // induction variable
|
||||||
var ind, max *Value // induction, and maximum
|
var init *Value // starting value
|
||||||
|
var limit *Value // ending value
|
||||||
|
|
||||||
// Check thet the control if it either ind </<= max or max >/>= ind.
|
// Check thet the control if it either ind </<= limit or limit </<= ind.
|
||||||
// TODO: Handle 32-bit comparisons.
|
// TODO: Handle 32-bit comparisons.
|
||||||
// TODO: Handle unsigned comparisons?
|
// TODO: Handle unsigned comparisons?
|
||||||
c := b.Controls[0]
|
c := b.Controls[0]
|
||||||
|
inclusive := false
|
||||||
switch c.Op {
|
switch c.Op {
|
||||||
case OpLeq64:
|
case OpLeq64:
|
||||||
flags |= indVarMaxInc
|
inclusive = true
|
||||||
fallthrough
|
fallthrough
|
||||||
case OpLess64:
|
case OpLess64:
|
||||||
ind, max = c.Args[0], c.Args[1]
|
ind, limit = c.Args[0], c.Args[1]
|
||||||
default:
|
default:
|
||||||
continue
|
continue
|
||||||
}
|
}
|
||||||
|
|
||||||
// See if this is really an induction variable
|
// See if this is really an induction variable
|
||||||
less := true
|
less := true
|
||||||
min, inc, nxt := parseIndVar(ind)
|
init, inc, nxt := parseIndVar(ind)
|
||||||
if min == nil {
|
if init == nil {
|
||||||
// We failed to parse the induction variable. Before punting, we want to check
|
// We failed to parse the induction variable. Before punting, we want to check
|
||||||
// whether the control op was written with arguments in non-idiomatic order,
|
// whether the control op was written with the induction variable on the RHS
|
||||||
// so that we believe being "max" (the upper bound) is actually the induction
|
// instead of the LHS. This happens for the downwards case, like:
|
||||||
// variable itself. This would happen for code like:
|
// for i := len(n)-1; i >= 0; i--
|
||||||
// for i := 0; len(n) > i; i++
|
init, inc, nxt = parseIndVar(limit)
|
||||||
min, inc, nxt = parseIndVar(max)
|
if init == nil {
|
||||||
if min == nil {
|
|
||||||
// No recognied induction variable on either operand
|
// No recognied induction variable on either operand
|
||||||
continue
|
continue
|
||||||
}
|
}
|
||||||
|
|
||||||
// Ok, the arguments were reversed. Swap them, and remember that we're
|
// Ok, the arguments were reversed. Swap them, and remember that we're
|
||||||
// looking at a ind >/>= loop (so the induction must be decrementing).
|
// looking at a ind >/>= loop (so the induction must be decrementing).
|
||||||
ind, max = max, ind
|
ind, limit = limit, ind
|
||||||
less = false
|
less = false
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -138,8 +140,8 @@ func findIndVar(f *Func) []indVar {
|
|||||||
}
|
}
|
||||||
|
|
||||||
// Increment sign must match comparison direction.
|
// Increment sign must match comparison direction.
|
||||||
// When incrementing, the termination comparison must be ind </<= max.
|
// When incrementing, the termination comparison must be ind </<= limit.
|
||||||
// When decrementing, the termination comparison must be ind >/>= max.
|
// When decrementing, the termination comparison must be ind >/>= limit.
|
||||||
// See issue 26116.
|
// See issue 26116.
|
||||||
if step > 0 && !less {
|
if step > 0 && !less {
|
||||||
continue
|
continue
|
||||||
@ -148,177 +150,229 @@ func findIndVar(f *Func) []indVar {
|
|||||||
continue
|
continue
|
||||||
}
|
}
|
||||||
|
|
||||||
// If the increment is negative, swap min/max and their flags
|
|
||||||
if step < 0 {
|
|
||||||
min, max = max, min
|
|
||||||
oldf := flags
|
|
||||||
flags = indVarMaxInc
|
|
||||||
if oldf&indVarMaxInc == 0 {
|
|
||||||
flags |= indVarMinExc
|
|
||||||
}
|
|
||||||
step = -step
|
|
||||||
}
|
|
||||||
|
|
||||||
if flags&indVarMaxInc != 0 && max.Op == OpConst64 && max.AuxInt+step < max.AuxInt {
|
|
||||||
// For a <= comparison, we need to make sure that a value equal to
|
|
||||||
// max can be incremented without overflowing.
