mirror of
https://github.com/golang/go.git
synced 2025-05-28 02:41:30 +00:00
crypto/elliptic: implement UnmarshalCompressed in nistec
For #52182 Change-Id: If9eace36b757ada6cb5123cc60f1e10d4e8280c5 Reviewed-on: https://go-review.googlesource.com/c/go/+/396935 Reviewed-by: Roland Shoemaker <roland@golang.org> Reviewed-by: Fernando Lobato Meeser <felobato@google.com> Run-TryBot: Filippo Valsorda <filippo@golang.org> TryBot-Result: Gopher Robot <gobot@golang.org>
This commit is contained in:
parent
50b1add5a7
commit
52e24b492d
@ -94,10 +94,26 @@ func MarshalCompressed(curve Curve, x, y *big.Int) []byte {
|
||||
return compressed
|
||||
}
|
||||
|
||||
// unmarshaler is implemented by curves with their own constant-time Unmarshal.
|
||||
//
|
||||
// There isn't an equivalent interface for Marshal/MarshalCompressed because
|
||||
// that doesn't involve any mathematical operations, only FillBytes and Bit.
|
||||
type unmarshaler interface {
|
||||
Unmarshal([]byte) (x, y *big.Int)
|
||||
UnmarshalCompressed([]byte) (x, y *big.Int)
|
||||
}
|
||||
|
||||
// Assert that the known curves implement unmarshaler.
|
||||
var _ = []unmarshaler{p224, p256, p384, p521}
|
||||
|
||||
// Unmarshal converts a point, serialized by Marshal, into an x, y pair. It is
|
||||
// an error if the point is not in uncompressed form, is not on the curve, or is
|
||||
// the point at infinity. On error, x = nil.
|
||||
func Unmarshal(curve Curve, data []byte) (x, y *big.Int) {
|
||||
if c, ok := curve.(unmarshaler); ok {
|
||||
return c.Unmarshal(data)
|
||||
}
|
||||
|
||||
byteLen := (curve.Params().BitSize + 7) / 8
|
||||
if len(data) != 1+2*byteLen {
|
||||
return nil, nil
|
||||
@ -121,6 +137,10 @@ func Unmarshal(curve Curve, data []byte) (x, y *big.Int) {
|
||||
// an x, y pair. It is an error if the point is not in compressed form, is not
|
||||
// on the curve, or is the point at infinity. On error, x = nil.
|
||||
func UnmarshalCompressed(curve Curve, data []byte) (x, y *big.Int) {
|
||||
if c, ok := curve.(unmarshaler); ok {
|
||||
return c.UnmarshalCompressed(data)
|
||||
}
|
||||
|
||||
byteLen := (curve.Params().BitSize + 7) / 8
|
||||
if len(data) != 1+byteLen {
|
||||
return nil, nil
|
||||
|
@ -6,13 +6,21 @@
|
||||
|
||||
package main
|
||||
|
||||
// Running this generator requires addchain v0.4.0, which can be installed with
|
||||
//
|
||||
// go install github.com/mmcloughlin/addchain/cmd/addchain@v0.4.0
|
||||
//
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"crypto/elliptic"
|
||||
"fmt"
|
||||
"go/format"
|
||||
"io"
|
||||
"log"
|
||||
"math/big"
|
||||
"os"
|
||||
"os/exec"
|
||||
"strings"
|
||||
"text/template"
|
||||
)
|
||||
@ -49,6 +57,18 @@ var curves = []struct {
|
||||
func main() {
|
||||
t := template.Must(template.New("tmplNISTEC").Parse(tmplNISTEC))
|
||||
|
||||
tmplAddchainFile, err := os.CreateTemp("", "addchain-template")
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
defer os.Remove(tmplAddchainFile.Name())
|
||||
if _, err := io.WriteString(tmplAddchainFile, tmplAddchain); err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
if err := tmplAddchainFile.Close(); err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
|
||||
for _, c := range curves {
|
||||
p := strings.ToLower(c.P)
|
||||
elementLen := (c.Params.BitSize + 7) / 8
|
||||
@ -60,6 +80,7 @@ func main() {
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
defer f.Close()
|
||||
buf := &bytes.Buffer{}
|
||||
if err := t.Execute(buf, map[string]interface{}{
|
||||
"P": c.P, "p": p, "B": B, "G": G,
|
||||
@ -75,7 +96,43 @@ func main() {
|
||||
if _, err := f.Write(out); err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
if err := f.Close(); err != nil {
|
||||
|
||||
// If p = 3 mod 4, implement modular square root by exponentiation.
|
||||
mod4 := new(big.Int).Mod(c.Params.P, big.NewInt(4))
|
||||
if mod4.Cmp(big.NewInt(3)) != 0 {
|
||||
continue
|
||||
}
|
||||
|
||||
exp := new(big.Int).Add(c.Params.P, big.NewInt(1))
|
||||
exp.Div(exp, big.NewInt(4))
|
||||
|
||||
tmp, err := os.CreateTemp("", "addchain-"+p)
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
defer os.Remove(tmp.Name())
|
||||
cmd := exec.Command("addchain", "search", fmt.Sprintf("%d", exp))
|
||||
cmd.Stderr = os.Stderr
|
||||
cmd.Stdout = tmp
|
||||
if err := cmd.Run(); err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
if err := tmp.Close(); err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
cmd = exec.Command("addchain", "gen", "-tmpl", tmplAddchainFile.Name(), tmp.Name())
|
||||
cmd.Stderr = os.Stderr
|
||||
out, err = cmd.Output()
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
out = bytes.Replace(out, []byte("Element"), []byte(c.Element), -1)
|
||||
out = bytes.Replace(out, []byte("sqrtCandidate"), []byte(p+"SqrtCandidate"), -1)
|
||||
out, err = format.Source(out)
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
if _, err := f.Write(out); err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
}
|
||||
@ -169,30 +226,53 @@ func (p *{{.P}}Point) SetBytes(b []byte) (*{{.P}}Point, error) {
|
||||
p.z.One()
|
||||
return p, nil
|
||||
|
||||
// Compressed form
|
||||
case len(b) == 1+{{.p}}ElementLength && b[0] == 0:
|
||||
return nil, errors.New("unimplemented") // TODO(filippo)
|
||||
// Compressed form.
|
||||
case len(b) == 1+{{.p}}ElementLength && (b[0] == 2 || b[0] == 3):
|
||||
x, err := new({{.Element}}).SetBytes(b[1:])
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// y² = x³ - 3x + b
|
||||
y := {{.p}}Polynomial(new({{.Element}}), x)
|
||||
if !{{.p}}Sqrt(y, y) {
|
||||
return nil, errors.New("invalid {{.P}} compressed point encoding")
|
||||
}
|
||||
|
||||
// Select the positive or negative root, as indicated by the least
|
||||
// significant bit, based on the encoding type byte.
|
||||
otherRoot := new({{.Element}})
|
||||
otherRoot.Sub(otherRoot, y)
|
||||
cond := y.Bytes()[{{.p}}ElementLength-1]&1 ^ b[0]&1
|
||||
y.Select(otherRoot, y, int(cond))
|
||||
|
||||
p.x.Set(x)
|
||||
p.y.Set(y)
|
||||
p.z.One()
|
||||
return p, nil
|
||||
|
||||
default:
|
||||
return nil, errors.New("invalid {{.P}} point encoding")
|
||||
}
|
||||
}
|
||||
|
||||
func {{.p}}CheckOnCurve(x, y *{{.Element}}) error {
|
||||
// x³ - 3x + b.
|
||||
x3 := new({{.Element}}).Square(x)
|
||||
x3.Mul(x3, x)
|
||||
// {{.p}}Polynomial sets y2 to x³ - 3x + b, and returns y2.
|
||||
func {{.p}}Polynomial(y2, x *{{.Element}}) *{{.Element}} {
|
||||
y2.Square(x)
|
||||
y2.Mul(y2, x)
|
||||
|
||||
threeX := new({{.Element}}).Add(x, x)
|
||||
threeX.Add(threeX, x)
|
||||
|
||||
x3.Sub(x3, threeX)
|
||||
x3.Add(x3, {{.p}}B)
|
||||
y2.Sub(y2, threeX)
|
||||
return y2.Add(y2, {{.p}}B)
|
||||
}
|
||||
|
||||
func {{.p}}CheckOnCurve(x, y *{{.Element}}) error {
|
||||
// y² = x³ - 3x + b
|
||||
y2 := new({{.Element}}).Square(y)
|
||||
|
||||
if x3.Equal(y2) != 1 {
|
||||
rhs := {{.p}}Polynomial(new({{.Element}}), x)
|
||||
lhs := new({{.Element}}).Square(y)
|
||||
if rhs.Equal(lhs) != 1 {
|
||||
return errors.New("{{.P}} point not on curve")
|
||||
}
|
||||
return nil
|
||||
@ -204,22 +284,49 @@ func {{.p}}CheckOnCurve(x, y *{{.Element}}) error {
|
||||
func (p *{{.P}}Point) Bytes() []byte {
|
||||
// This function is outlined to make the allocations inline in the caller
|
||||
// rather than happen on the heap.
