mirror of
https://github.com/golang/go.git
synced 2025-05-28 10:51:22 +00:00
runtime: add general suspendG/resumeG
Currently, the process of suspending a goroutine is tied to stack scanning. In preparation for non-cooperative preemption, this CL abstracts this into general purpose suspendG/resumeG functions. suspendG and resumeG closely follow the existing scang and restartg functions with one exception: the addition of a _Gpreempted status. Currently, preemption tasks (stack scanning) are carried out by the target goroutine if it's in _Grunning. In this new approach, the task is always carried out by the goroutine that called suspendG. Thus, we need a reliable way to drive the target goroutine out of _Grunning until the requesting goroutine is ready to resume it. The new _Gpreempted state provides the handshake: when a runnable goroutine responds to a preemption request, it now parks itself and enters _Gpreempted. The requesting goroutine races to put it in _Gwaiting, which gives it ownership, but also the responsibility to start it again. This CL adds several TODOs about improving the synchronization on the G status. The existing code already has these problems; we're just taking note of them. The next CL will remove the now-dead scang and preemptscan. For #10958, #24543. Change-Id: I16dbf87bea9d50399cc86719c156f48e67198f16 Reviewed-on: https://go-review.googlesource.com/c/go/+/201137 Run-TryBot: Austin Clements <austin@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com>
This commit is contained in:
parent
46e0d724b3
commit
3f834114ab
@ -211,14 +211,24 @@ func markroot(gcw *gcWork, i uint32) {
|
||||
userG.waitreason = waitReasonGarbageCollectionScan
|
||||
}
|
||||
|
||||
// TODO: scang blocks until gp's stack has
|
||||
// been scanned, which may take a while for
|
||||
// TODO: suspendG blocks (and spins) until gp
|
||||
// stops, which may take a while for
|
||||
// running goroutines. Consider doing this in
|
||||
// two phases where the first is non-blocking:
|
||||
// we scan the stacks we can and ask running
|
||||
// goroutines to scan themselves; and the
|
||||
// second blocks.
|
||||
scang(gp, gcw)
|
||||
stopped := suspendG(gp)
|
||||
if stopped.dead {
|
||||
gp.gcscandone = true
|
||||
return
|
||||
}
|
||||
if gp.gcscandone {
|
||||
throw("g already scanned")
|
||||
}
|
||||
scanstack(gp, gcw)
|
||||
gp.gcscandone = true
|
||||
resumeG(stopped)
|
||||
|
||||
if selfScan {
|
||||
casgstatus(userG, _Gwaiting, _Grunning)
|
||||
|
225
src/runtime/preempt.go
Normal file
225
src/runtime/preempt.go
Normal file
@ -0,0 +1,225 @@
|
||||
// Copyright 2019 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Goroutine preemption
|
||||
//
|
||||
// A goroutine can be preempted at any safe-point. Currently, there
|
||||
// are a few categories of safe-points:
|
||||
//
|
||||
// 1. A blocked safe-point occurs for the duration that a goroutine is
|
||||
// descheduled, blocked on synchronization, or in a system call.
|
||||
//
|
||||
// 2. Synchronous safe-points occur when a running goroutine checks
|
||||
// for a preemption request.
|
||||
//
|
||||
// At both blocked and synchronous safe-points, a goroutine's CPU
|
||||
// state is minimal and the garbage collector has complete information
|
||||
// about its entire stack. This makes it possible to deschedule a
|
||||
// goroutine with minimal space, and to precisely scan a goroutine's
|
||||
// stack.
|
||||
//
|
||||
// Synchronous safe-points are implemented by overloading the stack
|
||||
// bound check in function prologues. To preempt a goroutine at the
|
||||
// next synchronous safe-point, the runtime poisons the goroutine's
|
||||
// stack bound to a value that will cause the next stack bound check
|
||||
// to fail and enter the stack growth implementation, which will
|
||||
// detect that it was actually a preemption and redirect to preemption
|
||||
// handling.
|
||||
|
||||
package runtime
|
||||
|
||||
type suspendGState struct {
|
||||
g *g
|
||||
|
||||
// dead indicates the goroutine was not suspended because it
|
||||
// is dead. This goroutine could be reused after the dead
|
||||
// state was observed, so the caller must not assume that it
|
||||
// remains dead.
