mirror of
https://github.com/golang/go.git
synced 2025-05-05 15:43:04 +00:00
refactor/...: remove go1.8-tagged files
Change-Id: I7df485b71ba87670d9e70e5b44e2110fd8f6a815 Reviewed-on: https://go-review.googlesource.com/32815 Reviewed-by: Robert Griesemer <gri@golang.org>
This commit is contained in:
parent
fe1fa38300
commit
be0bbf2399
@ -2,8 +2,6 @@
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build !go1.8
|
||||
|
||||
// Package eg implements the example-based refactoring tool whose
|
||||
// command-line is defined in golang.org/x/tools/cmd/eg.
|
||||
package eg // import "golang.org/x/tools/refactor/eg"
|
||||
|
@ -1,346 +0,0 @@
|
||||
// Copyright 2014 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build go1.8
|
||||
|
||||
// Package eg implements the example-based refactoring tool whose
|
||||
// command-line is defined in golang.org/x/tools/cmd/eg.
|
||||
package eg // import "golang.org/x/tools/refactor/eg"
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"fmt"
|
||||
"go/ast"
|
||||
"go/format"
|
||||
"go/printer"
|
||||
"go/token"
|
||||
"go/types"
|
||||
"os"
|
||||
)
|
||||
|
||||
const Help = `
|
||||
This tool implements example-based refactoring of expressions.
|
||||
|
||||
The transformation is specified as a Go file defining two functions,
|
||||
'before' and 'after', of identical types. Each function body consists
|
||||
of a single statement: either a return statement with a single
|
||||
(possibly multi-valued) expression, or an expression statement. The
|
||||
'before' expression specifies a pattern and the 'after' expression its
|
||||
replacement.
|
||||
|
||||
package P
|
||||
import ( "errors"; "fmt" )
|
||||
func before(s string) error { return fmt.Errorf("%s", s) }
|
||||
func after(s string) error { return errors.New(s) }
|
||||
|
||||
The expression statement form is useful when the expression has no
|
||||
result, for example:
|
||||
|
||||
func before(msg string) { log.Fatalf("%s", msg) }
|
||||
func after(msg string) { log.Fatal(msg) }
|
||||
|
||||
The parameters of both functions are wildcards that may match any
|
||||
expression assignable to that type. If the pattern contains multiple
|
||||
occurrences of the same parameter, each must match the same expression
|
||||
in the input for the pattern to match. If the replacement contains
|
||||
multiple occurrences of the same parameter, the expression will be
|
||||
duplicated, possibly changing the side-effects.
|
||||
|
||||
The tool analyses all Go code in the packages specified by the
|
||||
arguments, replacing all occurrences of the pattern with the
|
||||
substitution.
|
||||
|
||||
So, the transform above would change this input:
|
||||
err := fmt.Errorf("%s", "error: " + msg)
|
||||
to this output:
|
||||
err := errors.New("error: " + msg)
|
||||
|
||||
Identifiers, including qualified identifiers (p.X) are considered to
|
||||
match only if they denote the same object. This allows correct
|
||||
matching even in the presence of dot imports, named imports and
|
||||
locally shadowed package names in the input program.
|
||||
|
||||
Matching of type syntax is semantic, not syntactic: type syntax in the
|
||||
pattern matches type syntax in the input if the types are identical.
|
||||
Thus, func(x int) matches func(y int).
|
||||
|
||||
This tool was inspired by other example-based refactoring tools,
|
||||
'gofmt -r' for Go and Refaster for Java.
|
||||
|
||||
|
||||
LIMITATIONS
|
||||
===========
|
||||
|
||||
EXPRESSIVENESS
|
||||
|
||||
Only refactorings that replace one expression with another, regardless
|
||||
of the expression's context, may be expressed. Refactoring arbitrary
|
||||
statements (or sequences of statements) is a less well-defined problem
|
||||
and is less amenable to this approach.
|
||||
|
||||
A pattern that contains a function literal (and hence statements)
|
||||
never matches.
|
||||
|
||||
There is no way to generalize over related types, e.g. to express that
|
||||
a wildcard may have any integer type, for example.
|
||||
|
||||
It is not possible to replace an expression by one of a different
|
||||
type, even in contexts where this is legal, such as x in fmt.Print(x).
|
||||
|
||||
The struct literals T{x} and T{K: x} cannot both be matched by a single
|
||||
template.
|
||||
|
||||
|
||||
SAFETY
|
||||
|
||||
Verifying that a transformation does not introduce type errors is very
|
||||
complex in the general case. An innocuous-looking replacement of one
|
||||
constant by another (e.g. 1 to 2) may cause type errors relating to
|
||||
array types and indices, for example. The tool performs only very
|
||||
superficial checks of type preservation.
|
||||
|
||||
|
||||
IMPORTS
|
||||
|
||||
Although the matching algorithm is fully aware of scoping rules, the
|
||||
replacement algorithm is not, so the replacement code may contain
|
||||
incorrect identifier syntax for imported objects if there are dot
|
||||
imports, named imports or locally shadowed package names in the input
|
||||
program.
|
||||
|
||||
Imports are added as needed, but they are not removed as needed.
|
||||
Run 'goimports' on the modified file for now.
|
||||
|
||||
Dot imports are forbidden in the template.
|
||||
|
||||
|
||||
TIPS
|
||||
====
|
||||
|
||||
Sometimes a little creativity is required to implement the desired
|
||||
migration. This section lists a few tips and tricks.
|
||||
|
||||
To remove the final parameter from a function, temporarily change the
|
||||
function signature so that the final parameter is variadic, as this
|
||||
allows legal calls both with and without the argument. Then use eg to
|
||||
remove the final argument from all callers, and remove the variadic
|
||||
parameter by hand. The reverse process can be used to add a final
|
||||
parameter.
|
||||
|
||||
To add or remove parameters other than the final one, you must do it in
|
||||
stages: (1) declare a variant function f' with a different name and the
|
||||
desired parameters; (2) use eg to transform calls to f into calls to f',
|
||||
changing the arguments as needed; (3) change the declaration of f to
|
||||
match f'; (4) use eg to rename f' to f in all calls; (5) delete f'.
|
||||
`
|
||||
|
||||
// TODO(adonovan): expand upon the above documentation as an HTML page.
|
||||
|
||||
// A Transformer represents a single example-based transformation.
|
||||
type Transformer struct {
|
||||
fset *token.FileSet
|
||||
verbose bool
|
||||
info *types.Info // combined type info for template/input/output ASTs
|
||||
seenInfos map[*types.Info]bool
|
||||
wildcards map[*types.Var]bool // set of parameters in func before()
|
||||
env map[string]ast.Expr // maps parameter name to wildcard binding
|
||||
importedObjs map[types.Object]*ast.SelectorExpr // objects imported by after().
|
||||
before, after ast.Expr
|
||||
allowWildcards bool
|
||||
|
||||
// Working state of Transform():
|
||||
nsubsts int // number of substitutions made
|
||||
currentPkg *types.Package // package of current call
|
||||
}
|
||||
|
||||
// NewTransformer returns a transformer based on the specified template,
|
||||
// a single-file package containing "before" and "after" functions as
|
||||
// described in the package documentation.
|
||||
// tmplInfo is the type information for tmplFile.
|
||||
//
|
||||
func NewTransformer(fset *token.FileSet, tmplPkg *types.Package, tmplFile *ast.File, tmplInfo *types.Info, verbose bool) (*Transformer, error) {
|
||||
// Check the template.
|
||||
beforeSig := funcSig(tmplPkg, "before")
|
||||
if beforeSig == nil {
|
||||
return nil, fmt.Errorf("no 'before' func found in template")
|
||||
}
|
||||
afterSig := funcSig(tmplPkg, "after")
|
||||
if afterSig == nil {
|
||||
return nil, fmt.Errorf("no 'after' func found in template")
|
||||
}
|
||||
|
||||
// TODO(adonovan): should we also check the names of the params match?
|
||||
if !types.Identical(afterSig, beforeSig) {
|
||||
return nil, fmt.Errorf("before %s and after %s functions have different signatures",
|
||||
beforeSig, afterSig)
|
||||
}
|
||||
|
||||
for _, imp := range tmplFile.Imports {
|
||||
if imp.Name != nil && imp.Name.Name == "." {
|
||||
// Dot imports are currently forbidden. We
|
||||
// make the simplifying assumption that all
|
||||
// imports are regular, without local renames.
|
||||
// TODO(adonovan): document
|
||||
return nil, fmt.Errorf("dot-import (of %s) in template", imp.Path.Value)
|
||||
}
|
||||
}
|
||||
var beforeDecl, afterDecl *ast.FuncDecl
|
||||
for _, decl := range tmplFile.Decls {
|
||||
if decl, ok := decl.(*ast.FuncDecl); ok {
|
||||
switch decl.Name.Name {
|
||||
case "before":
|
||||
beforeDecl = decl
|
||||
case "after":
|
||||
afterDecl = decl
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
before, err := soleExpr(beforeDecl)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("before: %s", err)
|
||||
}
|
||||
after, err := soleExpr(afterDecl)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("after: %s", err)
|
||||
}
|
||||
|
||||
wildcards := make(map[*types.Var]bool)
|
||||
for i := 0; i < beforeSig.Params().Len(); i++ {
|
||||
wildcards[beforeSig.Params().At(i)] = true
|
||||
}
|
||||
|
||||
// checkExprTypes returns an error if Tb (type of before()) is not
|
||||
// safe to replace with Ta (type of after()).
|
||||
//
|
||||
// Only superficial checks are performed, and they may result in both
|
||||
// false positives and negatives.
|
||||
//
|
||||
// Ideally, we would only require that the replacement be assignable
|
||||
// to the context of a specific pattern occurrence, but the type
|
||||
// checker doesn't record that information and it's complex to deduce.
|
||||
// A Go type cannot capture all the constraints of a given expression
|
||||
// context, which may include the size, constness, signedness,
|
||||
// namedness or constructor of its type, and even the specific value
|
||||
// of the replacement. (Consider the rule that array literal keys
|
||||
// must be unique.) So we cannot hope to prove the safety of a
|
||||
// transformation in general.
|
||||
Tb := tmplInfo.TypeOf(before)
|
||||
Ta := tmplInfo.TypeOf(after)
|
||||
if types.AssignableTo(Tb, Ta) {
|
||||
// safe: replacement is assignable to pattern.
|
||||
} else if tuple, ok := Tb.(*types.Tuple); ok && tuple.Len() == 0 {
|
||||
// safe: pattern has void type (must appear in an ExprStmt).
|
||||
} else {
|
||||
return nil, fmt.Errorf("%s is not a safe replacement for %s", Ta, Tb)
|
||||
}
|
||||
|
||||
tr := &Transformer{
|
||||
fset: fset,
|
||||
verbose: verbose,
|
||||
wildcards: wildcards,
|
||||
allowWildcards: true,
|
||||
seenInfos: make(map[*types.Info]bool),
|
||||
importedObjs: make(map[types.Object]*ast.SelectorExpr),
|
||||
before: before,
|
||||
after: after,
|
||||
}
|
||||
|
||||
// Combine type info from the template and input packages, and
|
||||
// type info for the synthesized ASTs too. This saves us
|
||||
// having to book-keep where each ast.Node originated as we
|
||||
// construct the resulting hybrid AST.
|
||||
tr.info = &types.Info{
|
||||
Types: make(map[ast.Expr]types.TypeAndValue),
|
||||
Defs: make(map[*ast.Ident]types.Object),
|
||||
Uses: make(map[*ast.Ident]types.Object),
|
||||
Selections: make(map[*ast.SelectorExpr]*types.Selection),
|
||||
}
|
||||
mergeTypeInfo(tr.info, tmplInfo)
|
||||
|
||||
// Compute set of imported objects required by after().