|
||||
var out [133]byte
|
||||
var out [1+2*{{.p}}ElementLength]byte
|
||||
return p.bytes(&out)
|
||||
}
|
||||
|
||||
func (p *{{.P}}Point) bytes(out *[133]byte) []byte {
|
||||
func (p *{{.P}}Point) bytes(out *[1+2*{{.p}}ElementLength]byte) []byte {
|
||||
if p.z.IsZero() == 1 {
|
||||
return append(out[:0], 0)
|
||||
}
|
||||
|
||||
zinv := new({{.Element}}).Invert(p.z)
|
||||
xx := new({{.Element}}).Mul(p.x, zinv)
|
||||
yy := new({{.Element}}).Mul(p.y, zinv)
|
||||
x := new({{.Element}}).Mul(p.x, zinv)
|
||||
y := new({{.Element}}).Mul(p.y, zinv)
|
||||
|
||||
buf := append(out[:0], 4)
|
||||
buf = append(buf, xx.Bytes()...)
|
||||
buf = append(buf, yy.Bytes()...)
|
||||
buf = append(buf, x.Bytes()...)
|
||||
buf = append(buf, y.Bytes()...)
|
||||
return buf
|
||||
}
|
||||
|
||||
// BytesCompressed returns the compressed or infinity encoding of p, as
|
||||
// specified in SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the
|
||||
// point at infinity is shorter than all other encodings.
|
||||
func (p *{{.P}}Point) BytesCompressed() []byte {
|
||||
// This function is outlined to make the allocations inline in the caller
|
||||
// rather than happen on the heap.
|
||||
var out [1 + {{.p}}ElementLength]byte
|
||||
return p.bytesCompressed(&out)
|
||||
}
|
||||
|
||||
func (p *{{.P}}Point) bytesCompressed(out *[1 + {{.p}}ElementLength]byte) []byte {
|
||||
if p.z.IsZero() == 1 {
|
||||
return append(out[:0], 0)
|
||||
}
|
||||
|
||||
zinv := new({{.Element}}).Invert(p.z)
|
||||
x := new({{.Element}}).Mul(p.x, zinv)
|
||||
y := new({{.Element}}).Mul(p.y, zinv)
|
||||
|
||||
// Encode the sign of the y coordinate (indicated by the least significant
|
||||
// bit) as the encoding type (2 or 3).
|
||||
buf := append(out[:0], 2)
|
||||
buf[0] |= y.Bytes()[{{.p}}ElementLength-1] & 1
|
||||
buf = append(buf, x.Bytes()...)
|
||||
return buf
|
||||
}
|
||||
|
||||
@ -450,4 +557,56 @@ func (p *{{.P}}Point) ScalarBaseMult(scalar []byte) (*{{.P}}Point, error) {
|
||||
|
||||
return p, nil
|
||||
}
|
||||
|
||||
// {{.p}}Sqrt sets e to a square root of x. If x is not a square, {{.p}}Sqrt returns
|
||||
// false and e is unchanged. e and x can overlap.
|
||||
func {{.p}}Sqrt(e, x *{{ .Element }}) (isSquare bool) {
|
||||
candidate := new({{ .Element }})
|
||||
{{.p}}SqrtCandidate(candidate, x)
|
||||
square := new({{ .Element }}).Square(candidate)
|
||||
if square.Equal(x) != 1 {
|
||||
return false
|
||||
}
|
||||
e.Set(candidate)
|
||||
return true
|
||||
}
|
||||
`
|
||||
|
||||
const tmplAddchain = `
|
||||
// sqrtCandidate sets z to a square root candidate for x. z and x must not overlap.
|
||||
func sqrtCandidate(z, x *Element) {
|
||||
// Since p = 3 mod 4, exponentiation by (p + 1) / 4 yields a square root candidate.
|
||||
//
|
||||
// The sequence of {{ .Ops.Adds }} multiplications and {{ .Ops.Doubles }} squarings is derived from the
|
||||
// following addition chain generated with {{ .Meta.Module }} {{ .Meta.ReleaseTag }}.
|
||||
//
|
||||
{{- range lines (format .Script) }}
|
||||
// {{ . }}
|
||||
{{- end }}
|
||||
//
|
||||
|
||||
{{- range .Program.Temporaries }}
|
||||
var {{ . }} = new(Element)
|
||||
{{- end }}
|
||||
{{ range $i := .Program.Instructions -}}
|
||||
{{- with add $i.Op }}
|
||||
{{ $i.Output }}.Mul({{ .X }}, {{ .Y }})
|
||||
{{- end -}}
|
||||
|
||||
{{- with double $i.Op }}
|
||||
{{ $i.Output }}.Square({{ .X }})
|
||||
{{- end -}}
|
||||
|
||||
{{- with shift $i.Op -}}
|
||||
{{- $first := 0 -}}
|
||||
{{- if ne $i.Output.Identifier .X.Identifier }}
|
||||
{{ $i.Output }}.Square({{ .X }})
|
||||
{{- $first = 1 -}}
|
||||
{{- end }}
|
||||
for s := {{ $first }}; s < {{ .S }}; s++ {
|
||||
{{ $i.Output }}.Square({{ $i.Output }})
|
||||
}
|
||||
{{- end -}}
|
||||
{{- end }}
|
||||
}
|
||||
`
|
||||
|
@ -30,6 +30,10 @@ func TestAllocations(t *testing.T) {
|
||||
if _, err := nistec.NewP224Point().SetBytes(out); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
out = p.BytesCompressed()
|
||||
if _, err := p.SetBytes(out); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
}); allocs > 0 {
|
||||
t.Errorf("expected zero allocations, got %0.1f", allocs)
|
||||
}
|
||||
@ -45,6 +49,10 @@ func TestAllocations(t *testing.T) {
|
||||
if _, err := nistec.NewP256Point().SetBytes(out); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
out = p.BytesCompressed()
|
||||
if _, err := p.SetBytes(out); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
}); allocs > 0 {
|
||||
t.Errorf("expected zero allocations, got %0.1f", allocs)
|
||||
}
|
||||
@ -60,6 +68,10 @@ func TestAllocations(t *testing.T) {
|
||||
if _, err := nistec.NewP384Point().SetBytes(out); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
out = p.BytesCompressed()
|
||||
if _, err := p.SetBytes(out); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
}); allocs > 0 {
|
||||
t.Errorf("expected zero allocations, got %0.1f", allocs)
|
||||
}
|
||||
@ -75,6 +87,10 @@ func TestAllocations(t *testing.T) {
|
||||
if _, err := nistec.NewP521Point().SetBytes(out); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
out = p.BytesCompressed()
|
||||
if _, err := p.SetBytes(out); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
}); allocs > 0 {
|
||||
t.Errorf("expected zero allocations, got %0.1f", allocs)
|
||||
}
|
||||
|
@ -82,30 +82,53 @@ func (p *P224Point) SetBytes(b []byte) (*P224Point, error) {
|
||||
p.z.One()
|
||||
return p, nil
|
||||
|
||||
// Compressed form
|
||||
case len(b) == 1+p224ElementLength && b[0] == 0:
|
||||
return nil, errors.New("unimplemented") // TODO(filippo)
|
||||
// Compressed form.
|
||||
case len(b) == 1+p224ElementLength && (b[0] == 2 || b[0] == 3):
|
||||
x, err := new(fiat.P224Element).SetBytes(b[1:])
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// y² = x³ - 3x + b
|
||||
y := p224Polynomial(new(fiat.P224Element), x)
|
||||
if !p224Sqrt(y, y) {
|
||||
return nil, errors.New("invalid P224 compressed point encoding")
|
||||
}
|
||||
|
||||
// Select the positive or negative root, as indicated by the least
|
||||
// significant bit, based on the encoding type byte.