|
||||
dead bool
|
||||
|
||||
// stopped indicates that this suspendG transitioned the G to
|
||||
// _Gwaiting via g.preemptStop and thus is responsible for
|
||||
// readying it when done.
|
||||
stopped bool
|
||||
}
|
||||
|
||||
// suspendG suspends goroutine gp at a safe-point and returns the
|
||||
// state of the suspended goroutine. The caller gets read access to
|
||||
// the goroutine until it calls resumeG.
|
||||
//
|
||||
// It is safe for multiple callers to attempt to suspend the same
|
||||
// goroutine at the same time. The goroutine may execute between
|
||||
// subsequent successful suspend operations. The current
|
||||
// implementation grants exclusive access to the goroutine, and hence
|
||||
// multiple callers will serialize. However, the intent is to grant
|
||||
// shared read access, so please don't depend on exclusive access.
|
||||
//
|
||||
// This must be called from the system stack and the user goroutine on
|
||||
// the current M (if any) must be in a preemptible state. This
|
||||
// prevents deadlocks where two goroutines attempt to suspend each
|
||||
// other and both are in non-preemptible states. There are other ways
|
||||
// to resolve this deadlock, but this seems simplest.
|
||||
//
|
||||
// TODO(austin): What if we instead required this to be called from a
|
||||
// user goroutine? Then we could deschedule the goroutine while
|
||||
// waiting instead of blocking the thread. If two goroutines tried to
|
||||
// suspend each other, one of them would win and the other wouldn't
|
||||
// complete the suspend until it was resumed. We would have to be
|
||||
// careful that they couldn't actually queue up suspend for each other
|
||||
// and then both be suspended. This would also avoid the need for a
|
||||
// kernel context switch in the synchronous case because we could just
|
||||
// directly schedule the waiter. The context switch is unavoidable in
|
||||
// the signal case.
|
||||
//
|
||||
//go:systemstack
|
||||
func suspendG(gp *g) suspendGState {
|
||||
if mp := getg().m; mp.curg != nil && readgstatus(mp.curg) == _Grunning {
|
||||
// Since we're on the system stack of this M, the user
|
||||
// G is stuck at an unsafe point. If another goroutine
|
||||
// were to try to preempt m.curg, it could deadlock.
|
||||
throw("suspendG from non-preemptible goroutine")
|
||||
}
|
||||
|
||||
// See https://golang.org/cl/21503 for justification of the yield delay.
|
||||
const yieldDelay = 10 * 1000
|
||||
var nextYield int64
|
||||
|
||||
// Drive the goroutine to a preemption point.
|
||||
stopped := false
|
||||
for i := 0; ; i++ {
|
||||
switch s := readgstatus(gp); s {
|
||||
default:
|
||||
if s&_Gscan != 0 {
|
||||
// Someone else is suspending it. Wait
|
||||
// for them to finish.
|
||||
//
|
||||
// TODO: It would be nicer if we could
|
||||
// coalesce suspends.
|
||||
break
|
||||
}
|
||||
|
||||
dumpgstatus(gp)
|
||||
throw("invalid g status")
|
||||
|
||||
case _Gdead:
|
||||
// Nothing to suspend.
|
||||
//
|
||||
// preemptStop may need to be cleared, but
|
||||
// doing that here could race with goroutine
|
||||
// reuse. Instead, goexit0 clears it.
|
||||
return suspendGState{dead: true}
|
||||
|
||||
case _Gcopystack:
|
||||
// The stack is being copied. We need to wait
|
||||
// until this is done.
|
||||
|
||||
case _Gpreempted:
|
||||
// We (or someone else) suspended the G. Claim
|
||||
// ownership of it by transitioning it to
|
||||
// _Gwaiting.
|
||||
if !casGFromPreempted(gp, _Gpreempted, _Gwaiting) {
|
||||
break
|
||||
}
|
||||
|
||||
// We stopped the G, so we have to ready it later.
|
||||
stopped = true
|
||||
|
||||
s = _Gwaiting
|
||||
fallthrough
|
||||
|
||||
case _Grunnable, _Gsyscall, _Gwaiting:
|
||||
// Claim goroutine by setting scan bit.
|
||||
// This may race with execution or readying of gp.
