cmd/compile: fix out of memory when inlining closure

CL 629195 strongly favor closure inlining, allowing closures to be
inlined more aggressively.

However, if the closure body contains a call to a function, which itself
is one of the call arguments, it causes the infinite inlining.

Fixing this by prevent this kind of functions from being inlinable.

Fixes #72063

Change-Id: I5fb5723a819b1e2c5aadb57c1023ec84ca9fa53c
Reviewed-on: https://go-review.googlesource.com/c/go/+/654195
Reviewed-by: David Chase <drchase@google.com>
Reviewed-by: Dmitri Shuralyov <dmitshur@google.com>
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
This commit is contained in:
Cuong Manh Le 2025-03-03 20:45:13 +07:00
parent 82791889cc
commit 4f45b2b7e0
2 changed files with 62 additions and 0 deletions

View File

@ -1033,6 +1033,28 @@ func canInlineCallExpr(callerfn *ir.Func, n *ir.CallExpr, callee *ir.Func, bigCa
return false, 0, false return false, 0, false
} }
} }
do := func(fn *ir.Func) bool {
// Can't recursively inline a function if the function body contains
// a call to a function f, which the function f is one of the call arguments.
return ir.Any(fn, func(node ir.Node) bool {
if call, ok := node.(*ir.CallExpr); ok {
for _, arg := range call.Args {
if call.Fun == arg {
return true
}
}
}
return false
})
}
for _, fn := range []*ir.Func{callerfn, callee} {
if do(fn) {
if log && logopt.Enabled() {
logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", fmt.Sprintf("recursive call to function: %s", ir.FuncName(fn)))
}
return false, 0, false
}
}
if base.Flag.Cfg.Instrumenting && types.IsNoInstrumentPkg(callee.Sym().Pkg) { if base.Flag.Cfg.Instrumenting && types.IsNoInstrumentPkg(callee.Sym().Pkg) {
// Runtime package must not be instrumented. // Runtime package must not be instrumented.

View File

@ -0,0 +1,40 @@
// run
// Copyright 2025 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package main
import "fmt"
// Y is the Y-combinator based on https://dreamsongs.com/Files/WhyOfY.pdf
func Y[Endo ~func(RecFct) RecFct, RecFct ~func(T) R, T, R any](f Endo) RecFct {
type internal[RecFct ~func(T) R, T, R any] func(internal[RecFct, T, R]) RecFct
g := func(h internal[RecFct, T, R]) RecFct {
return func(t T) R {
return f(h(h))(t)
}
}
return g(g)
}
func main() {
fct := Y(func(r func(int) int) func(int) int {
return func(n int) int {
if n <= 0 {
return 1
}
return n * r(n-1)
}
})
want := 3628800
if got := fct(10); got != want {
msg := fmt.Sprintf("unexpected result, got: %d, want: %d", got, want)
panic(msg)
}
}