|
|
||||||
// (For a < comparison, the %step check below ensures no overflow.)
|
|
||||||
continue
|
|
||||||
}
|
|
||||||
|
|
||||||
// Up to now we extracted the induction variable (ind),
|
// Up to now we extracted the induction variable (ind),
|
||||||
// the increment delta (inc), the temporary sum (nxt),
|
// the increment delta (inc), the temporary sum (nxt),
|
||||||
// the minimum value (min) and the maximum value (max).
|
// the initial value (init) and the limiting value (limit).
|
||||||
//
|
//
|
||||||
// We also know that ind has the form (Phi min nxt) where
|
// We also know that ind has the form (Phi init nxt) where
|
||||||
// nxt is (Add inc nxt) which means: 1) inc dominates nxt
|
// nxt is (Add inc nxt) which means: 1) inc dominates nxt
|
||||||
// and 2) there is a loop starting at inc and containing nxt.
|
// and 2) there is a loop starting at inc and containing nxt.
|
||||||
//
|
//
|
||||||
// We need to prove that the induction variable is incremented
|
// We need to prove that the induction variable is incremented
|
||||||
// only when it's smaller than the maximum value.
|
// only when it's smaller than the limiting value.
|
||||||
// Two conditions must happen listed below to accept ind
|
// Two conditions must happen listed below to accept ind
|
||||||
// as an induction variable.
|
// as an induction variable.
|
||||||
|
|
||||||
// First condition: loop entry has a single predecessor, which
|
// First condition: loop entry has a single predecessor, which
|
||||||
// is the header block. This implies that b.Succs[0] is
|
// is the header block. This implies that b.Succs[0] is
|
||||||
// reached iff ind < max.
|
// reached iff ind < limit.
|
||||||
if len(b.Succs[0].b.Preds) != 1 {
|
if len(b.Succs[0].b.Preds) != 1 {
|
||||||
// b.Succs[1] must exit the loop.
|
// b.Succs[1] must exit the loop.
|
||||||
continue
|
continue
|
||||||
}
|
}
|
||||||
|
|
||||||
// Second condition: b.Succs[0] dominates nxt so that
|
// Second condition: b.Succs[0] dominates nxt so that
|
||||||
// nxt is computed when inc < max, meaning nxt <= max.
|
// nxt is computed when inc < limit.
|
||||||
if !sdom.IsAncestorEq(b.Succs[0].b, nxt.Block) {
|
if !sdom.IsAncestorEq(b.Succs[0].b, nxt.Block) {
|
||||||
// inc+ind can only be reached through the branch that enters the loop.
|
// inc+ind can only be reached through the branch that enters the loop.
|
||||||
continue
|
continue
|
||||||
}
|
}
|
||||||
|
|
||||||
// We can only guarantee that the loop runs within limits of induction variable
|
// Check for overflow/underflow. We need to make sure that inc never causes
|
||||||
// if (one of)
|
// the induction variable to wrap around.
|
||||||
// (1) the increment is ±1
|
// We use a function wrapper here for easy return true / return false / keep going logic.
|
||||||
// (2) the limits are constants
|
// This function returns true if the increment will never overflow/underflow.
|
||||||
// (3) loop is of the form k0 upto Known_not_negative-k inclusive, step <= k
|
ok := func() bool {
|
||||||
// (4) loop is of the form k0 upto Known_not_negative-k exclusive, step <= k+1
|
if step > 0 {
|
||||||
// (5) loop is of the form Known_not_negative downto k0, minint+step < k0
|
if limit.Op == OpConst64 {
|
||||||
if step > 1 {
|
// Figure out the actual largest value.