|
||||
// The scan bit keeps it from transition state.
|
||||
if !castogscanstatus(gp, s, s|_Gscan) {
|
||||
break
|
||||
}
|
||||
|
||||
// Clear the preemption request. It's safe to
|
||||
// reset the stack guard because we hold the
|
||||
// _Gscan bit and thus own the stack.
|
||||
gp.preemptStop = false
|
||||
gp.preempt = false
|
||||
gp.stackguard0 = gp.stack.lo + _StackGuard
|
||||
|
||||
// The goroutine was already at a safe-point
|
||||
// and we've now locked that in.
|
||||
//
|
||||
// TODO: It would be much better if we didn't
|
||||
// leave it in _Gscan, but instead gently
|
||||
// prevented its scheduling until resumption.
|
||||
// Maybe we only use this to bump a suspended
|
||||
// count and the scheduler skips suspended
|
||||
// goroutines? That wouldn't be enough for
|
||||
// {_Gsyscall,_Gwaiting} -> _Grunning. Maybe
|
||||
// for all those transitions we need to check
|
||||
// suspended and deschedule?
|
||||
return suspendGState{g: gp, stopped: stopped}
|
||||
|
||||
case _Grunning:
|
||||
// Optimization: if there is already a pending preemption request
|
||||
// (from the previous loop iteration), don't bother with the atomics.
|
||||
if gp.preemptStop && gp.preempt && gp.stackguard0 == stackPreempt {
|
||||
break
|
||||
}
|
||||
|
||||
// Temporarily block state transitions.
|
||||
if !castogscanstatus(gp, _Grunning, _Gscanrunning) {
|
||||
break
|
||||
}
|
||||
|
||||
// Request synchronous preemption.
|
||||
gp.preemptStop = true
|
||||
gp.preempt = true
|
||||
gp.stackguard0 = stackPreempt
|
||||
|
||||
// TODO: Inject asynchronous preemption.
|
||||
|
||||
casfrom_Gscanstatus(gp, _Gscanrunning, _Grunning)
|
||||
}
|
||||
|
||||
// TODO: Don't busy wait. This loop should really only
|
||||
// be a simple read/decide/CAS loop that only fails if
|
||||
// there's an active race. Once the CAS succeeds, we
|
||||
// should queue up the preemption (which will require
|
||||
// it to be reliable in the _Grunning case, not
|
||||
// best-effort) and then sleep until we're notified
|
||||
// that the goroutine is suspended.
|
||||
if i == 0 {
|
||||
nextYield = nanotime() + yieldDelay
|
||||
}
|
||||
if nanotime() < nextYield {
|
||||
procyield(10)
|
||||
} else {
|
||||
osyield()
|
||||
nextYield = nanotime() + yieldDelay/2
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// resumeG undoes the effects of suspendG, allowing the suspended
|
||||
// goroutine to continue from its current safe-point.
|
||||
func resumeG(state suspendGState) {
|
||||
if state.dead {
|
||||
// We didn't actually stop anything.
|
||||
return
|
||||
}
|
||||
|
||||
gp := state.g
|
||||
switch s := readgstatus(gp); s {
|
||||
default:
|
||||
dumpgstatus(gp)
|
||||
throw("unexpected g status")
|
||||
|
||||
case _Grunnable | _Gscan,
|
||||
_Gwaiting | _Gscan,
|
||||
_Gsyscall | _Gscan:
|
||||
casfrom_Gscanstatus(gp, s, s&^_Gscan)
|
||||
}
|
||||
|
||||
if state.stopped {
|
||||
// We stopped it, so we need to re-schedule it.
|
||||
ready(gp, 0, true)
|
||||
}
|
||||
}
|
@ -738,7 +738,8 @@ func casfrom_Gscanstatus(gp *g, oldval, newval uint32) {
|
||||
case _Gscanrunnable,
|
||||
_Gscanwaiting,
|
||||
_Gscanrunning,
|
||||
_Gscansyscall:
|
||||
_Gscansyscall,
|
||||
_Gscanpreempted:
|
||||
if newval == oldval&^_Gscan {
|
||||
success = atomic.Cas(&gp.atomicstatus, oldval, newval)
|
||||
}
|
||||
@ -844,6 +845,28 @@ func casgcopystack(gp *g) uint32 {
|
||||
}
|
||||
}
|
||||
|
||||
// casGToPreemptScan transitions gp from _Grunning to _Gscan|_Gpreempted.