|
||||
otherRoot := new(fiat.P224Element)
|
||||
otherRoot.Sub(otherRoot, y)
|
||||
cond := y.Bytes()[p224ElementLength-1]&1 ^ b[0]&1
|
||||
y.Select(otherRoot, y, int(cond))
|
||||
|
||||
p.x.Set(x)
|
||||
p.y.Set(y)
|
||||
p.z.One()
|
||||
return p, nil
|
||||
|
||||
default:
|
||||
return nil, errors.New("invalid P224 point encoding")
|
||||
}
|
||||
}
|
||||
|
||||
func p224CheckOnCurve(x, y *fiat.P224Element) error {
|
||||
// x³ - 3x + b.
|
||||
x3 := new(fiat.P224Element).Square(x)
|
||||
x3.Mul(x3, x)
|
||||
// p224Polynomial sets y2 to x³ - 3x + b, and returns y2.
|
||||
func p224Polynomial(y2, x *fiat.P224Element) *fiat.P224Element {
|
||||
y2.Square(x)
|
||||
y2.Mul(y2, x)
|
||||
|
||||
threeX := new(fiat.P224Element).Add(x, x)
|
||||
threeX.Add(threeX, x)
|
||||
|
||||
x3.Sub(x3, threeX)
|
||||
x3.Add(x3, p224B)
|
||||
y2.Sub(y2, threeX)
|
||||
return y2.Add(y2, p224B)
|
||||
}
|
||||
|
||||
func p224CheckOnCurve(x, y *fiat.P224Element) error {
|
||||
// y² = x³ - 3x + b
|
||||
y2 := new(fiat.P224Element).Square(y)
|
||||
|
||||
if x3.Equal(y2) != 1 {
|
||||
rhs := p224Polynomial(new(fiat.P224Element), x)
|
||||
lhs := new(fiat.P224Element).Square(y)
|
||||
if rhs.Equal(lhs) != 1 {
|
||||
return errors.New("P224 point not on curve")
|
||||
}
|
||||
return nil
|
||||
@ -117,22 +140,49 @@ func p224CheckOnCurve(x, y *fiat.P224Element) error {
|
||||
func (p *P224Point) Bytes() []byte {
|
||||
// This function is outlined to make the allocations inline in the caller
|
||||
// rather than happen on the heap.
|
||||
var out [133]byte
|
||||
var out [1 + 2*p224ElementLength]byte
|
||||
return p.bytes(&out)
|
||||
}
|
||||
|
||||
func (p *P224Point) bytes(out *[133]byte) []byte {
|
||||
func (p *P224Point) bytes(out *[1 + 2*p224ElementLength]byte) []byte {
|
||||
if p.z.IsZero() == 1 {
|
||||
return append(out[:0], 0)
|
||||
}
|
||||
|
||||
zinv := new(fiat.P224Element).Invert(p.z)
|
||||
xx := new(fiat.P224Element).Mul(p.x, zinv)
|
||||
yy := new(fiat.P224Element).Mul(p.y, zinv)
|
||||
x := new(fiat.P224Element).Mul(p.x, zinv)
|
||||
y := new(fiat.P224Element).Mul(p.y, zinv)
|
||||
|
||||
buf := append(out[:0], 4)
|
||||
buf = append(buf, xx.Bytes()...)
|
||||
buf = append(buf, yy.Bytes()...)
|
||||
buf = append(buf, x.Bytes()...)
|
||||
buf = append(buf, y.Bytes()...)
|
||||
return buf
|
||||
}
|
||||
|
||||
// BytesCompressed returns the compressed or infinity encoding of p, as
|
||||
// specified in SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the
|
||||
// point at infinity is shorter than all other encodings.
|
||||
func (p *P224Point) BytesCompressed() []byte {
|
||||
// This function is outlined to make the allocations inline in the caller
|
||||
// rather than happen on the heap.
|
||||
var out [1 + p224ElementLength]byte
|
||||
return p.bytesCompressed(&out)
|
||||
}
|
||||
|
||||
func (p *P224Point) bytesCompressed(out *[1 + p224ElementLength]byte) []byte {
|
||||
if p.z.IsZero() == 1 {
|
||||
return append(out[:0], 0)
|
||||
}
|
||||
|
||||
zinv := new(fiat.P224Element).Invert(p.z)
|
||||
x := new(fiat.P224Element).Mul(p.x, zinv)
|
||||
y := new(fiat.P224Element).Mul(p.y, zinv)
|
||||
|
||||
// Encode the sign of the y coordinate (indicated by the least significant
|
||||
// bit) as the encoding type (2 or 3).
|
||||
buf := append(out[:0], 2)
|
||||
buf[0] |= y.Bytes()[p224ElementLength-1] & 1
|
||||
buf = append(buf, x.Bytes()...)
|
||||
return buf
|
||||
}
|
||||
|
||||
@ -363,3 +413,16 @@ func (p *P224Point) ScalarBaseMult(scalar []byte) (*P224Point, error) {
|
||||
|
||||
return p, nil
|
||||
}
|
||||
|
||||
// p224Sqrt sets e to a square root of x. If x is not a square, p224Sqrt returns
|
||||
// false and e is unchanged. e and x can overlap.
|
||||
func p224Sqrt(e, x *fiat.P224Element) (isSquare bool) {
|
||||
candidate := new(fiat.P224Element)
|
||||
p224SqrtCandidate(candidate, x)
|
||||
square := new(fiat.P224Element).Square(candidate)
|
||||
if square.Equal(x) != 1 {
|
||||
return false
|
||||
}
|
||||
e.Set(candidate)
|
||||
return true
|
||||
}
|
||||
|
132
src/crypto/elliptic/internal/nistec/p224_sqrt.go
Normal file
132
src/crypto/elliptic/internal/nistec/p224_sqrt.go
Normal file
@ -0,0 +1,132 @@
|
||||
// Copyright 2022 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package nistec
|
||||
|
||||
import (
|
||||
"crypto/elliptic/internal/fiat"
|
||||
"sync"
|
||||
)
|
||||
|
||||
var p224GG *[96]fiat.P224Element
|
||||
var p224GGOnce sync.Once
|
||||
|
||||
var p224MinusOne = new(fiat.P224Element).Sub(
|
||||
new(fiat.P224Element), new(fiat.P224Element).One())
|
||||
|
||||
// p224SqrtCandidate sets r to a square root candidate for x. r and x must not overlap.
|
||||
func p224SqrtCandidate(r, x *fiat.P224Element) {
|
||||
// Since p = 1 mod 4, we can't use the exponentiation by (p + 1) / 4 like
|
||||
// for the other primes. Instead, implement a variation of Tonelli–Shanks.
|
||||
// The contant-time implementation is adapted from Thomas Pornin's ecGFp5.
|
||||
//
|
||||
// https://github.com/pornin/ecgfp5/blob/82325b965/rust/src/field.rs#L337-L385
|
||||
|
||||
// p = q*2^n + 1 with q odd -> q = 2^128 - 1 and n = 96
|
||||
// g^(2^n) = 1 -> g = 11 ^ q (where 11 is the smallest non-square)
|
||||
// GG[j] = g^(2^j) for j = 0 to n-1
|
||||
|
||||
p224GGOnce.Do(func() {
|
||||
p224GG = new([96]fiat.P224Element)
|
||||
for i := range p224GG {
|
||||
if i == 0 {
|
||||
p224GG[i].SetBytes([]byte{0x6a, 0x0f, 0xec, 0x67,
|
||||
0x85, 0x98, 0xa7, 0x92, 0x0c, 0x55, 0xb2, 0xd4,
|
||||
0x0b, 0x2d, 0x6f, 0xfb, 0xbe, 0xa3, 0xd8, 0xce,
|
||||
0xf3, 0xfb, 0x36, 0x32, 0xdc, 0x69, 0x1b, 0x74})
|
||||
} else {
|
||||
p224GG[i].Square(&p224GG[i-1])
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
// r <- x^((q+1)/2) = x^(2^127)
|
||||
// v <- x^q = x^(2^128-1)
|
||||
|
||||
// Compute x^(2^127-1) first.
|
||||
//
|
||||
// The sequence of 10 multiplications and 126 squarings is derived from the
|
||||
// following addition chain generated with github.com/mmcloughlin/addchain v0.4.0.