|
||||
// TODO(adonovan): reject dot-imports in pattern
|
||||
ast.Inspect(after, func(n ast.Node) bool {
|
||||
if n, ok := n.(*ast.SelectorExpr); ok {
|
||||
if _, ok := tr.info.Selections[n]; !ok {
|
||||
// qualified ident
|
||||
obj := tr.info.Uses[n.Sel]
|
||||
tr.importedObjs[obj] = n
|
||||
return false // prune
|
||||
}
|
||||
}
|
||||
return true // recur
|
||||
})
|
||||
|
||||
return tr, nil
|
||||
}
|
||||
|
||||
// WriteAST is a convenience function that writes AST f to the specified file.
|
||||
func WriteAST(fset *token.FileSet, filename string, f *ast.File) (err error) {
|
||||
fh, err := os.Create(filename)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
defer func() {
|
||||
if err2 := fh.Close(); err != nil {
|
||||
err = err2 // prefer earlier error
|
||||
}
|
||||
}()
|
||||
return format.Node(fh, fset, f)
|
||||
}
|
||||
|
||||
// -- utilities --------------------------------------------------------
|
||||
|
||||
// funcSig returns the signature of the specified package-level function.
|
||||
func funcSig(pkg *types.Package, name string) *types.Signature {
|
||||
if f, ok := pkg.Scope().Lookup(name).(*types.Func); ok {
|
||||
return f.Type().(*types.Signature)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// soleExpr returns the sole expression in the before/after template function.
|
||||
func soleExpr(fn *ast.FuncDecl) (ast.Expr, error) {
|
||||
if fn.Body == nil {
|
||||
return nil, fmt.Errorf("no body")
|
||||
}
|
||||
if len(fn.Body.List) != 1 {
|
||||
return nil, fmt.Errorf("must contain a single statement")
|
||||
}
|
||||
switch stmt := fn.Body.List[0].(type) {
|
||||
case *ast.ReturnStmt:
|
||||
if len(stmt.Results) != 1 {
|
||||
return nil, fmt.Errorf("return statement must have a single operand")
|
||||
}
|
||||
return stmt.Results[0], nil
|
||||
|
||||
case *ast.ExprStmt:
|
||||
return stmt.X, nil
|
||||
}
|
||||
|
||||
return nil, fmt.Errorf("must contain a single return or expression statement")
|
||||
}
|
||||
|
||||
// mergeTypeInfo adds type info from src to dst.
|
||||
func mergeTypeInfo(dst, src *types.Info) {
|
||||
for k, v := range src.Types {
|
||||
dst.Types[k] = v
|
||||
}
|
||||
for k, v := range src.Defs {
|
||||
dst.Defs[k] = v
|
||||
}
|
||||
for k, v := range src.Uses {
|
||||
dst.Uses[k] = v
|
||||
}
|
||||
for k, v := range src.Selections {
|
||||
dst.Selections[k] = v
|
||||
}
|
||||
}
|
||||
|
||||
// (debugging only)
|
||||
func astString(fset *token.FileSet, n ast.Node) string {
|
||||
var buf bytes.Buffer
|
||||
printer.Fprint(&buf, fset, n)
|
||||
return buf.String()
|
||||
}
|
@ -2,8 +2,6 @@
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build !go1.8
|
||||
|
||||
package eg
|
||||
|
||||
import (
|
||||
|
@ -1,251 +0,0 @@
|
||||
// Copyright 2014 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build go1.8
|
||||
|
||||
package eg
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"go/ast"
|
||||
exact "go/constant"
|
||||
"go/token"
|
||||
"go/types"
|
||||
"log"
|
||||
"os"
|
||||
"reflect"
|
||||
|
||||
"golang.org/x/tools/go/ast/astutil"
|
||||
)
|
||||
|
||||
// matchExpr reports whether pattern x matches y.
|
||||
//
|
||||
// If tr.allowWildcards, Idents in x that refer to parameters are
|
||||
// treated as wildcards, and match any y that is assignable to the
|
||||
// parameter type; matchExpr records this correspondence in tr.env.
|
||||
// Otherwise, matchExpr simply reports whether the two trees are
|
||||
// equivalent.
|
||||
//
|
||||
// A wildcard appearing more than once in the pattern must
|
||||
// consistently match the same tree.
|
||||
//
|
||||
func (tr *Transformer) matchExpr(x, y ast.Expr) bool {
|
||||
if x == nil && y == nil {
|
||||
return true
|
||||
}
|
||||
if x == nil || y == nil {
|
||||
return false
|
||||
}
|
||||
x = unparen(x)
|
||||
y = unparen(y)
|
||||
|
||||
// Is x a wildcard? (a reference to a 'before' parameter)
|
||||
if xobj, ok := tr.wildcardObj(x); ok {
|
||||
return tr.matchWildcard(xobj, y)
|
||||
}
|
||||
|
||||
// Object identifiers (including pkg-qualified ones)
|
||||
// are handled semantically, not syntactically.
|
||||
xobj := isRef(x, tr.info)
|
||||
yobj := isRef(y, tr.info)
|
||||
if xobj != nil {
|
||||
return xobj == yobj
|
||||
}
|
||||
if yobj != nil {
|
||||
return false
|
||||
}
|
||||
|
||||
// TODO(adonovan): audit: we cannot assume these ast.Exprs
|
||||
// contain non-nil pointers. e.g. ImportSpec.Name may be a
|
||||
// nil *ast.Ident.
|
||||
|
||||
if reflect.TypeOf(x) != reflect.TypeOf(y) {
|
||||
return false
|
||||
}
|
||||
switch x := x.(type) {
|
||||
case *ast.Ident:
|
||||
log.Fatalf("unexpected Ident: %s", astString(tr.fset, x))
|
||||
|
||||
case *ast.BasicLit:
|
||||
y := y.(*ast.BasicLit)
|
||||
xval := exact.MakeFromLiteral(x.Value, x.Kind, 0)
|
||||
yval := exact.MakeFromLiteral(y.Value, y.Kind, 0)
|
||||
return exact.Compare(xval, token.EQL, yval)
|
||||
|
||||
case *ast.FuncLit:
|
||||
// func literals (and thus statement syntax) never match.
|
||||
return false
|
||||
|
||||
case *ast.CompositeLit:
|
||||
y := y.(*ast.CompositeLit)
|
||||
return (x.Type == nil) == (y.Type == nil) &&
|
||||
(x.Type == nil || tr.matchType(x.Type, y.Type)) &&
|
||||
tr.matchExprs(x.Elts, y.Elts)
|
||||
|
||||
case *ast.SelectorExpr:
|
||||
y := y.(*ast.SelectorExpr)
|
||||
return tr.matchSelectorExpr(x, y) &&
|
||||
tr.info.Selections[x].Obj() == tr.info.Selections[y].Obj()
|
||||
|
||||
case *ast.IndexExpr:
|
||||
y := y.(*ast.IndexExpr)
|
||||
return tr.matchExpr(x.X, y.X) &&
|
||||
tr.matchExpr(x.Index, y.Index)
|
||||
|
||||
case *ast.SliceExpr:
|
||||
y := y.(*ast.SliceExpr)
|
||||
return tr.matchExpr(x.X, y.X) &&
|
||||
tr.matchExpr(x.Low, y.Low) &&
|
||||
tr.matchExpr(x.High, y.High) &&
|
||||
tr.matchExpr(x.Max, y.Max) &&
|
||||
x.Slice3 == y.Slice3
|
||||
|
||||
case *ast.TypeAssertExpr:
|
||||
y := y.(*ast.TypeAssertExpr)
|
||||
return tr.matchExpr(x.X, y.X) &&
|
||||
tr.matchType(x.Type, y.Type)
|
||||
|
||||
case *ast.CallExpr:
|
||||
y := y.(*ast.CallExpr)
|
||||
match := tr.matchExpr // function call
|
||||
if tr.info.Types[x.Fun].IsType() {
|
||||
match = tr.matchType // type conversion
|
||||
}
|
||||
return x.Ellipsis.IsValid() == y.Ellipsis.IsValid() &&
|
||||
match(x.Fun, y.Fun) &&
|
||||
tr.matchExprs(x.Args, y.Args)
|
||||
|
||||
case *ast.StarExpr:
|
||||
y := y.(*ast.StarExpr)
|
||||
return tr.matchExpr(x.X, y.X)
|
||||
|
||||
case *ast.UnaryExpr:
|
||||
y := y.(*ast.UnaryExpr)
|
||||
return x.Op == y.Op &&
|
||||
tr.matchExpr(x.X, y.X)
|
||||
|
||||
case *ast.BinaryExpr:
|
||||
y := y.(*ast.BinaryExpr)
|
||||
return x.Op == y.Op &&
|
||||
tr.matchExpr(x.X, y.X) &&
|
||||
tr.matchExpr(x.Y, y.Y)
|
||||
|
||||
case *ast.KeyValueExpr:
|
||||
y := y.(*ast.KeyValueExpr)
|
||||
return tr.matchExpr(x.Key, y.Key) &&
|
||||
tr.matchExpr(x.Value, y.Value)
|
||||
}
|
||||
|
||||
panic(fmt.Sprintf("unhandled AST node type: %T", x))
|
||||
}
|
||||
|
||||
func (tr *Transformer) matchExprs(xx, yy []ast.Expr) bool {
|
||||
if len(xx) != len(yy) {
|
||||
return false
|
||||
}
|
||||
for i := range xx {
|
||||
if !tr.matchExpr(xx[i], yy[i]) {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// matchType reports whether the two type ASTs denote identical types.
|
||||
func (tr *Transformer) matchType(x, y ast.Expr) bool {
|
||||
tx := tr.info.Types[x].Type
|
||||
ty := tr.info.Types[y].Type
|
||||
return types.Identical(tx, ty)
|
||||
}
|
||||
|
||||
func (tr *Transformer) wildcardObj(x ast.Expr) (*types.Var, bool) {
|
||||
if x, ok := x.(*ast.Ident); ok && x != nil && tr.allowWildcards {
|
||||
if xobj, ok := tr.info.Uses[x].(*types.Var); ok && tr.wildcards[xobj] {
|
||||
return xobj, true
|
||||
}
|
||||
}
|
||||
return nil, false
|
||||
}
|
||||
|
||||
func (tr *Transformer) matchSelectorExpr(x, y *ast.SelectorExpr) bool {
|
||||
if xobj, ok := tr.wildcardObj(x.X); ok {
|
||||
field := x.Sel.Name
|
||||
yt := tr.info.TypeOf(y.X)
|
||||
o, _, _ := types.LookupFieldOrMethod(yt, true, tr.currentPkg, field)
|
||||
if o != nil {
|
||||
tr.env[xobj.Name()] = y.X // record binding
|
||||
return true
|
||||
}
|
||||
}
|
||||
return tr.matchExpr(x.X, y.X)
|
||||
}
|
||||
|
||||
func (tr *Transformer) matchWildcard(xobj *types.Var, y ast.Expr) bool {
|
||||
name := xobj.Name()
|
||||
|
||||
if tr.verbose {
|
||||
fmt.Fprintf(os.Stderr, "%s: wildcard %s -> %s?: ",
|
||||
tr.fset.Position(y.Pos()), name, astString(tr.fset, y))
|
||||
}
|
||||
|
||||
// Check that y is assignable to the declared type of the param.
|
||||
yt := tr.info.TypeOf(y)
|
||||
if yt == nil {
|
||||
// y has no type.
