reflect: correctly handle method values in Seq

Currently method values aren't correctly handled in Seq because we call
canRangeFunc on the reciever type, not the method value type, when we're
handling a method value. reflect.Value.Type has the logic to obtain the
method value type from the Value.

This change slightly refactors reflect.Value.Type into a separate
function so we can obtain the correct type as an abi.Type and pass it
off to canRangeFunc (and canRangeFunc2).

Fixes #71874.

Change-Id: Ie62dfca2a84b8f2f816bb87ff1ed1a58a7bb8122
Reviewed-on: https://go-review.googlesource.com/c/go/+/651416
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
Reviewed-by: Cherry Mui <cherryyz@google.com>
Auto-Submit: Michael Knyszek <mknyszek@google.com>
This commit is contained in:
Michael Anthony Knyszek 2025-02-21 15:53:51 +00:00 committed by Gopher Robot
parent e1e65ae3ee
commit d93f6df0cc
3 changed files with 71 additions and 5 deletions

View File

@ -27,7 +27,7 @@ func rangeNum[T int8 | int16 | int32 | int64 | int |
// Uint, Uint8, Uint16, Uint32, Uint64, Uintptr, // Uint, Uint8, Uint16, Uint32, Uint64, Uintptr,
// Array, Chan, Map, Slice, or String. // Array, Chan, Map, Slice, or String.
func (v Value) Seq() iter.Seq[Value] { func (v Value) Seq() iter.Seq[Value] {
if canRangeFunc(v.typ()) { if canRangeFunc(v.abiType()) {
return func(yield func(Value) bool) { return func(yield func(Value) bool) {
rf := MakeFunc(v.Type().In(0), func(in []Value) []Value { rf := MakeFunc(v.Type().In(0), func(in []Value) []Value {
return []Value{ValueOf(yield(in[0]))} return []Value{ValueOf(yield(in[0]))}
@ -113,7 +113,7 @@ func (v Value) Seq() iter.Seq[Value] {
// If v's kind is Pointer, the pointer element type must have kind Array. // If v's kind is Pointer, the pointer element type must have kind Array.
// Otherwise v's kind must be Array, Map, Slice, or String. // Otherwise v's kind must be Array, Map, Slice, or String.
func (v Value) Seq2() iter.Seq2[Value, Value] { func (v Value) Seq2() iter.Seq2[Value, Value] {
if canRangeFunc2(v.typ()) { if canRangeFunc2(v.abiType()) {
return func(yield func(Value, Value) bool) { return func(yield func(Value, Value) bool) {
rf := MakeFunc(v.Type().In(0), func(in []Value) []Value { rf := MakeFunc(v.Type().In(0), func(in []Value) []Value {
return []Value{ValueOf(yield(in[0], in[1]))} return []Value{ValueOf(yield(in[0], in[1]))}

View File

@ -173,6 +173,18 @@ func TestValueSeq(t *testing.T) {
t.Fatalf("should loop four times") t.Fatalf("should loop four times")
} }
}}, }},
{"method", ValueOf(methodIter{}).Method(0), func(t *testing.T, s iter.Seq[Value]) {
i := int64(0)
for v := range s {
if v.Int() != i {
t.Fatalf("got %d, want %d", v.Int(), i)
}
i++
}
if i != 4 {
t.Fatalf("should loop four times")
}
}},
} }
for _, tc := range tests { for _, tc := range tests {
seq := tc.val.Seq() seq := tc.val.Seq()
@ -293,9 +305,48 @@ func TestValueSeq2(t *testing.T) {
t.Fatalf("should loop four times") t.Fatalf("should loop four times")
} }
}}, }},
{"method", ValueOf(methodIter2{}).Method(0), func(t *testing.T, s iter.Seq2[Value, Value]) {
i := int64(0)
for v1, v2 := range s {
if v1.Int() != i {
t.Fatalf("got %d, want %d", v1.Int(), i)
}
i++
if v2.Int() != i {
t.Fatalf("got %d, want %d", v2.Int(), i)
}
}
if i != 4 {
t.Fatalf("should loop four times")
}
}},
} }
for _, tc := range tests { for _, tc := range tests {
seq := tc.val.Seq2() seq := tc.val.Seq2()
tc.check(t, seq) tc.check(t, seq)
} }
} }
// methodIter is a type from which we can derive a method
// value that is an iter.Seq.
type methodIter struct{}
func (methodIter) Seq(yield func(int) bool) {
for i := range 4 {
if !yield(i) {
return
}
}
}
// methodIter2 is a type from which we can derive a method
// value that is an iter.Seq2.
type methodIter2 struct{}
func (methodIter2) Seq2(yield func(int, int) bool) {
for i := range 4 {
if !yield(i, i+1) {
return
}
}
}

View File

@ -93,6 +93,9 @@ func (f flag) ro() flag {
return 0 return 0
} }
// typ returns the *abi.Type stored in the Value. This method is fast,
// but it doesn't always return the correct type for the Value.
// See abiType and Type, which do return the correct type.
func (v Value) typ() *abi.Type { func (v Value) typ() *abi.Type {
// Types are either static (for compiler-created types) or // Types are either static (for compiler-created types) or
// heap-allocated but always reachable (for reflection-created // heap-allocated but always reachable (for reflection-created
@ -2380,14 +2383,26 @@ func (v Value) Type() Type {
return v.typeSlow() return v.typeSlow()
} }
//go:noinline
func (v Value) typeSlow() Type { func (v Value) typeSlow() Type {
return toRType(v.abiTypeSlow())
}
func (v Value) abiType() *abi.Type {
if v.flag != 0 && v.flag&flagMethod == 0 {
return v.typ()
}
return v.abiTypeSlow()
}
func (v Value) abiTypeSlow() *abi.Type {
if v.flag == 0 { if v.flag == 0 {
panic(&ValueError{"reflect.Value.Type", Invalid}) panic(&ValueError{"reflect.Value.Type", Invalid})
} }
typ := v.typ() typ := v.typ()
if v.flag&flagMethod == 0 { if v.flag&flagMethod == 0 {
return toRType(v.typ()) return v.typ()
} }
// Method value. // Method value.
@ -2400,7 +2415,7 @@ func (v Value) typeSlow() Type {
panic("reflect: internal error: invalid method index") panic("reflect: internal error: invalid method index")
} }
m := &tt.Methods[i] m := &tt.Methods[i]
return toRType(typeOffFor(typ, m.Typ)) return typeOffFor(typ, m.Typ)
} }
// Method on concrete type. // Method on concrete type.
ms := typ.ExportedMethods() ms := typ.ExportedMethods()
@ -2408,7 +2423,7 @@ func (v Value) typeSlow() Type {
panic("reflect: internal error: invalid method index") panic("reflect: internal error: invalid method index")
} }
m := ms[i] m := ms[i]
return toRType(typeOffFor(typ, m.Mtyp)) return typeOffFor(typ, m.Mtyp)
} }
// CanUint reports whether [Value.Uint] can be used without panicking. // CanUint reports whether [Value.Uint] can be used without panicking.