|
||||
//
|
||||
// _10 = 2*1
|
||||
// _11 = 1 + _10
|
||||
// _110 = 2*_11
|
||||
// _111 = 1 + _110
|
||||
// _111000 = _111 << 3
|
||||
// _111111 = _111 + _111000
|
||||
// _1111110 = 2*_111111
|
||||
// _1111111 = 1 + _1111110
|
||||
// x12 = _1111110 << 5 + _111111
|
||||
// x24 = x12 << 12 + x12
|
||||
// i36 = x24 << 7
|
||||
// x31 = _1111111 + i36
|
||||
// x48 = i36 << 17 + x24
|
||||
// x96 = x48 << 48 + x48
|
||||
// return x96 << 31 + x31
|
||||
//
|
||||
var t0 = new(fiat.P224Element)
|
||||
var t1 = new(fiat.P224Element)
|
||||
|
||||
r.Square(x)
|
||||
r.Mul(x, r)
|
||||
r.Square(r)
|
||||
r.Mul(x, r)
|
||||
t0.Square(r)
|
||||
for s := 1; s < 3; s++ {
|
||||
t0.Square(t0)
|
||||
}
|
||||
t0.Mul(r, t0)
|
||||
t1.Square(t0)
|
||||
r.Mul(x, t1)
|
||||
for s := 0; s < 5; s++ {
|
||||
t1.Square(t1)
|
||||
}
|
||||
t0.Mul(t0, t1)
|
||||
t1.Square(t0)
|
||||
for s := 1; s < 12; s++ {
|
||||
t1.Square(t1)
|
||||
}
|
||||
t0.Mul(t0, t1)
|
||||
t1.Square(t0)
|
||||
for s := 1; s < 7; s++ {
|
||||
t1.Square(t1)
|
||||
}
|
||||
r.Mul(r, t1)
|
||||
for s := 0; s < 17; s++ {
|
||||
t1.Square(t1)
|
||||
}
|
||||
t0.Mul(t0, t1)
|
||||
t1.Square(t0)
|
||||
for s := 1; s < 48; s++ {
|
||||
t1.Square(t1)
|
||||
}
|
||||
t0.Mul(t0, t1)
|
||||
for s := 0; s < 31; s++ {
|
||||
t0.Square(t0)
|
||||
}
|
||||
r.Mul(r, t0)
|
||||
|
||||
// v = x^(2^127-1)^2 * x
|
||||
v := new(fiat.P224Element).Square(r)
|
||||
v.Mul(v, x)
|
||||
|
||||
// r = x^(2^127-1) * x
|
||||
r.Mul(r, x)
|
||||
|
||||
// for i = n-1 down to 1:
|
||||
// w = v^(2^(i-1))
|
||||
// if w == -1 then:
|
||||
// v <- v*GG[n-i]
|
||||
// r <- r*GG[n-i-1]
|
||||
|
||||
for i := 96 - 1; i >= 1; i-- {
|
||||
w := new(fiat.P224Element).Set(v)
|
||||
for j := 0; j < i-1; j++ {
|
||||
w.Square(w)
|
||||
}
|
||||
cond := w.Equal(p224MinusOne)
|
||||
v.Select(t0.Mul(v, &p224GG[96-i]), v, cond)
|
||||
r.Select(t0.Mul(r, &p224GG[96-i-1]), r, cond)
|
||||
}
|
||||
}
|
@ -84,30 +84,53 @@ func (p *P256Point) SetBytes(b []byte) (*P256Point, error) {
|
||||
p.z.One()
|
||||
return p, nil
|
||||
|
||||
// Compressed form
|
||||
case len(b) == 1+p256ElementLength && b[0] == 0:
|
||||
return nil, errors.New("unimplemented") // TODO(filippo)
|
||||
// Compressed form.
|
||||
case len(b) == 1+p256ElementLength && (b[0] == 2 || b[0] == 3):
|
||||
x, err := new(fiat.P256Element).SetBytes(b[1:])
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// y² = x³ - 3x + b
|
||||
y := p256Polynomial(new(fiat.P256Element), x)
|
||||
if !p256Sqrt(y, y) {
|
||||
return nil, errors.New("invalid P256 compressed point encoding")
|
||||
}
|
||||
|
||||
// Select the positive or negative root, as indicated by the least
|
||||
// significant bit, based on the encoding type byte.
|
||||
otherRoot := new(fiat.P256Element)
|
||||
otherRoot.Sub(otherRoot, y)
|
||||
cond := y.Bytes()[p256ElementLength-1]&1 ^ b[0]&1
|
||||
y.Select(otherRoot, y, int(cond))
|
||||
|
||||
p.x.Set(x)
|
||||
p.y.Set(y)
|
||||
p.z.One()
|
||||
return p, nil
|
||||
|
||||
default:
|
||||
return nil, errors.New("invalid P256 point encoding")
|
||||
}
|
||||
}
|
||||
|
||||
func p256CheckOnCurve(x, y *fiat.P256Element) error {
|
||||
// x³ - 3x + b.
|
||||
x3 := new(fiat.P256Element).Square(x)
|
||||
x3.Mul(x3, x)
|
||||
// p256Polynomial sets y2 to x³ - 3x + b, and returns y2.
|
||||
func p256Polynomial(y2, x *fiat.P256Element) *fiat.P256Element {
|
||||
y2.Square(x)
|
||||
y2.Mul(y2, x)
|
||||
|
||||
threeX := new(fiat.P256Element).Add(x, x)
|
||||
threeX.Add(threeX, x)
|
||||
|
||||
x3.Sub(x3, threeX)
|
||||
x3.Add(x3, p256B)
|
||||
y2.Sub(y2, threeX)
|
||||
return y2.Add(y2, p256B)
|
||||
}
|
||||
|
||||
func p256CheckOnCurve(x, y *fiat.P256Element) error {
|
||||
// y² = x³ - 3x + b
|
||||
y2 := new(fiat.P256Element).Square(y)
|
||||
|
||||
if x3.Equal(y2) != 1 {
|
||||
rhs := p256Polynomial(new(fiat.P256Element), x)
|
||||
lhs := new(fiat.P256Element).Square(y)
|
||||
if rhs.Equal(lhs) != 1 {
|
||||
return errors.New("P256 point not on curve")
|
||||
}
|
||||
return nil
|
||||
@ -119,22 +142,49 @@ func p256CheckOnCurve(x, y *fiat.P256Element) error {
|
||||
func (p *P256Point) Bytes() []byte {
|
||||
// This function is outlined to make the allocations inline in the caller
|
||||
// rather than happen on the heap.
|
||||
var out [133]byte
|
||||
var out [1 + 2*p256ElementLength]byte
|
||||
return p.bytes(&out)
|
||||
}
|
||||
|
||||
func (p *P256Point) bytes(out *[133]byte) []byte {
|
||||
func (p *P256Point) bytes(out *[1 + 2*p256ElementLength]byte) []byte {
|
||||
if p.z.IsZero() == 1 {
|
||||
return append(out[:0], 0)
|
||||
}
|
||||
|
||||
zinv := new(fiat.P256Element).Invert(p.z)
|
||||
xx := new(fiat.P256Element).Mul(p.x, zinv)
|
||||
yy := new(fiat.P256Element).Mul(p.y, zinv)
|
||||
x := new(fiat.P256Element).Mul(p.x, zinv)
|
||||
y := new(fiat.P256Element).Mul(p.y, zinv)
|
||||
|
||||
buf := append(out[:0], 4)
|
||||
buf = append(buf, xx.Bytes()...)
|
||||
buf = append(buf, yy.Bytes()...)
|
||||
buf = append(buf, x.Bytes()...)
|
||||
buf = append(buf, y.Bytes()...)
|
||||
return buf
|
||||
}
|
||||
|
||||
// BytesCompressed returns the compressed or infinity encoding of p, as
|
||||
// specified in SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the
|
||||
// point at infinity is shorter than all other encodings.
|
||||
func (p *P256Point) BytesCompressed() []byte {
|
||||
// This function is outlined to make the allocations inline in the caller
|
||||
// rather than happen on the heap.
|
||||
var out [1 + p256ElementLength]byte
|
||||
return p.bytesCompressed(&out)
|
||||
}
|
||||
|
||||
func (p *P256Point) bytesCompressed(out *[1 + p256ElementLength]byte) []byte {
|
||||
if p.z.IsZero() == 1 {
|
||||
return append(out[:0], 0)
|
||||
}
|
||||
|
||||
zinv := new(fiat.P256Element).Invert(p.z)
|
||||
x := new(fiat.P256Element).Mul(p.x, zinv)
|
||||
y := new(fiat.P256Element).Mul(p.y, zinv)
|
||||
|
||||
// Encode the sign of the y coordinate (indicated by the least significant
|
||||
// bit) as the encoding type (2 or 3).