|
||||
// Perhaps it is an *ast.Ellipsis in [...]T{}, or
|
||||
// an *ast.KeyValueExpr in T{k: v}.
|
||||
// Clearly these pseudo-expressions cannot match a
|
||||
// wildcard, but it would nice if we had a way to ignore
|
||||
// the difference between T{v} and T{k:v} for structs.
|
||||
return false
|
||||
}
|
||||
if !types.AssignableTo(yt, xobj.Type()) {
|
||||
if tr.verbose {
|
||||
fmt.Fprintf(os.Stderr, "%s not assignable to %s\n", yt, xobj.Type())
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
// A wildcard matches any expression.
|
||||
// If it appears multiple times in the pattern, it must match
|
||||
// the same expression each time.
|
||||
if old, ok := tr.env[name]; ok {
|
||||
// found existing binding
|
||||
tr.allowWildcards = false
|
||||
r := tr.matchExpr(old, y)
|
||||
if tr.verbose {
|
||||
fmt.Fprintf(os.Stderr, "%t secondary match, primary was %s\n",
|
||||
r, astString(tr.fset, old))
|
||||
}
|
||||
tr.allowWildcards = true
|
||||
return r
|
||||
}
|
||||
|
||||
if tr.verbose {
|
||||
fmt.Fprintf(os.Stderr, "primary match\n")
|
||||
}
|
||||
|
||||
tr.env[name] = y // record binding
|
||||
return true
|
||||
}
|
||||
|
||||
// -- utilities --------------------------------------------------------
|
||||
|
||||
func unparen(e ast.Expr) ast.Expr { return astutil.Unparen(e) }
|
||||
|
||||
// isRef returns the object referred to by this (possibly qualified)
|
||||
// identifier, or nil if the node is not a referring identifier.
|
||||
func isRef(n ast.Node, info *types.Info) types.Object {
|
||||
switch n := n.(type) {
|
||||
case *ast.Ident:
|
||||
return info.Uses[n]
|
||||
|
||||
case *ast.SelectorExpr:
|
||||
if _, ok := info.Selections[n]; !ok {
|
||||
// qualified ident
|
||||
return info.Uses[n.Sel]
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
@ -2,8 +2,6 @@
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build !go1.8
|
||||
|
||||
package rename
|
||||
|
||||
// This file defines the safety checks for each kind of renaming.
|
||||
|
@ -1,860 +0,0 @@
|
||||
// Copyright 2014 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build go1.8
|
||||
|
||||
package rename
|
||||
|
||||
// This file defines the safety checks for each kind of renaming.
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"go/ast"
|
||||
"go/token"
|
||||
"go/types"
|
||||
|
||||
"golang.org/x/tools/go/loader"
|
||||
"golang.org/x/tools/refactor/satisfy"
|
||||
)
|
||||
|
||||
// errorf reports an error (e.g. conflict) and prevents file modification.
|
||||
func (r *renamer) errorf(pos token.Pos, format string, args ...interface{}) {
|
||||
r.hadConflicts = true
|
||||
reportError(r.iprog.Fset.Position(pos), fmt.Sprintf(format, args...))
|
||||
}
|
||||
|
||||
// check performs safety checks of the renaming of the 'from' object to r.to.
|
||||
func (r *renamer) check(from types.Object) {
|
||||
if r.objsToUpdate[from] {
|
||||
return
|
||||
}
|
||||
r.objsToUpdate[from] = true
|
||||
|
||||
// NB: order of conditions is important.
|
||||
if from_, ok := from.(*types.PkgName); ok {
|
||||
r.checkInFileBlock(from_)
|
||||
} else if from_, ok := from.(*types.Label); ok {
|
||||
r.checkLabel(from_)
|
||||
} else if isPackageLevel(from) {
|
||||
r.checkInPackageBlock(from)
|
||||
} else if v, ok := from.(*types.Var); ok && v.IsField() {
|
||||
r.checkStructField(v)
|
||||
} else if f, ok := from.(*types.Func); ok && recv(f) != nil {
|
||||
r.checkMethod(f)
|
||||
} else if isLocal(from) {
|
||||
r.checkInLocalScope(from)
|
||||
} else {
|
||||
r.errorf(from.Pos(), "unexpected %s object %q (please report a bug)\n",
|
||||
objectKind(from), from)
|
||||
}
|
||||
}
|
||||
|
||||
// checkInFileBlock performs safety checks for renames of objects in the file block,
|
||||
// i.e. imported package names.
|
||||
func (r *renamer) checkInFileBlock(from *types.PkgName) {
|
||||
// Check import name is not "init".
|
||||
if r.to == "init" {
|
||||
r.errorf(from.Pos(), "%q is not a valid imported package name", r.to)
|
||||
}
|
||||
|
||||
// Check for conflicts between file and package block.
|
||||
if prev := from.Pkg().Scope().Lookup(r.to); prev != nil {
|
||||
r.errorf(from.Pos(), "renaming this %s %q to %q would conflict",
|
||||
objectKind(from), from.Name(), r.to)
|
||||
r.errorf(prev.Pos(), "\twith this package member %s",
|
||||
objectKind(prev))
|
||||
return // since checkInPackageBlock would report redundant errors
|
||||
}
|
||||
|
||||
// Check for conflicts in lexical scope.
|
||||
r.checkInLexicalScope(from, r.packages[from.Pkg()])
|
||||
|
||||
// Finally, modify ImportSpec syntax to add or remove the Name as needed.
|
||||
info, path, _ := r.iprog.PathEnclosingInterval(from.Pos(), from.Pos())
|
||||
if from.Imported().Name() == r.to {
|
||||
// ImportSpec.Name not needed
|
||||
path[1].(*ast.ImportSpec).Name = nil
|
||||
} else {
|
||||
// ImportSpec.Name needed
|
||||
if spec := path[1].(*ast.ImportSpec); spec.Name == nil {
|
||||
spec.Name = &ast.Ident{NamePos: spec.Path.Pos(), Name: r.to}
|
||||
info.Defs[spec.Name] = from
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// checkInPackageBlock performs safety checks for renames of
|
||||
// func/var/const/type objects in the package block.
|
||||
func (r *renamer) checkInPackageBlock(from types.Object) {
|
||||
// Check that there are no references to the name from another
|
||||
// package if the renaming would make it unexported.
|
||||
if ast.IsExported(from.Name()) && !ast.IsExported(r.to) {
|
||||
for pkg, info := range r.packages {
|
||||
if pkg == from.Pkg() {
|
||||
continue
|
||||
}
|
||||
if id := someUse(info, from); id != nil &&
|
||||
!r.checkExport(id, pkg, from) {
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
info := r.packages[from.Pkg()]
|
||||
|
||||
// Check that in the package block, "init" is a function, and never referenced.
|
||||
if r.to == "init" {
|
||||
kind := objectKind(from)
|
||||
if kind == "func" {
|
||||
// Reject if intra-package references to it exist.
|
||||
for id, obj := range info.Uses {
|
||||
if obj == from {
|
||||
r.errorf(from.Pos(),
|
||||
"renaming this func %q to %q would make it a package initializer",
|
||||
from.Name(), r.to)
|
||||
r.errorf(id.Pos(), "\tbut references to it exist")
|
||||
break
|
||||
}
|
||||
}
|
||||
} else {
|
||||
r.errorf(from.Pos(), "you cannot have a %s at package level named %q",
|
||||
kind, r.to)
|
||||
}
|
||||
}
|
||||
|
||||
// Check for conflicts between package block and all file blocks.
|
||||
for _, f := range info.Files {
|
||||
fileScope := info.Info.Scopes[f]
|
||||
b, prev := fileScope.LookupParent(r.to, token.NoPos)
|
||||
if b == fileScope {
|
||||
r.errorf(from.Pos(), "renaming this %s %q to %q would conflict",
|
||||
objectKind(from), from.Name(), r.to)
|
||||
r.errorf(prev.Pos(), "\twith this %s",
|
||||
objectKind(prev))
|
||||
return // since checkInPackageBlock would report redundant errors
|
||||
}
|
||||
}
|
||||
|
||||
// Check for conflicts in lexical scope.
|
||||
if from.Exported() {
|
||||
for _, info := range r.packages {
|
||||
r.checkInLexicalScope(from, info)
|
||||
}
|
||||
} else {
|
||||
r.checkInLexicalScope(from, info)
|
||||
}
|
||||
}
|
||||
|
||||
func (r *renamer) checkInLocalScope(from types.Object) {
|
||||
info := r.packages[from.Pkg()]
|
||||
|
||||
// Is this object an implicit local var for a type switch?
|
||||
// Each case has its own var, whose position is the decl of y,
|
||||
// but Ident in that decl does not appear in the Uses map.
|
||||
//
|
||||
// switch y := x.(type) { // Defs[Ident(y)] is undefined
|
||||
// case int: print(y) // Implicits[CaseClause(int)] = Var(y_int)
|
||||
// case string: print(y) // Implicits[CaseClause(string)] = Var(y_string)
|
||||
// }
|
||||
//
|
||||
var isCaseVar bool
|
||||
for syntax, obj := range info.Implicits {
|
||||
if _, ok := syntax.(*ast.CaseClause); ok && obj.Pos() == from.Pos() {
|
||||
isCaseVar = true
|
||||
r.check(obj)
|
||||
}
|
||||
}
|
||||
|
||||
r.checkInLexicalScope(from, info)
|
||||
|
||||
// Finally, if this was a type switch, change the variable y.
|
||||
if isCaseVar {
|
||||
_, path, _ := r.iprog.PathEnclosingInterval(from.Pos(), from.Pos())
|
||||
path[0].(*ast.Ident).Name = r.to // path is [Ident AssignStmt TypeSwitchStmt...]
|
||||
}
|
||||
}
|
||||
|
||||
// checkInLexicalScope performs safety checks that a renaming does not
|
||||
// change the lexical reference structure of the specified package.
|
||||
//
|
||||
// For objects in lexical scope, there are three kinds of conflicts:
|
||||
// same-, sub-, and super-block conflicts. We will illustrate all three
|
||||
// using this example:
|
||||
//
|
||||
// var x int
|
||||
// var z int
|
||||
//
|
||||
// func f(y int) {
|
||||
// print(x)
|
||||
// print(y)
|
||||
// }
|
||||
//
|
||||
// Renaming x to z encounters a SAME-BLOCK CONFLICT, because an object
|
||||
// with the new name already exists, defined in the same lexical block
|
||||
// as the old object.
|
||||
//
|
||||
// Renaming x to y encounters a SUB-BLOCK CONFLICT, because there exists
|
||||
// a reference to x from within (what would become) a hole in its scope.
|
||||
// The definition of y in an (inner) sub-block would cast a shadow in
|
||||
// the scope of the renamed variable.
|
||||
//
|
||||
// Renaming y to x encounters a SUPER-BLOCK CONFLICT. This is the
|
||||
// converse situation: there is an existing definition of the new name
|
||||
// (x) in an (enclosing) super-block, and the renaming would create a
|
||||
// hole in its scope, within which there exist references to it. The
|
||||
// new name casts a shadow in scope of the existing definition of x in
|
||||
// the super-block.
|
||||
//
|
||||
// Removing the old name (and all references to it) is always safe, and
|
||||
// requires no checks.
|
||||
//
|
||||
func (r *renamer) checkInLexicalScope(from types.Object, info *loader.PackageInfo) {
|
||||
b := from.Parent() // the block defining the 'from' object
|
||||
if b != nil {
|
||||
toBlock, to := b.LookupParent(r.to, from.Parent().End())
|
||||
if toBlock == b {
|
||||
// same-block conflict
|
||||
r.errorf(from.Pos(), "renaming this %s %q to %q",
|
||||
objectKind(from), from.Name(), r.to)
|
||||
r.errorf(to.Pos(), "\tconflicts with %s in same block",
|
||||
objectKind(to))
|
||||
return
|
||||
} else if toBlock != nil {
|
||||
// Check for super-block conflict.