|
||||||
ok := false
|
v := limit.AuxInt
|
||||||
if min.Op == OpConst64 && max.Op == OpConst64 {
|
if !inclusive {
|
||||||
if max.AuxInt > min.AuxInt && max.AuxInt%step == min.AuxInt%step { // handle overflow
|
if v == math.MinInt64 {
|
||||||
ok = true
|
return false // < minint is never satisfiable.
|
||||||
}
|
|
||||||
}
|
|
||||||
// Handle induction variables of these forms.
|
|
||||||
// KNN is known-not-negative.
|
|
||||||
// SIGNED ARITHMETIC ONLY. (see switch on c above)
|
|
||||||
// Possibilities for KNN are len and cap; perhaps we can infer others.
|
|
||||||
// for i := 0; i <= KNN-k ; i += k
|
|
||||||
// for i := 0; i < KNN-(k-1); i += k
|
|
||||||
// Also handle decreasing.
|
|
||||||
|
|
||||||
// "Proof" copied from https://go-review.googlesource.com/c/go/+/104041/10/src/cmd/compile/internal/ssa/loopbce.go#164
|
|
||||||
//
|
|
||||||
// In the case of
|
|
||||||
// // PC is Positive Constant
|
|
||||||
// L := len(A)-PC
|
|
||||||
// for i := 0; i < L; i = i+PC
|
|
||||||
//
|
|
||||||
// we know:
|
|
||||||
//
|
|
||||||
// 0 + PC does not over/underflow.
|
|
||||||
// len(A)-PC does not over/underflow
|
|
||||||
// maximum value for L is MaxInt-PC
|
|
||||||
// i < L <= MaxInt-PC means i + PC < MaxInt hence no overflow.
|
|
||||||
|
|
||||||
// To match in SSA:
|
|
||||||
// if (a) min.Op == OpConst64(k0)
|
|
||||||
// and (b) k0 >= MININT + step
|
|
||||||
// and (c) max.Op == OpSubtract(Op{StringLen,SliceLen,SliceCap}, k)
|
|
||||||
// or (c) max.Op == OpAdd(Op{StringLen,SliceLen,SliceCap}, -k)
|
|
||||||
// or (c) max.Op == Op{StringLen,SliceLen,SliceCap}
|
|
||||||
// and (d) if upto loop, require indVarMaxInc && step <= k or !indVarMaxInc && step-1 <= k
|
|
||||||
|
|
||||||
if min.Op == OpConst64 && min.AuxInt >= step+math.MinInt64 {
|
|
||||||
knn := max
|
|
||||||
k := int64(0)
|
|
||||||
var kArg *Value
|
|
||||||
|
|
||||||
switch max.Op {
|
|
||||||
case OpSub64:
|
|
||||||
knn = max.Args[0]
|
|
||||||
kArg = max.Args[1]
|
|
||||||
|
|
||||||
case OpAdd64:
|
|
||||||
knn = max.Args[0]
|
|
||||||
kArg = max.Args[1]
|
|
||||||
if knn.Op == OpConst64 {
|
|
||||||
knn, kArg = kArg, knn
|
|
||||||
}
|
|
||||||
}
|
|
||||||
switch knn.Op {
|
|
||||||
case OpSliceLen, OpStringLen, OpSliceCap:
|
|
||||||
default:
|
|
||||||
knn = nil
|
|
||||||
}
|
|
||||||
|
|
||||||
if kArg != nil && kArg.Op == OpConst64 {
|
|
||||||
k = kArg.AuxInt
|
|
||||||
if max.Op == OpAdd64 {
|
|
||||||
k = -k
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if k >= 0 && knn != nil {
|
|
||||||
if inc.AuxInt > 0 { // increasing iteration
|
|
||||||
// The concern for the relation between step and k is to ensure that iv never exceeds knn
|
|
||||||
// i.e., iv < knn-(K-1) ==> iv + K <= knn; iv <= knn-K ==> iv +K < knn
|
|
||||||
if step <= k || flags&indVarMaxInc == 0 && step-1 == k {
|
|
||||||
ok = true
|
|
||||||
}
|
}
|
||||||
} else { // decreasing iteration
|
v--
|
||||||
// Will be decrementing from max towards min; max is knn-k; will only attempt decrement if
|
|
||||||
// knn-k >[=] min; underflow is only a concern if min-step is not smaller than min.
