// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package Parser import ( "flag"; "fmt"; "array"; Scanner "scanner"; AST "ast"; ) type Parser struct { // Tracing/debugging verbose, sixg, deps bool; indent uint; // Scanner scanner *Scanner.Scanner; tokchan <-chan *Scanner.Token; comments *array.Array; // Scanner.Token pos int; // token source position tok int; // one token look-ahead val string; // token value (for IDENT, NUMBER, STRING only) // Non-syntactic parser control opt_semi bool; // true if semicolon is optional // Nesting levels expr_lev int; // 0 = control clause level, 1 = expr inside ()'s scope_lev int; // 0 = global scope, 1 = function scope of global functions, etc. // Scopes top_scope *AST.Scope; }; // ---------------------------------------------------------------------------- // Elementary support func unimplemented() { panic("unimplemented"); } func unreachable() { panic("unreachable"); } func assert(pred bool) { if !pred { panic("assertion failed"); } } // ---------------------------------------------------------------------------- // Parsing support func (P *Parser) PrintIndent() { for i := P.indent; i > 0; i-- { fmt.Printf(". "); } } func (P *Parser) Trace(msg string) { P.PrintIndent(); fmt.Printf("%s {\n", msg); P.indent++; } func (P *Parser) Ecart() { P.indent--; P.PrintIndent(); fmt.Printf("}\n"); } func (P *Parser) VerifyIndent(indent uint) { if indent != P.indent { panic("imbalanced tracing code"); } } func (P *Parser) Next0() { if P.tokchan == nil { P.pos, P.tok, P.val = P.scanner.Scan(); } else { t := <-P.tokchan; P.tok, P.pos, P.val = t.Tok, t.Pos, t.Val; } P.opt_semi = false; if P.verbose { P.PrintIndent(); s := Scanner.TokenString(P.tok); // rewrite "{" and "}" so we don't screw up double-click selection // in terminal window (we print scopes using the same characters) switch s { case "{": s = "LBRACE"; case "}": s = "RBRACE"; } fmt.Printf("[%d] %s\n", P.pos, s); } } func (P *Parser) Next() { for P.Next0(); P.tok == Scanner.COMMENT; P.Next0() { P.comments.Push(AST.NewComment(P.pos, P.val)); } } func (P *Parser) Open(verbose, sixg, deps bool, scanner *Scanner.Scanner, tokchan <-chan *Scanner.Token) { P.verbose = verbose; P.sixg = sixg; P.deps = deps; P.indent = 0; P.scanner = scanner; P.tokchan = tokchan; P.comments = array.New(0); P.Next(); P.expr_lev = 0; P.scope_lev = 0; } func (P *Parser) Error(pos int, msg string) { P.scanner.Error(pos, msg); } func (P *Parser) Expect(tok int) { if P.tok != tok { msg := "expected '" + Scanner.TokenString(tok) + "', found '" + Scanner.TokenString(P.tok) + "'"; switch P.tok { case Scanner.IDENT, Scanner.INT, Scanner.FLOAT, Scanner.STRING: msg += " " + P.val; } P.Error(P.pos, msg); } P.Next(); // make progress in any case } func (P *Parser) OptSemicolon() { if P.tok == Scanner.SEMICOLON { P.Next(); } } // ---------------------------------------------------------------------------- // Scopes func (P *Parser) OpenScope() { P.top_scope = AST.NewScope(P.top_scope); } func (P *Parser) CloseScope() { P.top_scope = P.top_scope.Parent; } func (P *Parser) DeclareInScope(scope *AST.Scope, x AST.Expr, kind int, typ *AST.Type) { if P.scope_lev < 0 { panic("cannot declare objects in other packages"); } if ident, ok := x.(*AST.Ident); ok { // ignore bad exprs obj := ident.Obj; obj.Kind = kind; obj.Typ = typ; obj.Pnolev = P.scope_lev; switch { case scope.LookupLocal(obj.Ident) == nil: scope.Insert(obj); case kind == AST.TYPE: // possibly a forward declaration case kind == AST.FUNC: // possibly a forward declaration default: P.Error(obj.Pos, `"` + obj.Ident + `" is declared already`); } } } // Declare a comma-separated list of idents or a single ident. func (P *Parser) Declare(x AST.Expr, kind int, typ *AST.Type) { for { p, ok := x.