|
||||
// The name r.to is defined in a superblock.
|
||||
// Is that name referenced from within this block?
|
||||
forEachLexicalRef(info, to, func(id *ast.Ident, block *types.Scope) bool {
|
||||
_, obj := lexicalLookup(block, from.Name(), id.Pos())
|
||||
if obj == from {
|
||||
// super-block conflict
|
||||
r.errorf(from.Pos(), "renaming this %s %q to %q",
|
||||
objectKind(from), from.Name(), r.to)
|
||||
r.errorf(id.Pos(), "\twould shadow this reference")
|
||||
r.errorf(to.Pos(), "\tto the %s declared here",
|
||||
objectKind(to))
|
||||
return false // stop
|
||||
}
|
||||
return true
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// Check for sub-block conflict.
|
||||
// Is there an intervening definition of r.to between
|
||||
// the block defining 'from' and some reference to it?
|
||||
forEachLexicalRef(info, from, func(id *ast.Ident, block *types.Scope) bool {
|
||||
// Find the block that defines the found reference.
|
||||
// It may be an ancestor.
|
||||
fromBlock, _ := lexicalLookup(block, from.Name(), id.Pos())
|
||||
|
||||
// See what r.to would resolve to in the same scope.
|
||||
toBlock, to := lexicalLookup(block, r.to, id.Pos())
|
||||
if to != nil {
|
||||
// sub-block conflict
|
||||
if deeper(toBlock, fromBlock) {
|
||||
r.errorf(from.Pos(), "renaming this %s %q to %q",
|
||||
objectKind(from), from.Name(), r.to)
|
||||
r.errorf(id.Pos(), "\twould cause this reference to become shadowed")
|
||||
r.errorf(to.Pos(), "\tby this intervening %s definition",
|
||||
objectKind(to))
|
||||
return false // stop
|
||||
}
|
||||
}
|
||||
return true
|
||||
})
|
||||
|
||||
// Renaming a type that is used as an embedded field
|
||||
// requires renaming the field too. e.g.
|
||||
// type T int // if we rename this to U..
|
||||
// var s struct {T}
|
||||
// print(s.T) // ...this must change too
|
||||
if _, ok := from.(*types.TypeName); ok {
|
||||
for id, obj := range info.Uses {
|
||||
if obj == from {
|
||||
if field := info.Defs[id]; field != nil {
|
||||
r.check(field)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// lexicalLookup is like (*types.Scope).LookupParent but respects the
|
||||
// environment visible at pos. It assumes the relative position
|
||||
// information is correct with each file.
|
||||
func lexicalLookup(block *types.Scope, name string, pos token.Pos) (*types.Scope, types.Object) {
|
||||
for b := block; b != nil; b = b.Parent() {
|
||||
obj := b.Lookup(name)
|
||||
// The scope of a package-level object is the entire package,
|
||||
// so ignore pos in that case.
|
||||
// No analogous clause is needed for file-level objects
|
||||
// since no reference can appear before an import decl.
|
||||
if obj != nil && (b == obj.Pkg().Scope() || obj.Pos() < pos) {
|
||||
return b, obj
|
||||
}
|
||||
}
|
||||
return nil, nil
|
||||
}
|
||||
|
||||
// deeper reports whether block x is lexically deeper than y.
|
||||
func deeper(x, y *types.Scope) bool {
|
||||
if x == y || x == nil {
|
||||
return false
|
||||
} else if y == nil {
|
||||
return true
|
||||
} else {
|
||||
return deeper(x.Parent(), y.Parent())
|
||||
}
|
||||
}
|
||||
|
||||
// forEachLexicalRef calls fn(id, block) for each identifier id in package
|
||||
// info that is a reference to obj in lexical scope. block is the
|
||||
// lexical block enclosing the reference. If fn returns false the
|
||||
// iteration is terminated and findLexicalRefs returns false.
|
||||
func forEachLexicalRef(info *loader.PackageInfo, obj types.Object, fn func(id *ast.Ident, block *types.Scope) bool) bool {
|
||||
ok := true
|
||||
var stack []ast.Node
|
||||
|
||||
var visit func(n ast.Node) bool
|
||||
visit = func(n ast.Node) bool {
|
||||
if n == nil {
|
||||
stack = stack[:len(stack)-1] // pop
|
||||
return false
|
||||
}
|
||||
if !ok {
|
||||
return false // bail out
|
||||
}
|
||||
|
||||
stack = append(stack, n) // push
|
||||
switch n := n.(type) {
|
||||
case *ast.Ident:
|
||||
if info.Uses[n] == obj {
|
||||
block := enclosingBlock(&info.Info, stack)
|
||||
if !fn(n, block) {
|
||||
ok = false
|
||||
}
|
||||
}
|
||||
return visit(nil) // pop stack
|
||||
|
||||
case *ast.SelectorExpr:
|
||||
// don't visit n.Sel
|
||||
ast.Inspect(n.X, visit)
|
||||
return visit(nil) // pop stack, don't descend
|
||||
|
||||
case *ast.CompositeLit:
|
||||
// Handle recursion ourselves for struct literals
|
||||
// so we don't visit field identifiers.
|
||||
tv := info.Types[n]
|
||||
if _, ok := deref(tv.Type).Underlying().(*types.Struct); ok {
|
||||
if n.Type != nil {
|
||||
ast.Inspect(n.Type, visit)
|
||||
}
|
||||
for _, elt := range n.Elts {
|
||||
if kv, ok := elt.(*ast.KeyValueExpr); ok {
|
||||
ast.Inspect(kv.Value, visit)
|
||||
} else {
|
||||
ast.Inspect(elt, visit)
|
||||
}
|
||||
}
|
||||
return visit(nil) // pop stack, don't descend
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
for _, f := range info.Files {
|
||||
ast.Inspect(f, visit)
|
||||
if len(stack) != 0 {
|
||||
panic(stack)
|
||||
}
|
||||
if !ok {
|
||||
break
|
||||
}
|
||||
}
|
||||
return ok
|
||||
}
|
||||
|
||||
// enclosingBlock returns the innermost block enclosing the specified
|
||||
// AST node, specified in the form of a path from the root of the file,
|
||||
// [file...n].
|
||||
func enclosingBlock(info *types.Info, stack []ast.Node) *types.Scope {
|
||||
for i := range stack {
|
||||
n := stack[len(stack)-1-i]
|
||||
// For some reason, go/types always associates a
|
||||
// function's scope with its FuncType.
|
||||
// TODO(adonovan): feature or a bug?
|
||||
switch f := n.(type) {
|
||||
case *ast.FuncDecl:
|
||||
n = f.Type
|
||||
case *ast.FuncLit:
|
||||
n = f.Type
|
||||
}
|
||||
if b := info.Scopes[n]; b != nil {
|
||||
return b
|
||||
}
|
||||
}
|
||||
panic("no Scope for *ast.File")
|
||||
}
|
||||
|
||||
func (r *renamer) checkLabel(label *types.Label) {
|
||||
// Check there are no identical labels in the function's label block.
|
||||
// (Label blocks don't nest, so this is easy.)
|
||||
if prev := label.Parent().Lookup(r.to); prev != nil {
|
||||
r.errorf(label.Pos(), "renaming this label %q to %q", label.Name(), prev.Name())
|
||||
r.errorf(prev.Pos(), "\twould conflict with this one")
|
||||
}
|
||||
}
|
||||
|
||||
// checkStructField checks that the field renaming will not cause
|
||||
// conflicts at its declaration, or ambiguity or changes to any selection.
|
||||
func (r *renamer) checkStructField(from *types.Var) {
|
||||
// Check that the struct declaration is free of field conflicts,
|
||||
// and field/method conflicts.
|
||||
|
||||
// go/types offers no easy way to get from a field (or interface
|
||||
// method) to its declaring struct (or interface), so we must
|
||||
// ascend the AST.
|
||||
info, path, _ := r.iprog.PathEnclosingInterval(from.Pos(), from.Pos())
|
||||
// path matches this pattern:
|
||||
// [Ident SelectorExpr? StarExpr? Field FieldList StructType ParenExpr* ... File]
|
||||
|
||||
// Ascend to FieldList.
|
||||
var i int
|
||||
for {
|
||||
if _, ok := path[i].(*ast.FieldList); ok {
|
||||
break
|
||||
}
|
||||
i++
|
||||
}
|
||||
i++
|
||||
tStruct := path[i].(*ast.StructType)
|
||||
i++
|
||||
// Ascend past parens (unlikely).
|
||||
for {
|
||||
_, ok := path[i].(*ast.ParenExpr)
|
||||
if !ok {
|
||||
break
|
||||
}
|
||||
i++
|
||||
}
|
||||
if spec, ok := path[i].(*ast.TypeSpec); ok {
|
||||
// This struct is also a named type.
|
||||
// We must check for direct (non-promoted) field/field
|
||||
// and method/field conflicts.
|
||||
named := info.Defs[spec.Name].Type()
|
||||
prev, indices, _ := types.LookupFieldOrMethod(named, true, info.Pkg, r.to)
|
||||
if len(indices) == 1 {
|
||||
r.errorf(from.Pos(), "renaming this field %q to %q",
|
||||
from.Name(), r.to)
|
||||
r.errorf(prev.Pos(), "\twould conflict with this %s",
|
||||
objectKind(prev))
|
||||
return // skip checkSelections to avoid redundant errors
|
||||
}
|
||||
} else {
|
||||
// This struct is not a named type.
|
||||
// We need only check for direct (non-promoted) field/field conflicts.
|
||||
T := info.Types[tStruct].Type.Underlying().(*types.Struct)
|
||||
for i := 0; i < T.NumFields(); i++ {
|
||||
if prev := T.Field(i); prev.Name() == r.to {
|
||||
r.errorf(from.Pos(), "renaming this field %q to %q",
|
||||
from.Name(), r.to)
|
||||
r.errorf(prev.Pos(), "\twould conflict with this field")
|
||||
return // skip checkSelections to avoid redundant errors
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Renaming an anonymous field requires renaming the type too. e.g.
|
||||
// print(s.T) // if we rename T to U,
|
||||
// type T int // this and
|
||||
// var s struct {T} // this must change too.
|
||||
if from.Anonymous() {
|
||||
if named, ok := from.Type().(*types.Named); ok {
|
||||
r.check(named.Obj())
|
||||
} else if named, ok := deref(from.Type()).(*types.Named); ok {
|
||||
r.check(named.Obj())
|
||||
}
|
||||
}
|
||||
|
||||
// Check integrity of existing (field and method) selections.
|
||||
r.checkSelections(from)
|
||||
}
|
||||
|
||||
// checkSelection checks that all uses and selections that resolve to
|
||||
// the specified object would continue to do so after the renaming.
|
||||
func (r *renamer) checkSelections(from types.Object) {
|
||||
for pkg, info := range r.packages {
|
||||
if id := someUse(info, from); id != nil {
|
||||
if !r.checkExport(id, pkg, from) {
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
for syntax, sel := range info.Selections {
|
||||
// There may be extant selections of only the old
|
||||
// name or only the new name, so we must check both.
|
||||
// (If neither, the renaming is sound.)
|
||||
//
|
||||
// In both cases, we wish to compare the lengths
|
||||
// of the implicit field path (Selection.Index)
|
||||
// to see if the renaming would change it.