|
||||
buf := append(out[:0], 2)
|
||||
buf[0] |= y.Bytes()[p256ElementLength-1] & 1
|
||||
buf = append(buf, x.Bytes()...)
|
||||
return buf
|
||||
}
|
||||
|
||||
@ -365,3 +415,70 @@ func (p *P256Point) ScalarBaseMult(scalar []byte) (*P256Point, error) {
|
||||
|
||||
return p, nil
|
||||
}
|
||||
|
||||
// p256Sqrt sets e to a square root of x. If x is not a square, p256Sqrt returns
|
||||
// false and e is unchanged. e and x can overlap.
|
||||
func p256Sqrt(e, x *fiat.P256Element) (isSquare bool) {
|
||||
candidate := new(fiat.P256Element)
|
||||
p256SqrtCandidate(candidate, x)
|
||||
square := new(fiat.P256Element).Square(candidate)
|
||||
if square.Equal(x) != 1 {
|
||||
return false
|
||||
}
|
||||
e.Set(candidate)
|
||||
return true
|
||||
}
|
||||
|
||||
// p256SqrtCandidate sets z to a square root candidate for x. z and x must not overlap.
|
||||
func p256SqrtCandidate(z, x *fiat.P256Element) {
|
||||
// Since p = 3 mod 4, exponentiation by (p + 1) / 4 yields a square root candidate.
|
||||
//
|
||||
// The sequence of 7 multiplications and 253 squarings is derived from the
|
||||
// following addition chain generated with github.com/mmcloughlin/addchain v0.4.0.
|
||||
//
|
||||
// _10 = 2*1
|
||||
// _11 = 1 + _10
|
||||
// _1100 = _11 << 2
|
||||
// _1111 = _11 + _1100
|
||||
// _11110000 = _1111 << 4
|
||||
// _11111111 = _1111 + _11110000
|
||||
// x16 = _11111111 << 8 + _11111111
|
||||
// x32 = x16 << 16 + x16
|
||||
// return ((x32 << 32 + 1) << 96 + 1) << 94
|
||||
//
|
||||
var t0 = new(fiat.P256Element)
|
||||
|
||||
z.Square(x)
|
||||
z.Mul(x, z)
|
||||
t0.Square(z)
|
||||
for s := 1; s < 2; s++ {
|
||||
t0.Square(t0)
|
||||
}
|
||||
z.Mul(z, t0)
|
||||
t0.Square(z)
|
||||
for s := 1; s < 4; s++ {
|
||||
t0.Square(t0)
|
||||
}
|
||||
z.Mul(z, t0)
|
||||
t0.Square(z)
|
||||
for s := 1; s < 8; s++ {
|
||||
t0.Square(t0)
|
||||
}
|
||||
z.Mul(z, t0)
|
||||
t0.Square(z)
|
||||
for s := 1; s < 16; s++ {
|
||||
t0.Square(t0)
|
||||
}
|
||||
z.Mul(z, t0)
|
||||
for s := 0; s < 32; s++ {
|
||||
z.Square(z)
|
||||
}
|
||||
z.Mul(x, z)
|
||||
for s := 0; s < 96; s++ {
|
||||
z.Square(z)
|
||||
}
|
||||
z.Mul(x, z)
|
||||
for s := 0; s < 94; s++ {
|
||||
z.Square(z)
|
||||
}
|
||||
}
|
||||
|
@ -76,6 +76,12 @@ const p256CompressedLength = 1 + p256ElementLength
|
||||
// the curve, it returns nil and an error, and the receiver is unchanged.
|
||||
// Otherwise, it returns p.
|
||||
func (p *P256Point) SetBytes(b []byte) (*P256Point, error) {
|
||||
// p256Mul operates in the Montgomery domain with R = 2²⁵⁶ mod p. Thus rr
|
||||
// here is R in the Montgomery domain, or R×R mod p. See comment in
|
||||
// P256OrdInverse about how this is used.
|
||||
rr := p256Element{0x0000000000000003, 0xfffffffbffffffff,
|
||||
0xfffffffffffffffe, 0x00000004fffffffd}
|
||||
|
||||
switch {
|
||||
// Point at infinity.
|
||||
case len(b) == 1 && b[0] == 0:
|
||||
@ -89,11 +95,6 @@ func (p *P256Point) SetBytes(b []byte) (*P256Point, error) {
|
||||
if p256LessThanP(&r.x) == 0 || p256LessThanP(&r.y) == 0 {
|
||||
return nil, errors.New("invalid P256 element encoding")
|
||||
}
|
||||
// p256Mul operates in the Montgomery domain with R = 2²⁵⁶ mod p. Thus rr
|
||||
// here is R in the Montgomery domain, or R×R mod p. See comment in
|
||||
// P256OrdInverse about how this is used.
|
||||
rr := p256Element{0x0000000000000003, 0xfffffffbffffffff,
|
||||
0xfffffffffffffffe, 0x00000004fffffffd}
|
||||
p256Mul(&r.x, &r.x, &rr)
|
||||
p256Mul(&r.y, &r.y, &rr)
|
||||
if err := p256CheckOnCurve(&r.x, &r.y); err != nil {
|
||||
@ -104,15 +105,36 @@ func (p *P256Point) SetBytes(b []byte) (*P256Point, error) {
|
||||
|
||||
// Compressed form.
|
||||
case len(b) == p256CompressedLength && (b[0] == 2 || b[0] == 3):
|
||||
return nil, errors.New("unimplemented") // TODO(filippo)
|
||||
var r P256Point
|
||||
p256BigToLittle(&r.x, (*[32]byte)(b[1:33]))
|
||||
if p256LessThanP(&r.x) == 0 {
|
||||
return nil, errors.New("invalid P256 element encoding")
|
||||
}
|
||||
p256Mul(&r.x, &r.x, &rr)
|
||||
|
||||
// y² = x³ - 3x + b
|
||||
p256Polynomial(&r.y, &r.x)
|
||||
if !p256Sqrt(&r.y, &r.y) {
|
||||
return nil, errors.New("invalid P256 compressed point encoding")
|
||||
}
|
||||
|
||||
// Select the positive or negative root, as indicated by the least
|
||||
// significant bit, based on the encoding type byte.
|
||||
yy := new(p256Element)
|
||||
p256FromMont(yy, &r.y)
|
||||
cond := int(yy[0]&1) ^ int(b[0]&1)
|
||||
p256NegCond(&r.y, cond)
|
||||
|
||||
r.z = p256One
|
||||
return p.Set(&r), nil
|
||||
|
||||
default:
|
||||
return nil, errors.New("invalid P256 point encoding")
|
||||
}
|
||||
}
|
||||
|
||||
func p256CheckOnCurve(x, y *p256Element) error {
|
||||
// x³ - 3x + b
|
||||
// p256Polynomial sets y2 to x³ - 3x + b, and returns y2.
|
||||
func p256Polynomial(y2, x *p256Element) *p256Element {
|
||||
x3 := new(p256Element)
|
||||
p256Sqr(x3, x, 1)
|
||||
p256Mul(x3, x3, x)
|
||||
@ -128,11 +150,16 @@ func p256CheckOnCurve(x, y *p256Element) error {
|
||||
p256Add(x3, x3, threeX)
|
||||
p256Add(x3, x3, p256B)
|
||||
|
||||
// y² = x³ - 3x + b
|
||||
y2 := new(p256Element)
|
||||
p256Sqr(y2, y, 1)
|
||||
*y2 = *x3
|
||||
return y2
|
||||
}
|
||||
|
||||
if p256Equal(y2, x3) != 1 {
|
||||
func p256CheckOnCurve(x, y *p256Element) error {
|
||||
// y² = x³ - 3x + b
|
||||
rhs := p256Polynomial(new(p256Element), x)
|
||||
lhs := new(p256Element)
|
||||
p256Sqr(lhs, y, 1)
|
||||
if p256Equal(lhs, rhs) != 1 {
|
||||
return errors.New("P256 point not on curve")
|
||||
}
|
||||
return nil
|
||||
@ -177,6 +204,50 @@ func p256Add(res, x, y *p256Element) {
|
||||
res[3] = (t1[3] & ^t2Mask) | (t2[3] & t2Mask)
|
||||
}
|
||||
|
||||
// p256Sqrt sets e to a square root of x. If x is not a square, p256Sqrt returns
|
||||
// false and e is unchanged. e and x can overlap.
|
||||
func p256Sqrt(e, x *p256Element) (isSquare bool) {
|
||||
t0, t1 := new(p256Element), new(p256Element)
|
||||
|
||||
// Since p = 3 mod 4, exponentiation by (p + 1) / 4 yields a square root candidate.