|
|
||||||
// This all assumes signed integer arithmetic
|
|
||||||
// This is already assured by the test above: min.AuxInt >= step+math.MinInt64
|
|
||||||
ok = true
|
|
||||||
}
|
}
|
||||||
|
if init.Op == OpConst64 {
|
||||||
|
// Use stride to compute a better lower limit.
|
||||||
|
if init.AuxInt > v {
|
||||||
|
return false
|
||||||
|
}
|
||||||
|
v = addU(init.AuxInt, diff(v, init.AuxInt)/uint64(step)*uint64(step))
|
||||||
|
}
|
||||||
|
// It is ok if we can't overflow when incrementing from the largest value.
|
||||||
|
return !addWillOverflow(v, step)
|
||||||
|
}
|
||||||
|
if step == 1 && !inclusive {
|
||||||
|
// Can't overflow because maxint is never a possible value.
|
||||||
|
return true
|
||||||
|
}
|
||||||
|
// If the limit is not a constant, check to see if it is a
|
||||||
|
// negative offset from a known non-negative value.
|
||||||
|
knn, k := findKNN(limit)
|
||||||
|
if knn == nil || k < 0 {
|
||||||
|
return false
|
||||||
|
}
|
||||||
|
// limit == (something nonnegative) - k. That subtraction can't underflow, so
|
||||||
|
// we can trust it.
|
||||||
|
if inclusive {
|
||||||
|
// ind <= knn - k cannot overflow if step is at most k
|
||||||
|
return step <= k
|
||||||
|
}
|
||||||
|
// ind < knn - k cannot overflow if step is at most k+1
|
||||||
|
return step <= k+1 && k != math.MaxInt64
|
||||||
|
} else { // step < 0
|
||||||
|
if limit.Op == OpConst64 {
|
||||||
|
// Figure out the actual smallest value.
|
||||||
|
v := limit.AuxInt
|
||||||
|
if !inclusive {
|
||||||
|
if v == math.MaxInt64 {
|
||||||
|
return false // > maxint is never satisfiable.
|
||||||
|
}
|
||||||
|
v++
|
||||||
|
}
|
||||||
|
if init.Op == OpConst64 {
|
||||||
|
// Use stride to compute a better lower limit.
|
||||||
|
if init.AuxInt < v {
|
||||||
|
return false
|
||||||
|
}
|
||||||
|
v = subU(init.AuxInt, diff(init.AuxInt, v)/uint64(-step)*uint64(-step))
|
||||||
|
}
|
||||||
|
// It is ok if we can't underflow when decrementing from the smallest value.
|
||||||
|
return !subWillUnderflow(v, -step)
|
||||||
|
}
|
||||||
|
if step == -1 && !inclusive {
|
||||||
|
// Can't underflow because minint is never a possible value.