|
||||
//
|
||||
// If a selection that resolves to 'from', when renamed,
|
||||
// would yield a path of the same or shorter length,
|
||||
// this indicates ambiguity or a changed referent,
|
||||
// analogous to same- or sub-block lexical conflict.
|
||||
//
|
||||
// If a selection using the name 'to' would
|
||||
// yield a path of the same or shorter length,
|
||||
// this indicates ambiguity or shadowing,
|
||||
// analogous to same- or super-block lexical conflict.
|
||||
|
||||
// TODO(adonovan): fix: derive from Types[syntax.X].Mode
|
||||
// TODO(adonovan): test with pointer, value, addressable value.
|
||||
isAddressable := true
|
||||
|
||||
if sel.Obj() == from {
|
||||
if obj, indices, _ := types.LookupFieldOrMethod(sel.Recv(), isAddressable, from.Pkg(), r.to); obj != nil {
|
||||
// Renaming this existing selection of
|
||||
// 'from' may block access to an existing
|
||||
// type member named 'to'.
|
||||
delta := len(indices) - len(sel.Index())
|
||||
if delta > 0 {
|
||||
continue // no ambiguity
|
||||
}
|
||||
r.selectionConflict(from, delta, syntax, obj)
|
||||
return
|
||||
}
|
||||
|
||||
} else if sel.Obj().Name() == r.to {
|
||||
if obj, indices, _ := types.LookupFieldOrMethod(sel.Recv(), isAddressable, from.Pkg(), from.Name()); obj == from {
|
||||
// Renaming 'from' may cause this existing
|
||||
// selection of the name 'to' to change
|
||||
// its meaning.
|
||||
delta := len(indices) - len(sel.Index())
|
||||
if delta > 0 {
|
||||
continue // no ambiguity
|
||||
}
|
||||
r.selectionConflict(from, -delta, syntax, sel.Obj())
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (r *renamer) selectionConflict(from types.Object, delta int, syntax *ast.SelectorExpr, obj types.Object) {
|
||||
r.errorf(from.Pos(), "renaming this %s %q to %q",
|
||||
objectKind(from), from.Name(), r.to)
|
||||
|
||||
switch {
|
||||
case delta < 0:
|
||||
// analogous to sub-block conflict
|
||||
r.errorf(syntax.Sel.Pos(),
|
||||
"\twould change the referent of this selection")
|
||||
r.errorf(obj.Pos(), "\tof this %s", objectKind(obj))
|
||||
case delta == 0:
|
||||
// analogous to same-block conflict
|
||||
r.errorf(syntax.Sel.Pos(),
|
||||
"\twould make this reference ambiguous")
|
||||
r.errorf(obj.Pos(), "\twith this %s", objectKind(obj))
|
||||
case delta > 0:
|
||||
// analogous to super-block conflict
|
||||
r.errorf(syntax.Sel.Pos(),
|
||||
"\twould shadow this selection")
|
||||
r.errorf(obj.Pos(), "\tof the %s declared here",
|
||||
objectKind(obj))
|
||||
}
|
||||
}
|
||||
|
||||
// checkMethod performs safety checks for renaming a method.
|
||||
// There are three hazards:
|
||||
// - declaration conflicts
|
||||
// - selection ambiguity/changes
|
||||
// - entailed renamings of assignable concrete/interface types.
|
||||
// We reject renamings initiated at concrete methods if it would
|
||||
// change the assignability relation. For renamings of abstract
|
||||
// methods, we rename all methods transitively coupled to it via
|
||||
// assignability.
|
||||
func (r *renamer) checkMethod(from *types.Func) {
|
||||
// e.g. error.Error
|
||||
if from.Pkg() == nil {
|
||||
r.errorf(from.Pos(), "you cannot rename built-in method %s", from)
|
||||
return
|
||||
}
|
||||
|
||||
// ASSIGNABILITY: We reject renamings of concrete methods that
|
||||
// would break a 'satisfy' constraint; but renamings of abstract
|
||||
// methods are allowed to proceed, and we rename affected
|
||||
// concrete and abstract methods as necessary. It is the
|
||||
// initial method that determines the policy.
|
||||
|
||||
// Check for conflict at point of declaration.
|
||||
// Check to ensure preservation of assignability requirements.
|
||||
R := recv(from).Type()
|
||||
if isInterface(R) {
|
||||
// Abstract method
|
||||
|
||||
// declaration
|
||||
prev, _, _ := types.LookupFieldOrMethod(R, false, from.Pkg(), r.to)
|
||||
if prev != nil {
|
||||
r.errorf(from.Pos(), "renaming this interface method %q to %q",
|
||||
from.Name(), r.to)
|
||||
r.errorf(prev.Pos(), "\twould conflict with this method")
|
||||
return
|
||||
}
|
||||
|
||||
// Check all interfaces that embed this one for
|
||||
// declaration conflicts too.
|
||||
for _, info := range r.packages {
|
||||
// Start with named interface types (better errors)
|
||||
for _, obj := range info.Defs {
|
||||
if obj, ok := obj.(*types.TypeName); ok && isInterface(obj.Type()) {
|
||||
f, _, _ := types.LookupFieldOrMethod(
|
||||
obj.Type(), false, from.Pkg(), from.Name())
|
||||
if f == nil {
|
||||
continue
|
||||
}
|
||||
t, _, _ := types.LookupFieldOrMethod(
|
||||
obj.Type(), false, from.Pkg(), r.to)
|
||||
if t == nil {
|
||||
continue
|
||||
}
|
||||
r.errorf(from.Pos(), "renaming this interface method %q to %q",
|
||||
from.Name(), r.to)
|
||||
r.errorf(t.Pos(), "\twould conflict with this method")
|
||||
r.errorf(obj.Pos(), "\tin named interface type %q", obj.Name())
|
||||
}
|
||||
}
|
||||
|
||||
// Now look at all literal interface types (includes named ones again).
|
||||
for e, tv := range info.Types {
|
||||
if e, ok := e.(*ast.InterfaceType); ok {
|
||||
_ = e
|
||||
_ = tv.Type.(*types.Interface)
|
||||
// TODO(adonovan): implement same check as above.
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// assignability
|
||||
//
|
||||
// Find the set of concrete or abstract methods directly
|
||||
// coupled to abstract method 'from' by some
|
||||
// satisfy.Constraint, and rename them too.
|
||||
for key := range r.satisfy() {
|
||||
// key = (lhs, rhs) where lhs is always an interface.
|
||||
|
||||
lsel := r.msets.MethodSet(key.LHS).Lookup(from.Pkg(), from.Name())
|
||||
if lsel == nil {
|
||||
continue
|
||||
}
|
||||
rmethods := r.msets.MethodSet(key.RHS)
|
||||
rsel := rmethods.Lookup(from.Pkg(), from.Name())
|
||||
if rsel == nil {
|
||||
continue
|
||||
}
|
||||
|
||||
// If both sides have a method of this name,
|
||||
// and one of them is m, the other must be coupled.
|
||||
var coupled *types.Func
|
||||
switch from {
|
||||
case lsel.Obj():
|
||||
coupled = rsel.Obj().(*types.Func)
|
||||
case rsel.Obj():
|
||||
coupled = lsel.Obj().(*types.Func)
|
||||
default:
|
||||
continue
|
||||
}
|
||||
|
||||
// We must treat concrete-to-interface
|
||||
// constraints like an implicit selection C.f of
|
||||
// each interface method I.f, and check that the
|
||||
// renaming leaves the selection unchanged and
|
||||
// unambiguous.
|
||||
//
|
||||
// Fun fact: the implicit selection of C.f
|
||||
// type I interface{f()}
|
||||
// type C struct{I}
|
||||
// func (C) g()
|
||||
// var _ I = C{} // here
|
||||
// yields abstract method I.f. This can make error
|
||||
// messages less than obvious.
|
||||
//
|
||||
if !isInterface(key.RHS) {
|
||||
// The logic below was derived from checkSelections.
|
||||
|
||||
rtosel := rmethods.Lookup(from.Pkg(), r.to)
|
||||
if rtosel != nil {
|
||||
rto := rtosel.Obj().(*types.Func)
|
||||
delta := len(rsel.Index()) - len(rtosel.Index())
|
||||
if delta < 0 {
|
||||
continue // no ambiguity
|
||||
}
|
||||
|
||||
// TODO(adonovan): record the constraint's position.
|
||||
keyPos := token.NoPos
|
||||
|
||||
r.errorf(from.Pos(), "renaming this method %q to %q",
|
||||
from.Name(), r.to)
|
||||
if delta == 0 {
|
||||
// analogous to same-block conflict
|
||||
r.errorf(keyPos, "\twould make the %s method of %s invoked via interface %s ambiguous",
|
||||
r.to, key.RHS, key.LHS)
|
||||
r.errorf(rto.Pos(), "\twith (%s).%s",
|
||||
recv(rto).Type(), r.to)
|
||||
} else {
|
||||
// analogous to super-block conflict
|
||||
r.errorf(keyPos, "\twould change the %s method of %s invoked via interface %s",
|
||||
r.to, key.RHS, key.LHS)
|
||||
r.errorf(coupled.Pos(), "\tfrom (%s).%s",
|
||||
recv(coupled).Type(), r.to)
|
||||
r.errorf(rto.Pos(), "\tto (%s).%s",
|
||||
recv(rto).Type(), r.to)
|
||||
}
|
||||
return // one error is enough
|
||||
}
|
||||
}
|
||||
|
||||
if !r.changeMethods {
|
||||
// This should be unreachable.
|
||||
r.errorf(from.Pos(), "internal error: during renaming of abstract method %s", from)
|
||||
r.errorf(coupled.Pos(), "\tchangedMethods=false, coupled method=%s", coupled)
|
||||
r.errorf(from.Pos(), "\tPlease file a bug report")
|
||||
return
|
||||
}
|
||||
|
||||
// Rename the coupled method to preserve assignability.
|
||||
r.check(coupled)
|
||||
}
|
||||
} else {
|
||||
// Concrete method
|
||||
|
||||
// declaration
|
||||
prev, indices, _ := types.LookupFieldOrMethod(R, true, from.Pkg(), r.to)
|
||||
if prev != nil && len(indices) == 1 {
|
||||
r.errorf(from.Pos(), "renaming this method %q to %q",
|
||||
from.Name(), r.to)
|
||||
r.errorf(prev.Pos(), "\twould conflict with this %s",
|
||||
objectKind(prev))
|
||||
return
|
||||
}
|
||||
|
||||
// assignability
|
||||
//
|
||||
// Find the set of abstract methods coupled to concrete
|
||||
// method 'from' by some satisfy.Constraint, and rename
|
||||
// them too.
|
||||
//
|
||||
// Coupling may be indirect, e.g. I.f <-> C.f via type D.
|
||||
//
|
||||
// type I interface {f()}
|
||||
// type C int
|
||||
// type (C) f()
|
||||
// type D struct{C}
|
||||
// var _ I = D{}
|
||||
//
|
||||
for key := range r.satisfy() {
|
||||
// key = (lhs, rhs) where lhs is always an interface.
|
||||
if isInterface(key.RHS) {
|
||||
continue
|
||||
}
|
||||
rsel := r.msets.MethodSet(key.RHS).Lookup(from.Pkg(), from.Name())
|
||||
if rsel == nil || rsel.Obj() != from {
|
||||
continue // rhs does not have the method
|
||||
}
|
||||
lsel := r.msets.MethodSet(key.LHS).Lookup(from.Pkg(), from.Name())
|
||||
if lsel == nil {
|
||||
continue
|
||||
}
|
||||
imeth := lsel.Obj().(*types.Func)
|
||||
|
||||
// imeth is the abstract method (e.g. I.f)
|
||||
// and key.RHS is the concrete coupling type (e.g. D).