|
||||
//
|
||||
// TODO(austin): This is the only status operation that both changes
|
||||
// the status and locks the _Gscan bit. Rethink this.
|
||||
func casGToPreemptScan(gp *g, old, new uint32) {
|
||||
if old != _Grunning || new != _Gscan|_Gpreempted {
|
||||
throw("bad g transition")
|
||||
}
|
||||
for !atomic.Cas(&gp.atomicstatus, _Grunning, _Gscan|_Gpreempted) {
|
||||
}
|
||||
}
|
||||
|
||||
// casGFromPreempted attempts to transition gp from _Gpreempted to
|
||||
// _Gwaiting. If successful, the caller is responsible for
|
||||
// re-scheduling gp.
|
||||
func casGFromPreempted(gp *g, old, new uint32) bool {
|
||||
if old != _Gpreempted || new != _Gwaiting {
|
||||
throw("bad g transition")
|
||||
}
|
||||
return atomic.Cas(&gp.atomicstatus, _Gpreempted, _Gwaiting)
|
||||
}
|
||||
|
||||
// scang blocks until gp's stack has been scanned.
|
||||
// It might be scanned by scang or it might be scanned by the goroutine itself.
|
||||
// Either way, the stack scan has completed when scang returns.
|
||||
@ -1676,7 +1699,6 @@ func oneNewExtraM() {
|
||||
gp.syscallsp = gp.sched.sp
|
||||
gp.stktopsp = gp.sched.sp
|
||||
gp.gcscanvalid = true
|
||||
gp.gcscandone = true
|
||||
// malg returns status as _Gidle. Change to _Gdead before
|
||||
// adding to allg where GC can see it. We use _Gdead to hide
|
||||
// this from tracebacks and stack scans since it isn't a
|
||||
@ -2838,6 +2860,32 @@ func gopreempt_m(gp *g) {
|
||||
goschedImpl(gp)
|
||||
}
|
||||
|
||||
// preemptPark parks gp and puts it in _Gpreempted.
|
||||
//
|
||||
//go:systemstack
|
||||
func preemptPark(gp *g) {
|
||||
if trace.enabled {
|
||||
traceGoPark(traceEvGoBlock, 0)
|
||||
}
|
||||
status := readgstatus(gp)
|
||||
if status&^_Gscan != _Grunning {
|
||||
dumpgstatus(gp)
|
||||
throw("bad g status")
|
||||
}
|
||||
gp.waitreason = waitReasonPreempted
|
||||
// Transition from _Grunning to _Gscan|_Gpreempted. We can't
|
||||
// be in _Grunning when we dropg because then we'd be running
|
||||
// without an M, but the moment we're in _Gpreempted,
|
||||
// something could claim this G before we've fully cleaned it
|
||||
// up. Hence, we set the scan bit to lock down further
|
||||
// transitions until we can dropg.
|
||||
casGToPreemptScan(gp, _Grunning, _Gscan|_Gpreempted)
|
||||
dropg()
|
||||
casfrom_Gscanstatus(gp, _Gscan|_Gpreempted, _Gpreempted)
|
||||
|
||||
schedule()
|
||||
}
|
||||
|
||||
// Finishes execution of the current goroutine.
|
||||
func goexit1() {
|
||||
if raceenabled {
|
||||
@ -2861,6 +2909,7 @@ func goexit0(gp *g) {
|
||||
locked := gp.lockedm != 0
|
||||
gp.lockedm = 0
|
||||
_g_.m.lockedg = 0
|
||||
gp.preemptStop = false
|
||||
gp.paniconfault = false
|
||||
gp._defer = nil // should be true already but just in case.
|
||||
gp._panic = nil // non-nil for Goexit during panic. points at stack-allocated data.
|
||||
@ -4436,7 +4485,8 @@ func checkdead() {
|
||||
}
|
||||
s := readgstatus(gp)
|
||||
switch s &^ _Gscan {
|
||||
case _Gwaiting:
|
||||
case _Gwaiting,
|
||||
_Gpreempted:
|
||||
grunning++
|
||||
case _Grunnable,
|
||||
_Grunning,
|
||||
|
@ -78,6 +78,13 @@ const (
|
||||
// stack is owned by the goroutine that put it in _Gcopystack.