|
||||||
|
return true
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
return false
|
||||||
|
|
||||||
// TODO: other unrolling idioms
|
}
|
||||||
// for i := 0; i < KNN - KNN % k ; i += k
|
|
||||||
// for i := 0; i < KNN&^(k-1) ; i += k // k a power of 2
|
|
||||||
// for i := 0; i < KNN&(-k) ; i += k // k a power of 2
|
|
||||||
|
|
||||||
if !ok {
|
if ok() {
|
||||||
continue
|
flags := indVarFlags(0)
|
||||||
|
var min, max *Value
|
||||||
|
if step > 0 {
|
||||||
|
min = init
|
||||||
|
max = limit
|
||||||
|
if inclusive {
|
||||||
|
flags |= indVarMaxInc
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
min = limit
|
||||||
|
max = init
|
||||||
|
flags |= indVarMaxInc
|
||||||
|
if !inclusive {
|
||||||
|
flags |= indVarMinExc
|
||||||
|
}
|
||||||
|
step = -step
|
||||||
}
|
}
|
||||||
|
if f.pass.debug >= 1 {
|
||||||
|
printIndVar(b, ind, min, max, step, flags)
|
||||||
|
}
|
||||||
|
|
||||||
|
iv = append(iv, indVar{
|
||||||
|
ind: ind,
|
||||||
|
min: min,
|
||||||
|
max: max,
|
||||||
|
entry: b.Succs[0].b,
|
||||||
|
flags: flags,
|
||||||
|
})
|
||||||
|
b.Logf("found induction variable %v (inc = %v, min = %v, max = %v)\n", ind, inc, min, max)
|
||||||
}
|
}
|
||||||
|
|
||||||
if f.pass.debug >= 1 {
|
// TODO: other unrolling idioms
|
||||||
printIndVar(b, ind, min, max, step, flags)
|
// for i := 0; i < KNN - KNN % k ; i += k
|
||||||
}
|
// for i := 0; i < KNN&^(k-1) ; i += k // k a power of 2
|
||||||
|
// for i := 0; i < KNN&(-k) ; i += k // k a power of 2
|
||||||
iv = append(iv, indVar{
|
|
||||||
ind: ind,
|
|
||||||
min: min,
|
|
||||||
max: max,
|
|
||||||
entry: b.Succs[0].b,
|
|
||||||
flags: flags,
|
|
||||||
})
|
|
||||||
b.Logf("found induction variable %v (inc = %v, min = %v, max = %v)\n", ind, inc, min, max)
|
|
||||||
}
|
}
|
||||||
|
|
||||||
return iv
|
return iv
|
||||||
}
|
}
|
||||||
|
|
||||||
func dropAdd64(v *Value) (*Value, int64) {
|
// addWillOverflow reports whether x+y would result in a value more than maxint.
|
||||||
if v.Op == OpAdd64 && v.Args[0].Op == OpConst64 {
|
func addWillOverflow(x, y int64) bool {
|
||||||
return v.Args[1], v.Args[0].AuxInt
|
return x+y < x
|
||||||
|
}
|
||||||
|
|
||||||
|
// subWillUnderflow reports whether x-y would result in a value less than minint.
|
||||||
|
func subWillUnderflow(x, y int64) bool {
|
||||||
|
return x-y > x
|
||||||
|
}
|
||||||
|
|
||||||
|
// diff returns x-y as a uint64. Requires x>=y.
|
||||||
|
func diff(x, y int64) uint64 {
|
||||||
|
if x < y {
|
||||||
|
base.Fatalf("diff %d - %d underflowed", x, y)
|
||||||
}
|
}
|
||||||
if v.Op == OpAdd64 && v.Args[1].Op == OpConst64 {
|
return uint64(x - y)
|
||||||
return v.Args[0], v.Args[1].AuxInt
|
}
|
||||||
|
|
||||||
|
// addU returns x+y. Requires that x+y does not overflow an int64.
|
||||||
|
func addU(x int64, y uint64) int64 {
|
||||||
|
if y >= 1<<63 {
|
||||||
|
if x >= 0 {
|
||||||
|
base.Fatalf("addU overflowed %d + %d", x, y)
|
||||||
|
}
|
||||||
|
x += 1<<63 - 1
|
||||||
|
x += 1
|
||||||
|
y -= 1 << 63
|
||||||
}
|
}
|
||||||
return v, 0
|
if addWillOverflow(x, int64(y)) {
|
||||||
|
base.Fatalf("addU overflowed %d + %d", x, y)
|
||||||
|
}
|
||||||
|
return x + int64(y)
|
||||||
|
}
|
||||||
|
|
||||||
|
// subU returns x-y. Requires that x-y does not underflow an int64.