|
||||
if !r.changeMethods {
|
||||
r.errorf(from.Pos(), "renaming this method %q to %q",
|
||||
from.Name(), r.to)
|
||||
var pos token.Pos
|
||||
var iface string
|
||||
|
||||
I := recv(imeth).Type()
|
||||
if named, ok := I.(*types.Named); ok {
|
||||
pos = named.Obj().Pos()
|
||||
iface = "interface " + named.Obj().Name()
|
||||
} else {
|
||||
pos = from.Pos()
|
||||
iface = I.String()
|
||||
}
|
||||
r.errorf(pos, "\twould make %s no longer assignable to %s",
|
||||
key.RHS, iface)
|
||||
r.errorf(imeth.Pos(), "\t(rename %s.%s if you intend to change both types)",
|
||||
I, from.Name())
|
||||
return // one error is enough
|
||||
}
|
||||
|
||||
// Rename the coupled interface method to preserve assignability.
|
||||
r.check(imeth)
|
||||
}
|
||||
}
|
||||
|
||||
// Check integrity of existing (field and method) selections.
|
||||
// We skip this if there were errors above, to avoid redundant errors.
|
||||
r.checkSelections(from)
|
||||
}
|
||||
|
||||
func (r *renamer) checkExport(id *ast.Ident, pkg *types.Package, from types.Object) bool {
|
||||
// Reject cross-package references if r.to is unexported.
|
||||
// (Such references may be qualified identifiers or field/method
|
||||
// selections.)
|
||||
if !ast.IsExported(r.to) && pkg != from.Pkg() {
|
||||
r.errorf(from.Pos(),
|
||||
"renaming this %s %q to %q would make it unexported",
|
||||
objectKind(from), from.Name(), r.to)
|
||||
r.errorf(id.Pos(), "\tbreaking references from packages such as %q",
|
||||
pkg.Path())
|
||||
return false
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// satisfy returns the set of interface satisfaction constraints.
|
||||
func (r *renamer) satisfy() map[satisfy.Constraint]bool {
|
||||
if r.satisfyConstraints == nil {
|
||||
// Compute on demand: it's expensive.
|
||||
var f satisfy.Finder
|
||||
for _, info := range r.packages {
|
||||
f.Find(&info.Info, info.Files)
|
||||
}
|
||||
r.satisfyConstraints = f.Result
|
||||
}
|
||||
return r.satisfyConstraints
|
||||
}
|
||||
|
||||
// -- helpers ----------------------------------------------------------
|
||||
|
||||
// recv returns the method's receiver.
|
||||
func recv(meth *types.Func) *types.Var {
|
||||
return meth.Type().(*types.Signature).Recv()
|
||||
}
|
||||
|
||||
// someUse returns an arbitrary use of obj within info.
|
||||
func someUse(info *loader.PackageInfo, obj types.Object) *ast.Ident {
|
||||
for id, o := range info.Uses {
|
||||
if o == obj {
|
||||
return id
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// -- Plundered from golang.org/x/tools/go/ssa -----------------
|
||||
|
||||
func isInterface(T types.Type) bool { return types.IsInterface(T) }
|
||||
|
||||
func deref(typ types.Type) types.Type {
|
||||
if p, _ := typ.(*types.Pointer); p != nil {
|
||||
return p.Elem()
|
||||
}
|
||||
return typ
|
||||
}
|
@ -2,8 +2,6 @@
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build !go1.8
|
||||
|
||||
package rename
|
||||
|
||||
import (
|
||||
|
@ -1,107 +0,0 @@
|
||||
// Copyright 2014 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build go1.8
|
||||
|
||||
package rename
|
||||
|
||||
import (
|
||||
"go/ast"
|
||||
"go/token"
|
||||
"go/types"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"reflect"
|
||||
"runtime"
|
||||
"strings"
|
||||
"unicode"
|
||||
|
||||
"golang.org/x/tools/go/ast/astutil"
|
||||
)
|
||||
|
||||
func objectKind(obj types.Object) string {
|
||||
switch obj := obj.(type) {
|
||||
case *types.PkgName:
|
||||
return "imported package name"
|
||||
case *types.TypeName:
|
||||
return "type"
|
||||
case *types.Var:
|
||||
if obj.IsField() {
|
||||
return "field"
|
||||
}
|
||||
case *types.Func:
|
||||
if obj.Type().(*types.Signature).Recv() != nil {
|
||||
return "method"
|
||||
}
|
||||
}
|
||||
// label, func, var, const
|
||||
return strings.ToLower(strings.TrimPrefix(reflect.TypeOf(obj).String(), "*types."))
|
||||
}
|
||||
|
||||
func typeKind(T types.Type) string {
|
||||
return strings.ToLower(strings.TrimPrefix(reflect.TypeOf(T.Underlying()).String(), "*types."))
|
||||
}
|
||||
|
||||
// NB: for renamings, blank is not considered valid.
|
||||
func isValidIdentifier(id string) bool {
|
||||
if id == "" || id == "_" {
|
||||
return false
|
||||
}
|
||||
for i, r := range id {
|
||||
if !isLetter(r) && (i == 0 || !isDigit(r)) {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return token.Lookup(id) == token.IDENT
|
||||
}
|
||||
|
||||
// isLocal reports whether obj is local to some function.
|
||||
// Precondition: not a struct field or interface method.
|
||||
func isLocal(obj types.Object) bool {
|
||||
// [... 5=stmt 4=func 3=file 2=pkg 1=universe]
|
||||
var depth int
|
||||
for scope := obj.Parent(); scope != nil; scope = scope.Parent() {
|
||||
depth++
|
||||
}
|
||||
return depth >= 4
|
||||
}
|
||||
|
||||
func isPackageLevel(obj types.Object) bool {
|
||||
return obj.Pkg().Scope().Lookup(obj.Name()) == obj
|
||||
}
|
||||
|
||||
// -- Plundered from go/scanner: ---------------------------------------
|
||||
|
||||
func isLetter(ch rune) bool {
|
||||
return 'a' <= ch && ch <= 'z' || 'A' <= ch && ch <= 'Z' || ch == '_' || ch >= 0x80 && unicode.IsLetter(ch)
|
||||
}
|
||||
|
||||
func isDigit(ch rune) bool {
|
||||
return '0' <= ch && ch <= '9' || ch >= 0x80 && unicode.IsDigit(ch)
|
||||
}
|
||||
|
||||
// -- Plundered from golang.org/x/tools/cmd/guru -----------------
|
||||
|
||||
// sameFile returns true if x and y have the same basename and denote
|
||||
// the same file.
|
||||
//
|
||||
func sameFile(x, y string) bool {
|
||||
if runtime.GOOS == "windows" {
|
||||
x = filepath.ToSlash(x)
|
||||
y = filepath.ToSlash(y)
|
||||
}
|
||||
if x == y {
|
||||
return true
|
||||
}
|
||||
if filepath.Base(x) == filepath.Base(y) { // (optimisation)
|
||||
if xi, err := os.Stat(x); err == nil {
|
||||
if yi, err := os.Stat(y); err == nil {
|
||||
return os.SameFile(xi, yi)
|
||||
}
|
||||
}
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
func unparen(e ast.Expr) ast.Expr { return astutil.Unparen(e) }
|
@ -2,8 +2,6 @@
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build !go1.8
|
||||
|
||||
// Package satisfy inspects the type-checked ASTs of Go packages and
|
||||
// reports the set of discovered type constraints of the form (lhs, rhs
|
||||
// Type) where lhs is a non-trivial interface, rhs satisfies this
|
||||
|
@ -1,707 +0,0 @@
|
||||
// Copyright 2014 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// +build go1.8
|
||||
|
||||
// Package satisfy inspects the type-checked ASTs of Go packages and
|
||||
// reports the set of discovered type constraints of the form (lhs, rhs
|
||||
// Type) where lhs is a non-trivial interface, rhs satisfies this
|
||||
// interface, and this fact is necessary for the package to be
|
||||
// well-typed.
|
||||
//
|
||||
// THIS PACKAGE IS EXPERIMENTAL AND MAY CHANGE AT ANY TIME.
|
||||
//
|
||||
// It is provided only for the gorename tool. Ideally this
|
||||
// functionality will become part of the type-checker in due course,
|
||||
// since it is computing it anyway, and it is robust for ill-typed
|
||||
// inputs, which this package is not.
|
||||
//
|
||||
package satisfy // import "golang.org/x/tools/refactor/satisfy"
|
||||
|
||||
// NOTES:
|
||||
//
|
||||
// We don't care about numeric conversions, so we don't descend into
|
||||
// types or constant expressions. This is unsound because
|
||||
// constant expressions can contain arbitrary statements, e.g.
|
||||
// const x = len([1]func(){func() {
|
||||
// ...
|
||||
// }})
|
||||
//
|
||||
// TODO(adonovan): make this robust against ill-typed input.
|
||||
// Or move it into the type-checker.
|
||||
//
|
||||
// Assignability conversions are possible in the following places:
|
||||
// - in assignments y = x, y := x, var y = x.
|
||||
// - from call argument types to formal parameter types
|
||||
// - in append and delete calls
|
||||
// - from return operands to result parameter types
|
||||
// - in composite literal T{k:v}, from k and v to T's field/element/key type
|
||||
// - in map[key] from key to the map's key type
|
||||
// - in comparisons x==y and switch x { case y: }.
|
||||
// - in explicit conversions T(x)
|
||||
// - in sends ch <- x, from x to the channel element type
|
||||
// - in type assertions x.(T) and switch x.(type) { case T: }
|
||||
//
|
||||
// The results of this pass provide information equivalent to the
|
||||
// ssa.MakeInterface and ssa.ChangeInterface instructions.
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"go/ast"
|
||||
"go/token"
|
||||
"go/types"
|
||||
|
||||
"golang.org/x/tools/go/ast/astutil"
|
||||
"golang.org/x/tools/go/types/typeutil"
|
||||
)
|
||||
|
||||
// A Constraint records the fact that the RHS type does and must
|
||||
// satisify the LHS type, which is an interface.
|
||||
// The names are suggestive of an assignment statement LHS = RHS.
|
||||
type Constraint struct {
|
||||
LHS, RHS types.Type
|
||||
}
|
||||
|
||||
// A Finder inspects the type-checked ASTs of Go packages and
|
||||
// accumulates the set of type constraints (x, y) such that x is
|
||||
// assignable to y, y is an interface, and both x and y have methods.
|
||||
//
|
||||
// In other words, it returns the subset of the "implements" relation
|
||||
// that is checked during compilation of a package. Refactoring tools
|
||||
// will need to preserve at least this part of the relation to ensure
|
||||
// continued compilation.
|
||||
//
|
||||
type Finder struct {
|
||||
Result map[Constraint]bool
|
||||
msetcache typeutil.MethodSetCache
|
||||
|
||||
// per-Find state
|
||||
info *types.Info
|
||||
sig *types.Signature
|
||||
}
|
||||
|
||||
// Find inspects a single package, populating Result with its pairs of
|
||||
// constrained types.
|
||||
//
|
||||
// The result is non-canonical and thus may contain duplicates (but this
|
||||
// tends to preserves names of interface types better).
|
||||
//
|
||||
// The package must be free of type errors, and
|
||||
// info.{Defs,Uses,Selections,Types} must have been populated by the
|
||||
// type-checker.