|
||||
//
|
||||
// The sequence of 7 multiplications and 253 squarings is derived from the
|
||||
// following addition chain generated with github.com/mmcloughlin/addchain v0.4.0.
|
||||
//
|
||||
// _10 = 2*1
|
||||
// _11 = 1 + _10
|
||||
// _1100 = _11 << 2
|
||||
// _1111 = _11 + _1100
|
||||
// _11110000 = _1111 << 4
|
||||
// _11111111 = _1111 + _11110000
|
||||
// x16 = _11111111 << 8 + _11111111
|
||||
// x32 = x16 << 16 + x16
|
||||
// return ((x32 << 32 + 1) << 96 + 1) << 94
|
||||
//
|
||||
p256Sqr(t0, x, 1)
|
||||
p256Mul(t0, x, t0)
|
||||
p256Sqr(t1, t0, 2)
|
||||
p256Mul(t0, t0, t1)
|
||||
p256Sqr(t1, t0, 4)
|
||||
p256Mul(t0, t0, t1)
|
||||
p256Sqr(t1, t0, 8)
|
||||
p256Mul(t0, t0, t1)
|
||||
p256Sqr(t1, t0, 16)
|
||||
p256Mul(t0, t0, t1)
|
||||
p256Sqr(t0, t0, 32)
|
||||
p256Mul(t0, x, t0)
|
||||
p256Sqr(t0, t0, 96)
|
||||
p256Mul(t0, x, t0)
|
||||
p256Sqr(t0, t0, 94)
|
||||
|
||||
p256Sqr(t1, t0, 1)
|
||||
if p256Equal(t1, x) != 1 {
|
||||
return false
|
||||
}
|
||||
*e = *t0
|
||||
return true
|
||||
}
|
||||
|
||||
// The following assembly functions are implemented in p256_asm_*.s
|
||||
|
||||
// Montgomery multiplication. Sets res = in1 * in2 * R⁻¹ mod p.
|
||||
@ -463,24 +534,53 @@ func (p *P256Point) Bytes() []byte {
|
||||
func (p *P256Point) bytes(out *[p256UncompressedLength]byte) []byte {
|
||||
// The proper representation of the point at infinity is a single zero byte.
|
||||
if p.isInfinity() == 1 {
|
||||
return out[:1]
|
||||
return append(out[:0], 0)
|
||||
}
|
||||
|
||||
zInv := new(p256Element)
|
||||
zInvSq := new(p256Element)
|
||||
p256Inverse(zInv, &p.z)
|
||||
p256Sqr(zInvSq, zInv, 1)
|
||||
p256Mul(zInv, zInv, zInvSq)
|
||||
|
||||
p256Mul(zInvSq, &p.x, zInvSq)
|
||||
p256Mul(zInv, &p.y, zInv)
|
||||
|
||||
p256FromMont(zInvSq, zInvSq)
|
||||
p256FromMont(zInv, zInv)
|
||||
x, y := new(p256Element), new(p256Element)
|
||||
p.affineFromMont(x, y)
|
||||
|
||||
out[0] = 4 // Uncompressed form.
|
||||
p256LittleToBig((*[32]byte)(out[1:33]), zInvSq)
|
||||
p256LittleToBig((*[32]byte)(out[33:65]), zInv)
|
||||
p256LittleToBig((*[32]byte)(out[1:33]), x)
|
||||
p256LittleToBig((*[32]byte)(out[33:65]), y)
|
||||
|
||||
return out[:]
|
||||
}
|
||||
|
||||
// affineFromMont sets (x, y) to the affine coordinates of p, converted out of the
|
||||
// Montgomery domain.
|
||||
func (p *P256Point) affineFromMont(x, y *p256Element) {
|
||||
p256Inverse(y, &p.z)
|
||||
p256Sqr(x, y, 1)
|
||||
p256Mul(y, y, x)
|
||||
|
||||
p256Mul(x, &p.x, x)
|
||||
p256Mul(y, &p.y, y)
|
||||
|
||||
p256FromMont(x, x)
|
||||
p256FromMont(y, y)
|
||||
}
|
||||
|
||||
// BytesCompressed returns the compressed or infinity encoding of p, as
|
||||
// specified in SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the
|
||||
// point at infinity is shorter than all other encodings.
|
||||
func (p *P256Point) BytesCompressed() []byte {
|
||||
// This function is outlined to make the allocations inline in the caller
|
||||
// rather than happen on the heap.
|
||||
var out [p256CompressedLength]byte
|
||||
return p.bytesCompressed(&out)
|
||||
}
|
||||
|
||||
func (p *P256Point) bytesCompressed(out *[p256CompressedLength]byte) []byte {
|
||||
if p.isInfinity() == 1 {
|
||||
return append(out[:0], 0)
|
||||
}
|
||||
|
||||
x, y := new(p256Element), new(p256Element)
|
||||
p.affineFromMont(x, y)
|
||||
|
||||
out[0] = 2 | byte(y[0]&1)
|
||||
p256LittleToBig((*[32]byte)(out[1:33]), x)
|
||||
|
||||
return out[:]
|
||||
}
|
||||
|
@ -82,30 +82,53 @@ func (p *P384Point) SetBytes(b []byte) (*P384Point, error) {
|
||||
p.z.One()
|
||||
return p, nil
|
||||
|
||||
// Compressed form
|
||||
case len(b) == 1+p384ElementLength && b[0] == 0:
|
||||
return nil, errors.New("unimplemented") // TODO(filippo)
|
||||
// Compressed form.
|
||||
case len(b) == 1+p384ElementLength && (b[0] == 2 || b[0] == 3):
|
||||
x, err := new(fiat.P384Element).SetBytes(b[1:])
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// y² = x³ - 3x + b
|
||||
y := p384Polynomial(new(fiat.P384Element), x)
|
||||
if !p384Sqrt(y, y) {
|
||||
return nil, errors.New("invalid P384 compressed point encoding")
|
||||
}
|
||||
|
||||
// Select the positive or negative root, as indicated by the least
|
||||
// significant bit, based on the encoding type byte.
|
||||
otherRoot := new(fiat.P384Element)
|
||||
otherRoot.Sub(otherRoot, y)
|
||||
cond := y.Bytes()[p384ElementLength-1]&1 ^ b[0]&1
|
||||
y.Select(otherRoot, y, int(cond))
|
||||
|
||||
p.x.Set(x)
|
||||
p.y.Set(y)
|
||||
p.z.One()
|
||||
return p, nil
|
||||
|
||||
default:
|
||||
return nil, errors.New("invalid P384 point encoding")
|
||||
}
|
||||
}
|
||||
|
||||
func p384CheckOnCurve(x, y *fiat.P384Element) error {
|
||||
// x³ - 3x + b.
|
||||
x3 := new(fiat.P384Element).Square(x)
|
||||
x3.Mul(x3, x)
|
||||
// p384Polynomial sets y2 to x³ - 3x + b, and returns y2.
|
||||
func p384Polynomial(y2, x *fiat.P384Element) *fiat.P384Element {
|
||||
y2.Square(x)
|
||||
y2.Mul(y2, x)
|
||||
|
||||
threeX := new(fiat.P384Element).Add(x, x)
|
||||
threeX.Add(threeX, x)
|
||||
|
||||
x3.Sub(x3, threeX)
|
||||
x3.Add(x3, p384B)
|
||||
y2.Sub(y2, threeX)
|
||||
return y2.Add(y2, p384B)
|
||||
}
|
||||
|
||||
func p384CheckOnCurve(x, y *fiat.P384Element) error {
|
||||
// y² = x³ - 3x + b
|
||||
y2 := new(fiat.P384Element).Square(y)
|
||||
|
||||
if x3.Equal(y2) != 1 {
|
||||
rhs := p384Polynomial(new(fiat.P384Element), x)
|
||||
lhs := new(fiat.P384Element).Square(y)
|
||||
if rhs.Equal(lhs) != 1 {
|
||||
return errors.New("P384 point not on curve")
|
||||
}
|
||||
return nil
|
||||
@ -117,22 +140,49 @@ func p384CheckOnCurve(x, y *fiat.P384Element) error {
|
||||
func (p *P384Point) Bytes() []byte {
|
||||
// This function is outlined to make the allocations inline in the caller
|
||||
// rather than happen on the heap.