|
||||||
|
func subU(x int64, y uint64) int64 {
|
||||||
|
if y >= 1<<63 {
|
||||||
|
if x < 0 {
|
||||||
|
base.Fatalf("subU underflowed %d - %d", x, y)
|
||||||
|
}
|
||||||
|
x -= 1<<63 - 1
|
||||||
|
x -= 1
|
||||||
|
y -= 1 << 63
|
||||||
|
}
|
||||||
|
if subWillUnderflow(x, int64(y)) {
|
||||||
|
base.Fatalf("subU underflowed %d - %d", x, y)
|
||||||
|
}
|
||||||
|
return x - int64(y)
|
||||||
|
}
|
||||||
|
|
||||||
|
// if v is known to be x - c, where x is known to be nonnegative and c is a
|
||||||
|
// constant, return x, c. Otherwise return nil, 0.
|
||||||
|
func findKNN(v *Value) (*Value, int64) {
|
||||||
|
var x, y *Value
|
||||||
|
x = v
|
||||||
|
switch v.Op {
|
||||||
|
case OpSub64:
|
||||||
|
x = v.Args[0]
|
||||||
|
y = v.Args[1]
|
||||||
|
|
||||||
|
case OpAdd64:
|
||||||
|
x = v.Args[0]
|
||||||
|
y = v.Args[1]
|
||||||
|
if x.Op == OpConst64 {
|
||||||
|
x, y = y, x
|
||||||
|
}
|
||||||
|
}
|
||||||
|
switch x.Op {
|
||||||
|
case OpSliceLen, OpStringLen, OpSliceCap:
|
||||||
|
default:
|
||||||
|
return nil, 0
|
||||||
|
}
|
||||||
|
if y == nil {
|
||||||
|
return x, 0
|
||||||
|
}
|
||||||
|
if y.Op != OpConst64 {
|
||||||
|
return nil, 0
|
||||||
|
}
|
||||||
|
if v.Op == OpAdd64 {
|
||||||
|
return x, -y.AuxInt
|
||||||
|
}
|
||||||
|
return x, y.AuxInt
|
||||||
}
|
}
|
||||||
|
|
||||||
func printIndVar(b *Block, i, min, max *Value, inc int64, flags indVarFlags) {
|
func printIndVar(b *Block, i, min, max *Value, inc int64, flags indVarFlags) {
|
||||||
|
@ -12,6 +12,7 @@ func main() {
|
|||||||
f()
|
f()
|
||||||
g()
|
g()
|
||||||
h()
|
h()
|
||||||
|
j(math.MinInt64)
|
||||||
}
|
}
|
||||||
func f() {
|
func f() {
|
||||||
for i := int64(math.MaxInt64); i <= math.MaxInt64; i++ {
|
for i := int64(math.MaxInt64); i <= math.MaxInt64; i++ {
|
||||||
@ -40,3 +41,13 @@ func h() {
|
|||||||
println(i, i < 0)
|
println(i, i < 0)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//go:noinline
|
||||||
|
func j(i int64) {
|
||||||
|
for j := int64(math.MaxInt64); j <= i-1; j++ {
|
||||||
|
if j < 0 {
|
||||||
|
break
|
||||||
|
}
|
||||||
|
println(j)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
@ -6,3 +6,4 @@ done
|
|||||||
9223372036854775805 false
|
9223372036854775805 false
|
||||||
9223372036854775807 false
|
9223372036854775807 false
|
||||||
done
|
done
|
||||||
|
9223372036854775807
|
||||||
|
42
test/fixedbugs/issue53653.go
Normal file
42
test/fixedbugs/issue53653.go
Normal file
@ -0,0 +1,42 @@
|
|||||||
|
// run
|
||||||
|
|
||||||
|
// Copyright 2022 The Go Authors. All rights reserved.
|
||||||
|
// Use of this source code is governed by a BSD-style
|
||||||
|
// license that can be found in the LICENSE file.