|
||||
//
|
||||
func (f *Finder) Find(info *types.Info, files []*ast.File) {
|
||||
if f.Result == nil {
|
||||
f.Result = make(map[Constraint]bool)
|
||||
}
|
||||
|
||||
f.info = info
|
||||
for _, file := range files {
|
||||
for _, d := range file.Decls {
|
||||
switch d := d.(type) {
|
||||
case *ast.GenDecl:
|
||||
if d.Tok == token.VAR { // ignore consts
|
||||
for _, spec := range d.Specs {
|
||||
f.valueSpec(spec.(*ast.ValueSpec))
|
||||
}
|
||||
}
|
||||
|
||||
case *ast.FuncDecl:
|
||||
if d.Body != nil {
|
||||
f.sig = f.info.Defs[d.Name].Type().(*types.Signature)
|
||||
f.stmt(d.Body)
|
||||
f.sig = nil
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
f.info = nil
|
||||
}
|
||||
|
||||
var (
|
||||
tInvalid = types.Typ[types.Invalid]
|
||||
tUntypedBool = types.Typ[types.UntypedBool]
|
||||
tUntypedNil = types.Typ[types.UntypedNil]
|
||||
)
|
||||
|
||||
// exprN visits an expression in a multi-value context.
|
||||
func (f *Finder) exprN(e ast.Expr) types.Type {
|
||||
typ := f.info.Types[e].Type.(*types.Tuple)
|
||||
switch e := e.(type) {
|
||||
case *ast.ParenExpr:
|
||||
return f.exprN(e.X)
|
||||
|
||||
case *ast.CallExpr:
|
||||
// x, err := f(args)
|
||||
sig := f.expr(e.Fun).Underlying().(*types.Signature)
|
||||
f.call(sig, e.Args)
|
||||
|
||||
case *ast.IndexExpr:
|
||||
// y, ok := x[i]
|
||||
x := f.expr(e.X)
|
||||
f.assign(f.expr(e.Index), x.Underlying().(*types.Map).Key())
|
||||
|
||||
case *ast.TypeAssertExpr:
|
||||
// y, ok := x.(T)
|
||||
f.typeAssert(f.expr(e.X), typ.At(0).Type())
|
||||
|
||||
case *ast.UnaryExpr: // must be receive <-
|
||||
// y, ok := <-x
|
||||
f.expr(e.X)
|
||||
|
||||
default:
|
||||
panic(e)
|
||||
}
|
||||
return typ
|
||||
}
|
||||
|
||||
func (f *Finder) call(sig *types.Signature, args []ast.Expr) {
|
||||
if len(args) == 0 {
|
||||
return
|
||||
}
|
||||
|
||||
// Ellipsis call? e.g. f(x, y, z...)
|
||||
if _, ok := args[len(args)-1].(*ast.Ellipsis); ok {
|
||||
for i, arg := range args {
|
||||
// The final arg is a slice, and so is the final param.
|
||||
f.assign(sig.Params().At(i).Type(), f.expr(arg))
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
var argtypes []types.Type
|
||||
|
||||
// Gather the effective actual parameter types.
|
||||
if tuple, ok := f.info.Types[args[0]].Type.(*types.Tuple); ok {
|
||||
// f(g()) call where g has multiple results?
|
||||
f.expr(args[0])
|
||||
// unpack the tuple
|
||||
for i := 0; i < tuple.Len(); i++ {
|
||||
argtypes = append(argtypes, tuple.At(i).Type())
|
||||
}
|
||||
} else {
|
||||
for _, arg := range args {
|
||||
argtypes = append(argtypes, f.expr(arg))
|
||||
}
|
||||
}
|
||||
|
||||
// Assign the actuals to the formals.
|
||||
if !sig.Variadic() {
|
||||
for i, argtype := range argtypes {
|
||||
f.assign(sig.Params().At(i).Type(), argtype)
|
||||
}
|
||||
} else {
|
||||
// The first n-1 parameters are assigned normally.
|
||||
nnormals := sig.Params().Len() - 1
|
||||
for i, argtype := range argtypes[:nnormals] {
|
||||
f.assign(sig.Params().At(i).Type(), argtype)
|
||||
}
|
||||
// Remaining args are assigned to elements of varargs slice.
|
||||
tElem := sig.Params().At(nnormals).Type().(*types.Slice).Elem()
|
||||
for i := nnormals; i < len(argtypes); i++ {
|
||||
f.assign(tElem, argtypes[i])
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (f *Finder) builtin(obj *types.Builtin, sig *types.Signature, args []ast.Expr, T types.Type) types.Type {
|
||||
switch obj.Name() {
|
||||
case "make", "new":
|
||||
// skip the type operand
|
||||
for _, arg := range args[1:] {
|
||||
f.expr(arg)
|
||||
}
|
||||
|
||||
case "append":
|
||||
s := f.expr(args[0])
|
||||
if _, ok := args[len(args)-1].(*ast.Ellipsis); ok && len(args) == 2 {
|
||||
// append(x, y...) including append([]byte, "foo"...)
|
||||
f.expr(args[1])
|
||||
} else {
|
||||
// append(x, y, z)
|
||||
tElem := s.Underlying().(*types.Slice).Elem()
|
||||
for _, arg := range args[1:] {
|
||||
f.assign(tElem, f.expr(arg))
|
||||
}
|
||||
}
|
||||
|
||||
case "delete":
|
||||
m := f.expr(args[0])
|
||||
k := f.expr(args[1])
|
||||
f.assign(m.Underlying().(*types.Map).Key(), k)
|
||||
|
||||
default:
|
||||
// ordinary call
|
||||
f.call(sig, args)
|
||||
}
|
||||
|
||||
return T
|
||||
}
|
||||
|
||||
func (f *Finder) extract(tuple types.Type, i int) types.Type {
|
||||
if tuple, ok := tuple.(*types.Tuple); ok && i < tuple.Len() {
|
||||
return tuple.At(i).Type()
|
||||
}
|
||||
return tInvalid
|
||||
}
|
||||
|
||||
func (f *Finder) valueSpec(spec *ast.ValueSpec) {
|
||||
var T types.Type
|
||||
if spec.Type != nil {
|
||||
T = f.info.Types[spec.Type].Type
|
||||
}
|
||||
switch len(spec.Values) {
|
||||
case len(spec.Names): // e.g. var x, y = f(), g()
|
||||
for _, value := range spec.Values {
|
||||
v := f.expr(value)
|
||||
if T != nil {
|
||||
f.assign(T, v)
|
||||
}
|
||||
}
|
||||
|
||||
case 1: // e.g. var x, y = f()
|
||||
tuple := f.exprN(spec.Values[0])
|
||||
for i := range spec.Names {
|
||||
if T != nil {
|
||||
f.assign(T, f.extract(tuple, i))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// assign records pairs of distinct types that are related by
|
||||
// assignability, where the left-hand side is an interface and both
|
||||
// sides have methods.
|
||||
//
|
||||
// It should be called for all assignability checks, type assertions,
|
||||
// explicit conversions and comparisons between two types, unless the
|
||||
// types are uninteresting (e.g. lhs is a concrete type, or the empty
|
||||
// interface; rhs has no methods).
|
||||
//
|
||||
func (f *Finder) assign(lhs, rhs types.Type) {
|
||||
if types.Identical(lhs, rhs) {
|
||||
return
|
||||
}
|
||||
if !isInterface(lhs) {
|
||||
return
|
||||
}
|
||||
|
||||
if f.msetcache.MethodSet(lhs).Len() == 0 {
|
||||
return
|
||||
}
|
||||
if f.msetcache.MethodSet(rhs).Len() == 0 {
|
||||
return
|
||||
}
|
||||
// record the pair
|
||||
f.Result[Constraint{lhs, rhs}] = true
|
||||
}
|
||||
|
||||
// typeAssert must be called for each type assertion x.(T) where x has
|
||||
// interface type I.
|
||||
func (f *Finder) typeAssert(I, T types.Type) {
|
||||
// Type assertions are slightly subtle, because they are allowed
|
||||
// to be "impossible", e.g.
|
||||
//
|
||||
// var x interface{f()}
|
||||
// _ = x.(interface{f()int}) // legal
|
||||
//
|
||||
// (In hindsight, the language spec should probably not have
|
||||
// allowed this, but it's too late to fix now.)
|
||||
//
|
||||
// This means that a type assert from I to T isn't exactly a
|
||||
// constraint that T is assignable to I, but for a refactoring
|
||||
// tool it is a conditional constraint that, if T is assignable
|
||||
// to I before a refactoring, it should remain so after.
|
||||
|
||||
if types.AssignableTo(T, I) {
|
||||
f.assign(I, T)
|
||||
}
|
||||
}
|
||||
|
||||
// compare must be called for each comparison x==y.
|
||||
func (f *Finder) compare(x, y types.Type) {
|
||||
if types.AssignableTo(x, y) {
|
||||
f.assign(y, x)
|
||||
} else if types.AssignableTo(y, x) {
|
||||
f.assign(x, y)
|
||||
}
|
||||
}
|
||||
|
||||
// expr visits a true expression (not a type or defining ident)
|
||||
// and returns its type.
|
||||
func (f *Finder) expr(e ast.Expr) types.Type {
|
||||
tv := f.info.Types[e]
|
||||
if tv.Value != nil {
|
||||
return tv.Type // prune the descent for constants
|
||||
}
|
||||
|
||||
// tv.Type may be nil for an ast.Ident.