|
||||
_Gcopystack // 8
|
||||
|
||||
// _Gpreempted means this goroutine stopped itself for a
|
||||
// suspendG preemption. It is like _Gwaiting, but nothing is
|
||||
// yet responsible for ready()ing it. Some suspendG must CAS
|
||||
// the status to _Gwaiting to take responsibility for
|
||||
// ready()ing this G.
|
||||
_Gpreempted // 9
|
||||
|
||||
// _Gscan combined with one of the above states other than
|
||||
// _Grunning indicates that GC is scanning the stack. The
|
||||
// goroutine is not executing user code and the stack is owned
|
||||
@ -89,11 +96,12 @@ const (
|
||||
//
|
||||
// atomicstatus&~Gscan gives the state the goroutine will
|
||||
// return to when the scan completes.
|
||||
_Gscan = 0x1000
|
||||
_Gscanrunnable = _Gscan + _Grunnable // 0x1001
|
||||
_Gscanrunning = _Gscan + _Grunning // 0x1002
|
||||
_Gscansyscall = _Gscan + _Gsyscall // 0x1003
|
||||
_Gscanwaiting = _Gscan + _Gwaiting // 0x1004
|
||||
_Gscan = 0x1000
|
||||
_Gscanrunnable = _Gscan + _Grunnable // 0x1001
|
||||
_Gscanrunning = _Gscan + _Grunning // 0x1002
|
||||
_Gscansyscall = _Gscan + _Gsyscall // 0x1003
|
||||
_Gscanwaiting = _Gscan + _Gwaiting // 0x1004
|
||||
_Gscanpreempted = _Gscan + _Gpreempted // 0x1009
|
||||
)
|
||||
|
||||
const (
|
||||
@ -411,6 +419,7 @@ type g struct {
|
||||
waitsince int64 // approx time when the g become blocked
|
||||
waitreason waitReason // if status==Gwaiting
|
||||
preempt bool // preemption signal, duplicates stackguard0 = stackpreempt
|
||||
preemptStop bool // transition to _Gpreempted on preemption; otherwise, just deschedule
|
||||
paniconfault bool // panic (instead of crash) on unexpected fault address
|
||||
preemptscan bool // preempted g does scan for gc
|
||||
gcscandone bool // g has scanned stack; protected by _Gscan bit in status
|
||||
@ -906,6 +915,7 @@ const (
|
||||
waitReasonTraceReaderBlocked // "trace reader (blocked)"
|
||||
waitReasonWaitForGCCycle // "wait for GC cycle"
|
||||
waitReasonGCWorkerIdle // "GC worker (idle)"
|
||||
waitReasonPreempted // "preempted"
|
||||
)
|
||||
|
||||
var waitReasonStrings = [...]string{
|
||||
@ -934,6 +944,7 @@ var waitReasonStrings = [...]string{
|
||||
waitReasonTraceReaderBlocked: "trace reader (blocked)",
|
||||
waitReasonWaitForGCCycle: "wait for GC cycle",
|
||||
waitReasonGCWorkerIdle: "GC worker (idle)",
|
||||
waitReasonPreempted: "preempted",
|
||||
}
|
||||
|
||||
func (w waitReason) String() string {
|
||||
|
@ -1017,6 +1017,11 @@ func newstack() {
|
||||
if thisg.m.p == 0 && thisg.m.locks == 0 {
|
||||
throw("runtime: g is running but p is not")
|
||||
}
|
||||
|
||||
if gp.preemptStop {
|
||||
preemptPark(gp) // never returns
|
||||
}
|
||||
|
||||
// Synchronize with scang.
|
||||
casgstatus(gp, _Grunning, _Gwaiting)
|
||||
if gp.preemptscan {
|
||||
|
@ -860,6 +860,7 @@ var gStatusStrings = [...]string{
|
||||
_Gwaiting: "waiting",
|
||||
_Gdead: "dead",
|
||||
_Gcopystack: "copystack",
|
||||
_Gpreempted: "preempted",
|
||||
}
|
||||
|
||||
func goroutineheader(gp *g) {
|
||||
|
Loading…
x
Reference in New Issue
Block a user