|
||||||
|
|
||||||
|
package main
|
||||||
|
|
||||||
|
import "math"
|
||||||
|
|
||||||
|
func main() {
|
||||||
|
f()
|
||||||
|
g()
|
||||||
|
h()
|
||||||
|
}
|
||||||
|
func f() {
|
||||||
|
for i := int64(math.MinInt64); i >= math.MinInt64; i-- {
|
||||||
|
if i > 0 {
|
||||||
|
println("done")
|
||||||
|
return
|
||||||
|
}
|
||||||
|
println(i, i > 0)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
func g() {
|
||||||
|
for i := int64(math.MinInt64) + 1; i >= math.MinInt64; i-- {
|
||||||
|
if i > 0 {
|
||||||
|
println("done")
|
||||||
|
return
|
||||||
|
}
|
||||||
|
println(i, i > 0)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
func h() {
|
||||||
|
for i := int64(math.MinInt64) + 2; i >= math.MinInt64; i -= 2 {
|
||||||
|
if i > 0 {
|
||||||
|
println("done")
|
||||||
|
return
|
||||||
|
}
|
||||||
|
println(i, i > 0)
|
||||||
|
}
|
||||||
|
}
|
8
test/fixedbugs/issue53653.out
Normal file
8
test/fixedbugs/issue53653.out
Normal file
@ -0,0 +1,8 @@
|
|||||||
|
-9223372036854775808 false
|
||||||
|
done
|
||||||
|
-9223372036854775807 false
|
||||||
|
-9223372036854775808 false
|
||||||
|
done
|
||||||
|
-9223372036854775806 false
|
||||||
|
-9223372036854775808 false
|
||||||
|
done
|
@ -3,6 +3,8 @@
|
|||||||
|
|
||||||
package main
|
package main
|
||||||
|
|
||||||
|
import "math"
|
||||||
|
|
||||||
func f0a(a []int) int {
|
func f0a(a []int) int {
|
||||||
x := 0
|
x := 0
|
||||||
for i := range a { // ERROR "Induction variable: limits \[0,\?\), increment 1$"
|
for i := range a { // ERROR "Induction variable: limits \[0,\?\), increment 1$"
|
||||||
@ -281,8 +283,8 @@ func d2(a [100]int) [100]int {
|
|||||||
|
|
||||||
func d3(a [100]int) [100]int {
|
func d3(a [100]int) [100]int {
|
||||||
for i := 0; i <= 99; i++ { // ERROR "Induction variable: limits \[0,99\], increment 1$"
|
for i := 0; i <= 99; i++ { // ERROR "Induction variable: limits \[0,99\], increment 1$"
|
||||||
for j := 0; j <= i-1; j++ { // ERROR "Induction variable: limits \[0,\?\], increment 1$"
|
for j := 0; j <= i-1; j++ {
|
||||||
a[j] = 0 // ERROR "Proved IsInBounds$"
|
a[j] = 0
|
||||||
a[j+1] = 0 // ERROR "Proved IsInBounds$"
|
a[j+1] = 0 // ERROR "Proved IsInBounds$"
|
||||||
a[j+2] = 0
|
a[j+2] = 0
|
||||||
}
|
}
|
||||||
@ -290,7 +292,61 @@ func d3(a [100]int) [100]int {
|
|||||||
return a
|
return a
|
||||||
}
|
}
|
||||||
|
|
||||||
func nobce1() {
|
func d4() {
|
||||||
|
for i := int64(math.MaxInt64 - 9); i < math.MaxInt64-2; i += 4 { // ERROR "Induction variable: limits \[9223372036854775798,9223372036854775805\), increment 4$"
|
||||||
|
useString("foo")
|
||||||
|
}
|
||||||
|
for i := int64(math.MaxInt64 - 8); i < math.MaxInt64-2; i += 4 { // ERROR "Induction variable: limits \[9223372036854775799,9223372036854775805\), increment 4$"
|
||||||
|
useString("foo")
|
||||||
|
}
|
||||||
|
for i := int64(math.MaxInt64 - 7); i < math.MaxInt64-2; i += 4 {
|
||||||
|
useString("foo")
|
||||||
|
}
|
||||||
|
