mirror of
https://github.com/golang/go.git
synced 2025-05-28 10:51:22 +00:00
math/big: return nil for nonexistent ModInverse
Currently, the behavior of z.ModInverse(g, n) is undefined when g and n are not relatively prime. In that case, no ModInverse exists which can be easily checked during the computation of the ModInverse. Because the ModInverse does not indicate whether the inverse exists, there are reimplementations of a "checked" ModInverse in crypto/rsa. This change removes the undefined behavior. If the ModInverse does not exist, the receiver z is unchanged and the return value is nil. This matches the behavior of ModSqrt for the case where the square root does not exist. name old time/op new time/op delta ModInverse-4 2.40µs ± 4% 2.22µs ± 0% -7.74% (p=0.016 n=5+4) name old alloc/op new alloc/op delta ModInverse-4 1.36kB ± 0% 1.17kB ± 0% -14.12% (p=0.008 n=5+5) name old allocs/op new allocs/op delta ModInverse-4 10.0 ± 0% 9.0 ± 0% -10.00% (p=0.008 n=5+5) Fixes #24922 Change-Id: If7f9d491858450bdb00f1e317152f02493c9c8a8 Reviewed-on: https://go-review.googlesource.com/108996 Run-TryBot: Robert Griesemer <gri@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
This commit is contained in:
parent
b1d1ec9183
commit
4d44a87243
@ -292,18 +292,13 @@ NextSetOfPrimes:
|
||||
continue NextSetOfPrimes
|
||||
}
|
||||
|
||||
g := new(big.Int)
|
||||
priv.D = new(big.Int)
|
||||
e := big.NewInt(int64(priv.E))
|
||||
g.GCD(priv.D, nil, e, totient)
|
||||
ok := priv.D.ModInverse(e, totient)
|
||||
|
||||
if g.Cmp(bigOne) == 0 {
|
||||
if priv.D.Sign() < 0 {
|
||||
priv.D.Add(priv.D, totient)
|
||||
}
|
||||
if ok != nil {
|
||||
priv.Primes = primes
|
||||
priv.N = n
|
||||
|
||||
break
|
||||
}
|
||||
}
|
||||
@ -427,29 +422,6 @@ var ErrDecryption = errors.New("crypto/rsa: decryption error")
|
||||
// It is deliberately vague to avoid adaptive attacks.
|
||||
var ErrVerification = errors.New("crypto/rsa: verification error")
|
||||
|
||||
// modInverse returns ia, the inverse of a in the multiplicative group of prime
|
||||
// order n. It requires that a be a member of the group (i.e. less than n).
|
||||
func modInverse(a, n *big.Int) (ia *big.Int, ok bool) {
|
||||
g := new(big.Int)
|
||||
x := new(big.Int)
|
||||
g.GCD(x, nil, a, n)
|
||||
if g.Cmp(bigOne) != 0 {
|
||||
// In this case, a and n aren't coprime and we cannot calculate
|
||||
// the inverse. This happens because the values of n are nearly
|
||||
// prime (being the product of two primes) rather than truly
|
||||
// prime.
|
||||
return
|
||||
}
|
||||
|
||||
if x.Cmp(bigOne) < 0 {
|
||||
// 0 is not the multiplicative inverse of any element so, if x
|
||||
// < 1, then x is negative.
|
||||
x.Add(x, n)
|
||||
}
|
||||
|
||||
return x, true
|
||||
}
|
||||
|
||||
// Precompute performs some calculations that speed up private key operations
|
||||
// in the future.
|
||||
func (priv *PrivateKey) Precompute() {
|
||||
@ -501,7 +473,7 @@ func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err er
|
||||
// by multiplying by the multiplicative inverse of r.
|
||||
|
||||
var r *big.Int
|
||||
|
||||
ir = new(big.Int)
|
||||
for {
|
||||
r, err = rand.Int(random, priv.N)
|
||||
if err != nil {
|
||||
@ -510,9 +482,8 @@ func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err er
|
||||
if r.Cmp(bigZero) == 0 {
|
||||
r = bigOne
|
||||
}
|
||||
var ok bool
|
||||
ir, ok = modInverse(r, priv.N)
|
||||
if ok {
|
||||
ok := ir.ModInverse(r, priv.N)
|
||||
if ok != nil {
|
||||
break
|
||||
}
|
||||
}
|
||||
|
@ -659,20 +659,29 @@ func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int {
|
||||
}
|
||||
|
||||
// ModInverse sets z to the multiplicative inverse of g in the ring ℤ/nℤ
|
||||
// and returns z. If g and n are not relatively prime, the result is undefined.
|
||||
// and returns z. If g and n are not relatively prime, g has no multiplicative
|
||||
// inverse in the ring ℤ/nℤ. In this case, z is unchanged and the return value
|
||||
// is nil.
|
||||
func (z *Int) ModInverse(g, n *Int) *Int {
|
||||
if g.neg {
|
||||
// GCD expects parameters a and b to be > 0.
|
||||
var g2 Int
|
||||
g = g2.Mod(g, n)
|
||||
}
|
||||
var d Int
|
||||
d.GCD(z, nil, g, n)
|
||||
// x and y are such that g*x + n*y = d. Since g and n are
|
||||
// relatively prime, d = 1. Taking that modulo n results in
|
||||
// g*x = 1, therefore x is the inverse element.
|
||||
if z.neg {
|
||||
z.Add(z, n)
|
||||
var d, x Int
|
||||
d.GCD(&x, nil, g, n)
|
||||
|
||||
// if and only if d==1, g and n are relatively prime
|
||||
if d.Cmp(intOne) != 0 {
|
||||
return nil
|
||||
}
|
||||
|
||||
// x and y are such that g*x + n*y = 1, therefore x is the inverse element,
|
||||
// but it may be negative, so convert to the range 0 <= z < |n|
|
||||
if x.neg {
|
||||
z.Add(&x, n)
|
||||
} else {
|
||||
z.Set(&x)
|
||||
}
|
||||
return z
|
||||
}
|
||||
|
@ -1443,6 +1443,17 @@ func TestModInverse(t *testing.T) {
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkModInverse(b *testing.B) {
|
||||
p := new(Int).SetInt64(1) // Mersenne prime 2**1279 -1
|
||||
p.abs = p.abs.shl(p.abs, 1279)
|
||||
p.Sub(p, intOne)
|
||||
x := new(Int).Sub(p, intOne)
|
||||
z := new(Int)
|
||||
for i := 0; i < b.N; i++ {
|
||||
z.ModInverse(x, p)
|
||||
}
|
||||
}
|
||||
|
||||
// testModSqrt is a helper for TestModSqrt,
|
||||
// which checks that ModSqrt can compute a square-root of elt^2.
|
||||
func testModSqrt(t *testing.T, elt, mod, sq, sqrt *Int) bool {
|
||||
|
Loading…
x
Reference in New Issue
Block a user