(*AST.BinaryExpr); if ok && p.Tok == Scanner.COMMA { P.DeclareInScope(P.top_scope, p.X, kind, typ); x = p.Y; } else { break; } } P.DeclareInScope(P.top_scope, x, kind, typ); } // ---------------------------------------------------------------------------- // AST support func exprType(x AST.Expr) *AST.Type { var typ *AST.Type; if t, is_type := x.(*AST.TypeLit); is_type { typ = t.Typ } else if t, is_ident := x.(*AST.Ident); is_ident { // assume a type name typ = AST.NewType(t.Pos(), AST.TYPENAME); typ.Expr = x; } else if t, is_selector := x.(*AST.Selector); is_selector && exprType(t.Sel) != nil { // possibly a qualified (type) identifier typ = AST.NewType(t.Pos(), AST.TYPENAME); typ.Expr = x; } return typ; } func (P *Parser) NoType(x AST.Expr) AST.Expr { if x != nil { lit, ok := x.(*AST.TypeLit); if ok { P.Error(lit.Typ.Pos, "expected expression, found type"); x = &AST.BasicLit{lit.Typ.Pos, Scanner.STRING, ""}; } } return x; } func (P *Parser) NewBinary(pos, tok int, x, y AST.Expr) *AST.BinaryExpr { return &AST.BinaryExpr{pos, tok, P.NoType(x), P.NoType(y)}; } // ---------------------------------------------------------------------------- // Common productions func (P *Parser) TryType() *AST.Type; func (P *Parser) ParseExpression(prec int) AST.Expr; func (P *Parser) ParseStatement() AST.Stat; func (P *Parser) OldParseStatement() *AST.StatImpl; func (P *Parser) ParseDeclaration() *AST.Decl; // If scope != nil, lookup identifier in scope. Otherwise create one. func (P *Parser) ParseIdent(scope *AST.Scope) *AST.Ident { if P.verbose { P.Trace("Ident"); defer P.Ecart(); } if P.tok == Scanner.IDENT { var obj *AST.Object; if scope != nil { obj = scope.Lookup(P.val); } if obj == nil { obj = AST.NewObject(P.pos, AST.NONE, P.val); } else { assert(obj.Kind != AST.NONE); } x := &AST.Ident{P.pos, obj}; if P.verbose { P.PrintIndent(); fmt.Printf("ident = \"%s\"\n", P.val); } P.Next(); return x; } P.Expect(Scanner.IDENT); // use Expect() error handling return &AST.Ident{P.pos, nil}; } func (P *Parser) ParseIdentList() AST.Expr { if P.verbose { P.Trace("IdentList"); defer P.Ecart(); } var last *AST.BinaryExpr; var x AST.Expr = P.ParseIdent(nil); for P.tok == Scanner.COMMA { pos := P.pos; P.Next(); y := P.ParseIdent(nil); if last == nil { last = P.NewBinary(pos, Scanner.COMMA, x, y); x = last; } else { last.Y = P.NewBinary(pos, Scanner.COMMA, last.Y, y); last = last.Y; } } return x; } // ---------------------------------------------------------------------------- // Types func (P *Parser) ParseType() *AST.Type { if P.verbose { P.Trace("Type"); defer P.Ecart(); } t := P.TryType(); if t == nil { P.Error(P.pos, "type expected"); t = AST.BadType; } return t; } func (P *Parser) ParseVarType() *AST.Type { if P.verbose { P.Trace("VarType"); defer P.Ecart(); } return P.ParseType(); } func (P *Parser) ParseQualifiedIdent() AST.Expr { if P.verbose { P.Trace("QualifiedIdent"); defer P.Ecart(); } var x AST.Expr = P.ParseIdent(P.top_scope); for P.tok == Scanner.PERIOD { pos := P.pos; P.Next(); y := P.ParseIdent(nil); x = &AST.Selector{pos, x, y}; } return x; } func (P *Parser) ParseTypeName() *AST.Type { if P.verbose { P.Trace("TypeName"); defer P.Ecart(); } t := AST.NewType(P.pos, AST.TYPENAME); t.Expr = P.ParseQualifiedIdent(); return t; } func (P *Parser) ParseArrayType() *AST.Type { if P.verbose { P.Trace("ArrayType"); defer P.Ecart(); } t := AST.NewType(P.pos, AST.ARRAY); P.Expect(Scanner.LBRACK); if P.tok == Scanner.ELLIPSIS { t.Expr = P.NewBinary(P.pos, Scanner.ELLIPSIS, nil, nil); P.Next(); } else if P.tok != Scanner.RBRACK { t.Expr = P.ParseExpression(1); } P.Expect(Scanner.RBRACK); t.Elt = P.ParseType(); return t; } func (P *Parser) ParseChannelType() *AST.Type { if