for i := int64(math.MaxInt64 - 6); i < math.MaxInt64-2; i += 4 { // ERROR "Induction variable: limits \[9223372036854775801,9223372036854775805\), increment 4$"
|
||||||
|
useString("foo")
|
||||||
|
}
|
||||||
|
for i := int64(math.MaxInt64 - 9); i <= math.MaxInt64-2; i += 4 { // ERROR "Induction variable: limits \[9223372036854775798,9223372036854775805\], increment 4$"
|
||||||
|
useString("foo")
|
||||||
|
}
|
||||||
|
for i := int64(math.MaxInt64 - 8); i <= math.MaxInt64-2; i += 4 { // ERROR "Induction variable: limits \[9223372036854775799,9223372036854775805\], increment 4$"
|
||||||
|
useString("foo")
|
||||||
|
}
|
||||||
|
for i := int64(math.MaxInt64 - 7); i <= math.MaxInt64-2; i += 4 {
|
||||||
|
useString("foo")
|
||||||
|
}
|
||||||
|
for i := int64(math.MaxInt64 - 6); i <= math.MaxInt64-2; i += 4 {
|
||||||
|
useString("foo")
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func d5() {
|
||||||
|
for i := int64(math.MinInt64 + 9); i > math.MinInt64+2; i -= 4 { // ERROR "Induction variable: limits \(-9223372036854775806,-9223372036854775799\], increment 4"
|
||||||
|
useString("foo")
|
||||||
|
}
|
||||||
|
for i := int64(math.MinInt64 + 8); i > math.MinInt64+2; i -= 4 { // ERROR "Induction variable: limits \(-9223372036854775806,-9223372036854775800\], increment 4"
|
||||||
|
useString("foo")
|
||||||
|
}
|
||||||
|
for i := int64(math.MinInt64 + 7); i > math.MinInt64+2; i -= 4 {
|
||||||
|
useString("foo")
|
||||||
|
}
|
||||||
|
for i := int64(math.MinInt64 + 6); i > math.MinInt64+2; i -= 4 { // ERROR "Induction variable: limits \(-9223372036854775806,-9223372036854775802\], increment 4"
|
||||||
|
useString("foo")
|
||||||
|
}
|
||||||
|
for i := int64(math.MinInt64 + 9); i >= math.MinInt64+2; i -= 4 { // ERROR "Induction variable: limits \[-9223372036854775806,-9223372036854775799\], increment 4"
|
||||||
|
useString("foo")
|
||||||
|
}
|
||||||
|
for i := int64(math.MinInt64 + 8); i >= math.MinInt64+2; i -= 4 { // ERROR "Induction variable: limits \[-9223372036854775806,-9223372036854775800\], increment 4"
|
||||||
|
useString("foo")
|
||||||
|
}
|
||||||
|
for i := int64(math.MinInt64 + 7); i >= math.MinInt64+2; i -= 4 {
|
||||||
|
useString("foo")
|
||||||
|
}
|
||||||
|
for i := int64(math.MinInt64 + 6); i >= math.MinInt64+2; i -= 4 {
|
||||||
|
useString("foo")
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func bce1() {
|
||||||
// tests overflow of max-min
|
// tests overflow of max-min
|
||||||
a := int64(9223372036854774057)
|
a := int64(9223372036854774057)
|
||||||
b := int64(-1547)
|
b := int64(-1547)
|
||||||
@ -300,8 +356,7 @@ func nobce1() {
|
|||||||
panic("invalid test: modulos should differ")
|
panic("invalid test: modulos should differ")
|
||||||
}
|
}
|
||||||
|
|
||||||
for i := b; i < a; i += z {
|
for i := b; i < a; i += z { // ERROR "Induction variable: limits \[-1547,9223372036854774057\), increment 1337"
|
||||||
// No induction variable is possible because i will overflow a first iteration.
|
|
||||||
useString("foobar")
|
useString("foobar")
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user