|
||||
|
||||
switch e := e.(type) {
|
||||
case *ast.BadExpr, *ast.BasicLit:
|
||||
// no-op
|
||||
|
||||
case *ast.Ident:
|
||||
// (referring idents only)
|
||||
if obj, ok := f.info.Uses[e]; ok {
|
||||
return obj.Type()
|
||||
}
|
||||
if e.Name == "_" { // e.g. "for _ = range x"
|
||||
return tInvalid
|
||||
}
|
||||
panic("undefined ident: " + e.Name)
|
||||
|
||||
case *ast.Ellipsis:
|
||||
if e.Elt != nil {
|
||||
f.expr(e.Elt)
|
||||
}
|
||||
|
||||
case *ast.FuncLit:
|
||||
saved := f.sig
|
||||
f.sig = tv.Type.(*types.Signature)
|
||||
f.stmt(e.Body)
|
||||
f.sig = saved
|
||||
|
||||
case *ast.CompositeLit:
|
||||
switch T := deref(tv.Type).Underlying().(type) {
|
||||
case *types.Struct:
|
||||
for i, elem := range e.Elts {
|
||||
if kv, ok := elem.(*ast.KeyValueExpr); ok {
|
||||
f.assign(f.info.Uses[kv.Key.(*ast.Ident)].Type(), f.expr(kv.Value))
|
||||
} else {
|
||||
f.assign(T.Field(i).Type(), f.expr(elem))
|
||||
}
|
||||
}
|
||||
|
||||
case *types.Map:
|
||||
for _, elem := range e.Elts {
|
||||
elem := elem.(*ast.KeyValueExpr)
|
||||
f.assign(T.Key(), f.expr(elem.Key))
|
||||
f.assign(T.Elem(), f.expr(elem.Value))
|
||||
}
|
||||
|
||||
case *types.Array, *types.Slice:
|
||||
tElem := T.(interface {
|
||||
Elem() types.Type
|
||||
}).Elem()
|
||||
for _, elem := range e.Elts {
|
||||
if kv, ok := elem.(*ast.KeyValueExpr); ok {
|
||||
// ignore the key
|
||||
f.assign(tElem, f.expr(kv.Value))
|
||||
} else {
|
||||
f.assign(tElem, f.expr(elem))
|
||||
}
|
||||
}
|
||||
|
||||
default:
|
||||
panic("unexpected composite literal type: " + tv.Type.String())
|
||||
}
|
||||
|
||||
case *ast.ParenExpr:
|
||||
f.expr(e.X)
|
||||
|
||||
case *ast.SelectorExpr:
|
||||
if _, ok := f.info.Selections[e]; ok {
|
||||
f.expr(e.X) // selection
|
||||
} else {
|
||||
return f.info.Uses[e.Sel].Type() // qualified identifier
|
||||
}
|
||||
|
||||
case *ast.IndexExpr:
|
||||
x := f.expr(e.X)
|
||||
i := f.expr(e.Index)
|
||||
if ux, ok := x.Underlying().(*types.Map); ok {
|
||||
f.assign(ux.Key(), i)
|
||||
}
|
||||
|
||||
case *ast.SliceExpr:
|
||||
f.expr(e.X)
|
||||
if e.Low != nil {
|
||||
f.expr(e.Low)
|
||||
}
|
||||
if e.High != nil {
|
||||
f.expr(e.High)
|
||||
}
|
||||
if e.Max != nil {
|
||||
f.expr(e.Max)
|
||||
}
|
||||
|
||||
case *ast.TypeAssertExpr:
|
||||
x := f.expr(e.X)
|
||||
f.typeAssert(x, f.info.Types[e.Type].Type)
|
||||
|
||||
case *ast.CallExpr:
|
||||
if tvFun := f.info.Types[e.Fun]; tvFun.IsType() {
|
||||
// conversion
|
||||
arg0 := f.expr(e.Args[0])
|
||||
f.assign(tvFun.Type, arg0)
|
||||
} else {
|
||||
// function call
|
||||
if id, ok := unparen(e.Fun).(*ast.Ident); ok {
|
||||
if obj, ok := f.info.Uses[id].(*types.Builtin); ok {
|
||||
sig := f.info.Types[id].Type.(*types.Signature)
|
||||
return f.builtin(obj, sig, e.Args, tv.Type)
|
||||
}
|
||||
}
|
||||
// ordinary call
|
||||
f.call(f.expr(e.Fun).Underlying().(*types.Signature), e.Args)
|
||||
}
|
||||
|
||||
case *ast.StarExpr:
|
||||
f.expr(e.X)
|
||||
|
||||
case *ast.UnaryExpr:
|
||||
f.expr(e.X)
|
||||
|
||||
case *ast.BinaryExpr:
|
||||
x := f.expr(e.X)
|
||||
y := f.expr(e.Y)
|
||||
if e.Op == token.EQL || e.Op == token.NEQ {
|
||||
f.compare(x, y)
|
||||
}
|
||||
|
||||
case *ast.KeyValueExpr:
|
||||
f.expr(e.Key)
|
||||
f.expr(e.Value)
|
||||
|
||||
case *ast.ArrayType,
|
||||
*ast.StructType,
|
||||
*ast.FuncType,
|
||||
*ast.InterfaceType,
|
||||
*ast.MapType,
|
||||
*ast.ChanType:
|
||||
panic(e)
|
||||
}
|
||||
|
||||
if tv.Type == nil {
|
||||
panic(fmt.Sprintf("no type for %T", e))
|
||||
}
|
||||
|
||||
return tv.Type
|
||||
}
|
||||
|
||||
func (f *Finder) stmt(s ast.Stmt) {
|
||||
switch s := s.(type) {
|
||||
case *ast.BadStmt,
|
||||
*ast.EmptyStmt,
|
||||
*ast.BranchStmt:
|
||||
// no-op
|
||||
|
||||
case *ast.DeclStmt:
|
||||
d := s.Decl.(*ast.GenDecl)
|
||||
if d.Tok == token.VAR { // ignore consts
|
||||
for _, spec := range d.Specs {
|
||||
f.valueSpec(spec.(*ast.ValueSpec))
|
||||
}
|
||||
}
|
||||
|
||||
case *ast.LabeledStmt:
|
||||
f.stmt(s.Stmt)
|
||||
|
||||
case *ast.ExprStmt:
|
||||
f.expr(s.X)
|
||||
|
||||
case *ast.SendStmt:
|
||||
ch := f.expr(s.Chan)
|
||||
val := f.expr(s.Value)
|
||||
f.assign(ch.Underlying().(*types.Chan).Elem(), val)
|
||||
|
||||
case *ast.IncDecStmt:
|
||||
f.expr(s.X)
|
||||
|
||||
case *ast.AssignStmt:
|
||||
switch s.Tok {
|
||||
case token.ASSIGN, token.DEFINE:
|
||||
// y := x or y = x
|
||||
var rhsTuple types.Type
|
||||
if len(s.Lhs) != len(s.Rhs) {
|
||||
rhsTuple = f.exprN(s.Rhs[0])
|
||||
}
|
||||
for i := range s.Lhs {
|
||||
var lhs, rhs types.Type
|
||||
if rhsTuple == nil {
|
||||
rhs = f.expr(s.Rhs[i]) // 1:1 assignment
|
||||
} else {
|
||||
rhs = f.extract(rhsTuple, i) // n:1 assignment
|
||||
}
|
||||
|
||||
if id, ok := s.Lhs[i].(*ast.Ident); ok {
|
||||
if id.Name != "_" {
|
||||
if obj, ok := f.info.Defs[id]; ok {
|
||||
lhs = obj.Type() // definition
|
||||
}
|
||||
}
|
||||
}
|
||||
if lhs == nil {
|
||||
lhs = f.expr(s.Lhs[i]) // assignment
|
||||
}
|
||||
f.assign(lhs, rhs)
|
||||
}
|
||||
|
||||
default:
|
||||
// y op= x
|
||||
f.expr(s.Lhs[0])
|
||||
f.expr(s.Rhs[0])
|
||||
}
|
||||
|
||||
case *ast.GoStmt:
|
||||
f.expr(s.Call)
|
||||
|
||||
case *ast.DeferStmt:
|
||||
f.expr(s.Call)
|
||||
|
||||
case *ast.ReturnStmt:
|
||||
formals := f.sig.Results()
|
||||
switch len(s.Results) {
|
||||
case formals.Len(): // 1:1
|
||||
for i, result := range s.Results {
|
||||
f.assign(formals.At(i).Type(), f.expr(result))
|
||||
}
|
||||
|
||||
case 1: // n:1
|
||||
tuple := f.exprN(s.Results[0])
|
||||
for i := 0; i < formals.Len(); i++ {
|
||||
f.assign(formals.At(i).Type(), f.extract(tuple, i))
|
||||
}
|
||||
}
|
||||
|
||||
case *ast.SelectStmt:
|
||||
f.stmt(s.Body)
|
||||
|
||||
case *ast.BlockStmt:
|
||||
for _, s := range s.List {
|
||||
f.stmt(s)
|
||||
}
|
||||
|
||||
case *ast.IfStmt:
|
||||
if s.Init != nil {
|
||||
f.stmt(s.Init)
|
||||
}
|
||||
f.expr(s.Cond)
|
||||
f.stmt(s.Body)
|
||||
if s.Else != nil {
|
||||
f.stmt(s.Else)
|
||||
}
|
||||
|
||||
case *ast.SwitchStmt:
|
||||
if s.Init != nil {
|
||||
f.stmt(s.Init)
|
||||
}
|
||||
var tag types.Type = tUntypedBool
|
||||
if s.Tag != nil {
|
||||
tag = f.expr(s.Tag)
|
||||
}
|
||||
for _, cc := range s.Body.List {
|
||||
cc := cc.(*ast.CaseClause)
|
||||
for _, cond := range cc.List {
|
||||
f.compare(tag, f.info.Types[cond].Type)
|
||||
}
|
||||
for _, s := range cc.Body {
|
||||
f.stmt(s)
|
||||
}
|
||||
}
|
||||
|
||||
case *ast.TypeSwitchStmt:
|
||||
if s.Init != nil {
|
||||
f.stmt(s.Init)
|
||||
}
|
||||
var I types.Type
|
||||
switch ass := s.Assign.(type) {
|
||||
case *ast.ExprStmt: // x.(type)
|
||||
I = f.expr(unparen(ass.X).(*ast.TypeAssertExpr).X)
|
||||
case *ast.AssignStmt: // y := x.(type)
|
||||
I = f.expr(unparen(ass.Rhs[0]).(*ast.TypeAssertExpr).X)
|
||||
}
|
||||
for _, cc := range s.Body.List {
|
||||
cc := cc.(*ast.CaseClause)
|
||||
for _, cond := range cc.List {
|
||||
tCase := f.info.Types[cond].Type
|
||||
if tCase != tUntypedNil {
|
||||
f.typeAssert(I, tCase)
|
||||
}
|
||||
}
|
||||
for _, s := range cc.Body {
|
||||
f.stmt(s)
|
||||
}
|
||||
}
|
||||
|
||||
case *ast.CommClause:
|
||||
if s.Comm != nil {
|
||||
f.stmt(s.Comm)
|
||||
}
|
||||
for _, s := range s.Body {
|
||||
f.stmt(s)
|
||||
}
|
||||
|
||||
case *ast.ForStmt:
|
||||
if s.Init != nil {
|
||||
f.stmt(s.Init)
|
||||
}
|
||||
if s.Cond != nil {
|
||||
f.expr(s.Cond)
|
||||
}
|
||||
if s.Post != nil {
|
||||
f.stmt(s.Post)
|
||||
}
|
||||
f.stmt(s.Body)
|
||||
|
||||
case *ast.RangeStmt:
|
||||
x := f.expr(s.X)
|
||||
// No conversions are involved when Tok==DEFINE.
|
||||
if s.Tok == token.ASSIGN {
|
||||
if s.Key != nil {
|
||||
k := f.expr(s.Key)
|
||||
var xelem types.Type
|
||||
// keys of array, *array, slice, string aren't interesting
|
||||
switch ux := x.Underlying().(type) {
|
||||
case *types.Chan:
|
||||
xelem = ux.Elem()
|
||||
case *types.Map:
|
||||
xelem = ux.Key()
|
||||
}
|
||||
if xelem != nil {
|
||||
f.assign(xelem, k)
|
||||
}
|
||||
}
|
||||
if s.Value != nil {
|
||||
val := f.expr(s.Value)
|
||||
var xelem types.Type
|
||||
// values of strings aren't interesting
|
||||
switch ux := x.Underlying().(type) {
|
||||
case *types.Array:
|
||||
xelem = ux.Elem()
|
||||
case *types.Chan:
|
||||
xelem = ux.Elem()
|
||||
case *types.Map:
|
||||
xelem = ux.Elem()
|
||||
case *types.Pointer: // *array
|
||||
xelem = deref(ux).(*types.Array).Elem()
|
||||
case *types.Slice:
|
||||
xelem = ux.Elem()
|
||||
}
|
||||
if xelem != nil {
|
||||
f.assign(xelem, val)
|
||||
}
|
||||
}
|
||||
}
|
||||
f.stmt(s.Body)
|
||||
|
||||
default:
|
||||
panic(s)
|
||||
}
|
||||
}
|
||||
|
||||
// -- Plundered from golang.org/x/tools/go/ssa -----------------
|
||||
|
||||
// deref returns a pointer's element type; otherwise it returns typ.
|
||||
func deref(typ types.Type) types.Type {
|
||||
if p, ok := typ.Underlying().(*types.Pointer); ok {
|
||||
return p.Elem()
|
||||
}
|
||||
return typ
|
||||
}
|
||||
|
||||
func unparen(e ast.Expr) ast.Expr { return astutil.Unparen(e) }
|
||||
|
||||
func isInterface(T types.Type) bool { return types.IsInterface(T) }
|
Loading…
x
Reference in New Issue
Block a user