|
||||
var out [133]byte
|
||||
var out [1 + 2*p384ElementLength]byte
|
||||
return p.bytes(&out)
|
||||
}
|
||||
|
||||
func (p *P384Point) bytes(out *[133]byte) []byte {
|
||||
func (p *P384Point) bytes(out *[1 + 2*p384ElementLength]byte) []byte {
|
||||
if p.z.IsZero() == 1 {
|
||||
return append(out[:0], 0)
|
||||
}
|
||||
|
||||
zinv := new(fiat.P384Element).Invert(p.z)
|
||||
xx := new(fiat.P384Element).Mul(p.x, zinv)
|
||||
yy := new(fiat.P384Element).Mul(p.y, zinv)
|
||||
x := new(fiat.P384Element).Mul(p.x, zinv)
|
||||
y := new(fiat.P384Element).Mul(p.y, zinv)
|
||||
|
||||
buf := append(out[:0], 4)
|
||||
buf = append(buf, xx.Bytes()...)
|
||||
buf = append(buf, yy.Bytes()...)
|
||||
buf = append(buf, x.Bytes()...)
|
||||
buf = append(buf, y.Bytes()...)
|
||||
return buf
|
||||
}
|
||||
|
||||
// BytesCompressed returns the compressed or infinity encoding of p, as
|
||||
// specified in SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the
|
||||
// point at infinity is shorter than all other encodings.
|
||||
func (p *P384Point) BytesCompressed() []byte {
|
||||
// This function is outlined to make the allocations inline in the caller
|
||||
// rather than happen on the heap.
|
||||
var out [1 + p384ElementLength]byte
|
||||
return p.bytesCompressed(&out)
|
||||
}
|
||||
|
||||
func (p *P384Point) bytesCompressed(out *[1 + p384ElementLength]byte) []byte {
|
||||
if p.z.IsZero() == 1 {
|
||||
return append(out[:0], 0)
|
||||
}
|
||||
|
||||
zinv := new(fiat.P384Element).Invert(p.z)
|
||||
x := new(fiat.P384Element).Mul(p.x, zinv)
|
||||
y := new(fiat.P384Element).Mul(p.y, zinv)
|
||||
|
||||
// Encode the sign of the y coordinate (indicated by the least significant
|
||||
// bit) as the encoding type (2 or 3).
|
||||
buf := append(out[:0], 2)
|
||||
buf[0] |= y.Bytes()[p384ElementLength-1] & 1
|
||||
buf = append(buf, x.Bytes()...)
|
||||
return buf
|
||||
}
|
||||
|
||||
@ -363,3 +413,103 @@ func (p *P384Point) ScalarBaseMult(scalar []byte) (*P384Point, error) {
|
||||
|
||||
return p, nil
|
||||
}
|
||||
|
||||
// p384Sqrt sets e to a square root of x. If x is not a square, p384Sqrt returns
|
||||
// false and e is unchanged. e and x can overlap.
|
||||
func p384Sqrt(e, x *fiat.P384Element) (isSquare bool) {
|
||||
candidate := new(fiat.P384Element)
|
||||
p384SqrtCandidate(candidate, x)
|
||||
square := new(fiat.P384Element).Square(candidate)
|
||||
if square.Equal(x) != 1 {
|
||||
return false
|
||||
}
|
||||
e.Set(candidate)
|
||||
return true
|
||||
}
|
||||
|
||||
// p384SqrtCandidate sets z to a square root candidate for x. z and x must not overlap.
|
||||
func p384SqrtCandidate(z, x *fiat.P384Element) {
|
||||
// Since p = 3 mod 4, exponentiation by (p + 1) / 4 yields a square root candidate.
|
||||
//
|
||||
// The sequence of 14 multiplications and 381 squarings is derived from the
|
||||
// following addition chain generated with github.com/mmcloughlin/addchain v0.4.0.
|
||||
//
|
||||
// _10 = 2*1
|
||||
// _11 = 1 + _10
|
||||
// _110 = 2*_11
|
||||
// _111 = 1 + _110
|
||||
// _111000 = _111 << 3
|
||||
// _111111 = _111 + _111000
|
||||
// _1111110 = 2*_111111
|
||||
// _1111111 = 1 + _1111110
|
||||
// x12 = _1111110 << 5 + _111111
|
||||
// x24 = x12 << 12 + x12
|
||||
// x31 = x24 << 7 + _1111111
|
||||
// x32 = 2*x31 + 1
|
||||
// x63 = x32 << 31 + x31
|
||||
// x126 = x63 << 63 + x63
|
||||
// x252 = x126 << 126 + x126
|
||||
// x255 = x252 << 3 + _111
|
||||
// return ((x255 << 33 + x32) << 64 + 1) << 30
|
||||
//
|
||||
var t0 = new(fiat.P384Element)
|
||||
var t1 = new(fiat.P384Element)
|
||||
var t2 = new(fiat.P384Element)
|
||||
|
||||
z.Square(x)
|
||||
z.Mul(x, z)
|
||||
z.Square(z)
|
||||
t0.Mul(x, z)
|
||||
z.Square(t0)
|
||||
for s := 1; s < 3; s++ {
|
||||
z.Square(z)
|
||||
}
|
||||
t1.Mul(t0, z)
|
||||
t2.Square(t1)
|
||||
z.Mul(x, t2)
|
||||
for s := 0; s < 5; s++ {
|
||||
t2.Square(t2)
|
||||
}
|
||||
t1.Mul(t1, t2)
|
||||
t2.Square(t1)
|
||||
for s := 1; s < 12; s++ {
|
||||
t2.Square(t2)
|
||||
}
|
||||
t1.Mul(t1, t2)
|
||||
for s := 0; s < 7; s++ {
|
||||
t1.Square(t1)
|
||||
}
|
||||
t1.Mul(z, t1)
|
||||
z.Square(t1)
|
||||
z.Mul(x, z)
|
||||
t2.Square(z)
|
||||
for s := 1; s < 31; s++ {
|
||||
t2.Square(t2)
|
||||
}
|
||||
t1.Mul(t1, t2)
|
||||
t2.Square(t1)
|
||||
for s := 1; s < 63; s++ {
|
||||
t2.Square(t2)
|
||||
}
|
||||
t1.Mul(t1, t2)
|
||||
t2.Square(t1)
|
||||
for s := 1; s < 126; s++ {
|
||||
t2.Square(t2)
|
||||
}
|
||||
t1.Mul(t1, t2)
|
||||
for s := 0; s < 3; s++ {
|
||||
t1.Square(t1)
|
||||
}
|
||||
t0.Mul(t0, t1)
|
||||
for s := 0; s < 33; s++ {
|
||||
t0.Square(t0)
|
||||
}
|
||||
z.Mul(z, t0)
|
||||
for s := 0; s < 64; s++ {
|
||||
z.Square(z)
|
||||
}
|
||||
z.Mul(x, z)
|
||||
for s := 0; s < 30; s++ {
|
||||
z.Square(z)
|
||||
}
|
||||
}
|
||||
|
@ -82,30 +82,53 @@ func (p *P521Point) SetBytes(b []byte) (*P521Point, error) {
|
||||
p.z.One()
|
||||
return p, nil
|
||||
|
||||
// Compressed form
|
||||
case len(b) == 1+p521ElementLength && b[0] == 0:
|
||||
return nil, errors.New("unimplemented") // TODO(filippo)
|
||||
// Compressed form.
|
||||
case len(b) == 1+p521ElementLength && (b[0] == 2 || b[0] == 3):
|
||||
x, err := new(fiat.P521Element).SetBytes(b[1:])
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// y² = x³ - 3x + b
|
||||
y := p521Polynomial(new(fiat.P521Element), x)
|
||||
if !p521Sqrt(y, y) {
|
||||
return nil, errors.New("invalid P521 compressed point encoding")
|
||||
}
|
||||
|
||||
// Select the positive or negative root, as indicated by the least
|
||||
// significant bit, based on the encoding type byte.
|
||||
otherRoot := new(fiat.P521Element)
|
||||
otherRoot.Sub(otherRoot, y)
|
||||
cond := y.Bytes()[p521ElementLength-1]&1 ^ b[0]&1
|
||||
y.Select(otherRoot, y, int(cond))
|
||||
|
||||
p.x.Set(x)
|
||||
p.y.Set(y)
|
||||
p.z.One()
|
||||
return p, nil
|
||||
|
||||
default:
|
||||
return nil, errors.New("invalid P521 point encoding")
|
||||
}
|
||||
}
|
||||
|
||||
func p521CheckOnCurve(x, y *fiat.P521Element) error {
|
||||
// x³ - 3x + b.
|
||||
x3 := new(fiat.P521Element).Square(x)
|
||||
x3.Mul(x3, x)
|
||||
// p521Polynomial sets y2 to x³ - 3x + b, and returns y2.
|
||||
func p521Polynomial(y2, x *fiat.P521Element) *fiat.P521Element {
|
||||
y2.Square(x)
|
||||
y2.Mul(y2, x)
|
||||
|
||||
threeX := new(fiat.P521Element).Add(x, x)
|
||||
threeX.Add(threeX, x)
|
||||
|
||||
x3.Sub(x3, threeX)
|
||||
x3.Add(x3, p521B)
|
||||
y2.Sub(y2, threeX)
|
||||
return y2.Add(y2, p521B)
|
||||
}
|
||||
|
||||
func p521CheckOnCurve(x, y *fiat.P521Element) error {
|
||||
// y² = x³ - 3x + b
|
||||
y2 := new(fiat.P521Element).Square(y)
|
||||
|
||||
if x3.Equal(y2) != 1 {
|
||||
rhs := p521Polynomial(new(fiat.P521Element), x)
|
||||
lhs := new(fiat.P521Element).Square(y)
|
||||
if rhs.Equal(lhs) != 1 {
|
||||
return errors.New("P521 point not on curve")
|
||||
}
|
||||
return nil
|
||||
@ -117,22 +140,49 @@ func p521CheckOnCurve(x, y *fiat.P521Element) error {
|
||||
func (p *P521Point) Bytes() []byte {
|
||||
// This function is outlined to make the allocations inline in the caller
|
||||
// rather than happen on the heap.
|
||||
var out [133]byte
|
||||
var out [1 + 2*p521ElementLength]byte
|
||||
return p.bytes(&out)
|
||||
}
|
||||
|
||||
func (p *P521Point) bytes(out *[133]byte) []byte {
|
||||
func (p *P521Point) bytes(out *[1 + 2*p521ElementLength]byte) []byte {
|
||||
if p.z.IsZero() == 1 {
|
||||
return append(out[:0], 0)
|
||||
}
|
||||
|
||||
zinv := new(fiat.P521Element).Invert(p.z)
|
||||
xx := new(fiat.P521Element).Mul(p.x, zinv)
|
||||
yy := new(fiat.P521Element).Mul(p.y, zinv)
|
||||
x := new(fiat.P521Element).Mul(p.x, zinv)
|
||||
y := new(fiat.P521Element).Mul(p.y, zinv)
|
||||
|
||||
buf := append(out[:0], 4)
|
||||
buf = append(buf, xx.Bytes()...)
|
||||
buf = append(buf, yy.Bytes()...)
|
||||
buf = append(buf, x.Bytes()...)
|
||||
buf = append(buf, y.Bytes()...)
|
||||
return buf
|
||||
}
|
||||
|
||||
// BytesCompressed returns the compressed or infinity encoding of p, as
|
||||
// specified in SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the
|
||||
// point at infinity is shorter than all other encodings.
|
||||
func (p *P521Point) BytesCompressed() []byte {
|
||||
// This function is outlined to make the allocations inline in the caller
|
||||
// rather than happen on the heap.
|
||||
var out [1 + p521ElementLength]byte
|
||||
return p.bytesCompressed(&out)
|
||||
}
|
||||
|
||||
func (p *P521Point) bytesCompressed(out *[1 + p521ElementLength]byte) []byte {
|
||||
if p.z.IsZero() == 1 {
|
||||
return append(out[:0], 0)
|
||||
}
|
||||
|
||||
zinv := new(fiat.P521Element).Invert(p.z)
|
||||
x := new(fiat.P521Element).Mul(p.x, zinv)
|
||||
y := new(fiat.P521Element).Mul(p.y, zinv)
|
||||
|
||||
// Encode the sign of the y coordinate (indicated by the least significant
|
||||
// bit) as the encoding type (2 or 3).
|
||||
buf := append(out[:0], 2)
|
||||
buf[0] |= y.Bytes()[p521ElementLength-1] & 1
|
||||
buf = append(buf, x.Bytes()...)
|
||||
return buf
|
||||
}
|
||||
|
||||
@ -363,3 +413,32 @@ func (p *P521Point) ScalarBaseMult(scalar []byte) (*P521Point, error) {
|
||||
|
||||
return p, nil
|
||||
}
|
||||
|
||||
// p521Sqrt sets e to a square root of x. If x is not a square, p521Sqrt returns
|
||||
// false and e is unchanged. e and x can overlap.
|
||||
func p521Sqrt(e, x *fiat.P521Element) (isSquare bool) {
|
||||
candidate := new(fiat.P521Element)
|
||||
p521SqrtCandidate(candidate, x)
|
||||
square := new(fiat.P521Element).Square(candidate)
|
||||
if square.Equal(x) != 1 {
|
||||
return false
|
||||
}
|
||||
e.Set(candidate)
|
||||
return true
|
||||
}
|
||||
|
||||
// p521SqrtCandidate sets z to a square root candidate for x. z and x must not overlap.
|
||||
func p521SqrtCandidate(z, x *fiat.P521Element) {
|
||||
// Since p = 3 mod 4, exponentiation by (p + 1) / 4 yields a square root candidate.
|
||||
//
|
||||
// The sequence of 0 multiplications and 519 squarings is derived from the
|
||||
// following addition chain generated with github.com/mmcloughlin/addchain v0.4.0.
|
||||
//
|
||||
// return 1 << 519
|
||||
//
|
||||
|
||||
z.Square(x)
|
||||
for s := 1; s < 519; s++ {
|
||||
z.Square(z)
|
||||
}
|
||||
}
|
||||
|
@ -163,14 +163,13 @@ func (curve *nistCurve[Point]) pointFromAffine(x, y *big.Int) (p Point, err erro
|
||||
func (curve *nistCurve[Point]) pointToAffine(p Point) (x, y *big.Int) {
|
||||
out := p.Bytes()
|
||||
if len(out) == 1 && out[0] == 0 {
|
||||
// This is the correct encoding of the point at infinity, which
|
||||
// Unmarshal does not support. See Issue 37294.
|
||||
// This is the encoding of the point at infinity, which the affine
|
||||
// coordinates API represents as (0, 0) by convention.
|
||||
return new(big.Int), new(big.Int)
|
||||
}
|
||||
x, y = Unmarshal(curve, out)
|
||||
if x == nil {
|
||||
panic("crypto/elliptic: internal error: Unmarshal rejected a valid point encoding")
|
||||
}
|
||||
byteLen := (curve.params.BitSize + 7) / 8
|
||||
x = new(big.Int).SetBytes(out[1 : 1+byteLen])
|
||||
y = new(big.Int).SetBytes(out[1+byteLen:])
|
||||
return x, y
|
||||
}
|
||||
|
||||
@ -268,6 +267,35 @@ func (curve *nistCurve[Point]) CombinedMult(Px, Py *big.Int, s1, s2 []byte) (x,
|
||||
return curve.pointToAffine(p.Add(p, q))
|
||||
}
|
||||
|
||||
func (curve *nistCurve[Point]) Unmarshal(data []byte) (x, y *big.Int) {
|
||||
if len(data) == 0 || data[0] != 4 {
|
||||
return nil, nil
|
||||
}
|
||||
// Use SetBytes to check that data encodes a valid point.
|
||||
_, err := curve.newPoint().SetBytes(data)
|
||||
if err != nil {
|
||||
return nil, nil
|
||||
}
|
||||
// We don't use pointToAffine because it involves an expensive field
|
||||
// inversion to convert from Jacobian to affine coordinates, which we
|
||||
// already have.
|
||||
byteLen := (curve.params.BitSize + 7) / 8
|
||||
x = new(big.Int).SetBytes(data[1 : 1+byteLen])
|
||||
y = new(big.Int).SetBytes(data[1+byteLen:])
|
||||
return x, y
|
||||
}
|
||||
|
||||
func (curve *nistCurve[Point]) UnmarshalCompressed(data []byte) (x, y *big.Int) {
|
||||
if len(data) == 0 || (data[0] != 2 && data[0] != 3) {
|
||||
return nil, nil
|
||||
}
|
||||
p, err := curve.newPoint().SetBytes(data)
|
||||
if err != nil {
|
||||
return nil, nil
|
||||
}
|
||||
return curve.pointToAffine(p)
|
||||
}
|
||||
|
||||
func bigFromDecimal(s string) *big.Int {
|
||||
b, ok := new(big.Int).SetString(s, 10)
|
||||
if !ok {
|
||||
|
Loading…
x
Reference in New Issue
Block a user