P.verbose { P.Trace("ChannelType"); defer P.Ecart(); } t := AST.NewType(P.pos, AST.CHANNEL); t.Mode = AST.FULL; if P.tok == Scanner.CHAN { P.Next(); if P.tok == Scanner.ARROW { P.Next(); t.Mode = AST.SEND; } } else { P.Expect(Scanner.ARROW); P.Expect(Scanner.CHAN); t.Mode = AST.RECV; } t.Elt = P.ParseVarType(); return t; } func (P *Parser) ParseVar(expect_ident bool) *AST.Type { t := AST.BadType; if expect_ident { x := P.ParseIdent(nil); t = AST.NewType(x.Pos(), AST.TYPENAME); t.Expr = x; } else if P.tok == Scanner.ELLIPSIS { t = AST.NewType(P.pos, AST.ELLIPSIS); P.Next(); } else { t = P.ParseType(); } return t; } func (P *Parser) ParseVarList(list *array.Array, ellipsis_ok bool) { if P.verbose { P.Trace("VarList"); defer P.Ecart(); } // assume a list of types // (a list of identifiers looks like a list of type names) i0 := list.Len(); for { list.Push(P.ParseVar(ellipsis_ok /* param list */ && i0 > 0)); if P.tok == Scanner.COMMA { P.Next(); } else { break; } } // if we had a list of identifiers, it must be followed by a type typ := P.TryType(); if typ == nil && P.tok == Scanner.ELLIPSIS { typ = AST.NewType(P.pos, AST.ELLIPSIS); P.Next(); } if ellipsis_ok /* param list */ && i0 > 0 && typ == nil { // not the first parameter section; we must have a type P.Error(P.pos, "type expected"); typ = AST.BadType; } // convert the list into a list of (type) expressions if typ != nil { // all list entries must be identifiers // convert the type entries into identifiers for i, n := i0, list.Len(); i < n; i++ { t := list.At(i).(*AST.Type); if t.Form == AST.TYPENAME { if ident, ok := t.Expr.(*AST.Ident); ok { list.Set(i, ident); continue; } } list.Set(i, &AST.BadExpr{0}); P.Error(t.Pos, "identifier expected"); } // add type list.Push(&AST.TypeLit{typ}); } else { // all list entries are types // convert all type entries into type expressions for i, n := i0, list.Len(); i < n; i++ { t := list.At(i).(*AST.Type); list.Set(i, &AST.TypeLit{t}); } } } func (P *Parser) ParseParameterList(ellipsis_ok bool) *array.Array { if P.verbose { P.Trace("ParameterList"); defer P.Ecart(); } list := array.New(0); P.ParseVarList(list, ellipsis_ok); for P.tok == Scanner.COMMA { P.Next(); P.ParseVarList(list, ellipsis_ok); } return list; } func (P *Parser) ParseParameters(ellipsis_ok bool) *AST.Type { if P.verbose { P.Trace("Parameters"); defer P.Ecart(); } t := AST.NewType(P.pos, AST.STRUCT); P.Expect(Scanner.LPAREN); if P.tok != Scanner.RPAREN { t.List = P.ParseParameterList(ellipsis_ok); } t.End = P.pos; P.Expect(Scanner.RPAREN); return t; } func (P *Parser) ParseResultList() { if P.verbose { P.Trace("ResultList"); defer P.Ecart(); } P.ParseType(); for P.tok == Scanner.COMMA { P.Next(); P.ParseType(); } if P.tok != Scanner.RPAREN { P.ParseType(); } } func (P *Parser) ParseResult(ftyp *AST.Type) *AST.Type { if P.verbose { P.Trace("Result"); defer P.Ecart(); } var t *AST.Type; if P.tok == Scanner.LPAREN { t = P.ParseParameters(false); } else if P.tok != Scanner.FUNC { typ := P.TryType(); if typ != nil { t = AST.NewType(P.pos, AST.STRUCT); t.List = array.New(0); t.List.Push(&AST.TypeLit{typ}); t.End = P.pos; } } return t; } // Function types // // (params) // (params) type // (params) (results) func (P *Parser) ParseSignature() *AST.Type { if P.verbose { P.Trace("Signature"); defer P.Ecart(); } P.OpenScope(); P.scope_lev++; t := AST.NewType(P.pos, AST.FUNCTION); t.Scope = P.top_scope; t.List = P.ParseParameters(true).List; // TODO find better solution t.End = P.pos; t.Elt = P.ParseResult(t); P.scope_lev--; P.CloseScope(); return t; } func (P *Parser) ParseFunctionType() *AST.Type { if P.verbose { P.Trace("FunctionType"); defer P.Ecart(); } P.Expect(Scanner.FUNC); return P.ParseSignature(); } func (P *Parser) ParseMethodSpec(list *array.Array) { if P.verbose { P.Trace("MethodDecl"); defer P.Ecart(); } list.Push(P.ParseIdentList()); t := P.ParseSignature(); list.Push(&AST.TypeLit{t}); } func (P *Parser) ParseInterfaceType() *AST.Type { if P.verbose { P.Trace("InterfaceType"); defer P.Ecart(); } t := AST.NewType(P.pos, AST.INTERFACE); P.Expect(Scanner.INTERFACE); if P.tok == Scanner.LBRACE { P.Next(); P.OpenScope(); P.scope_lev++; t.List = array.New(0); for P.tok == Scanner.IDENT { P.ParseMethodSpec(t.List); if P.tok != Scanner.RBRACE { P.Expect(Scanner.SEMICOLON); } } t.End = P.pos; P.scope_lev--; P.CloseScope(); P.Expect(Scanner.RBRACE); } return t; } func (P *Parser) ParseMapType() *AST.Type { if P.verbose { P.Trace("MapType"); defer P.Ecart(); } t := AST.NewType(P.pos, AST.MAP); P.Expect(Scanner.MAP); P.Expect(Scanner.LBRACK); t.Key = P.ParseVarType(); P.Expect(Scanner.RBRACK); t.Elt = P.ParseVarType(); return t; } func (P *Parser) ParseOperand() AST.Expr func (P *Parser) ParseStructType() *AST.Type { if P.verbose { P.Trace("StructType"); defer P.Ecart(); } t := AST.NewType(P.pos, AST.STRUCT); P.Expect(Scanner.STRUCT); if P.tok == Scanner.LBRACE { P.Next(); t.List = array.New(0); t.Scope = AST.NewScope(nil); for P.tok != Scanner.RBRACE && P.tok != Scanner.EOF { P.ParseVarList(t.List, false); if P.tok == Scanner.STRING { // ParseOperand takes care of string concatenation t.List.Push(P.ParseOperand()); } if P.tok == Scanner.SEMICOLON { P.Next(); } else { break; } } P.OptSemicolon(); t.End = P.pos; P.Expect(Scanner.RBRACE); // enter fields into struct scope for i, n := 0, t.List.Len(); i < n; i++ { if x, ok := t.List.At(i).(*AST.Ident); ok { P.DeclareInScope(t.Scope, x, AST.FIELD, nil); } } } return t; } func (P *Parser) ParsePointerType() *AST.Type { if P.verbose { P.Trace("PointerType"); defer P.Ecart(); } t := AST.NewType(P.pos, AST.POINTER); P.Expect(Scanner.MUL); t.Elt = P.ParseType(); return t; } func (P *Parser) TryType() *AST.Type { if P.verbose { P.Trace("Type (try)"); defer P.Ecart(); } t := AST.BadType; switch P.tok { case Scanner.IDENT: t = P.ParseTypeName(); case Scanner.LBRACK: t = P.ParseArrayType(); case Scanner.CHAN, Scanner.ARROW: t = P.ParseChannelType(); case Scanner.INTERFACE: t = P.ParseInterfaceType(); case Scanner.FUNC: t = P.ParseFunctionType(); case Scanner.MAP: t = P.ParseMapType(); case Scanner.STRUCT: t = P.ParseStructType(); case Scanner.MUL: t = P.ParsePointerType(); default: t = nil; // no type found } return t; } // ---------------------------------------------------------------------------- // Blocks var newstat = flag.Bool("newstat", false, "use new statement parsing - work in progress"); func (P *Parser) ParseStatementList(list *array.Array) { if P.verbose { P.Trace("StatementList"); defer P.Ecart(); defer P.VerifyIndent(P.indent); } for P.tok != Scanner.CASE && P.tok != Scanner.DEFAULT && P.tok != Scanner.RBRACE && P.tok != Scanner.EOF { var s interface{}; if *newstat { s = P.ParseStatement(); } else { s = P.OldParseStatement(); } if s != nil { // not the empty statement list.Push(s); } if P.tok == Scanner.SEMICOLON { P.Next(); } else if P.opt_semi { P.opt_semi = false; // "consume" optional semicolon } else { break; } } // Try to provide a good error message if P.tok != Scanner.CASE && P.tok != Scanner.DEFAULT && P.tok != Scanner.RBRACE && P.tok != Scanner.EOF { P.Error(P.pos, "expected end of statement list (semicolon missing?)"); } } func (P *Parser) ParseBlock(ftyp *AST.Type, tok int) *AST.Block { if P.verbose { P.Trace("Block"); defer P.Ecart(); } b := AST.NewBlock(P.pos, tok); P.Expect(tok); P.OpenScope(); // enter recv and parameters into function scope if ftyp != nil { assert(ftyp.Form == AST.FUNCTION); if ftyp.Key != nil { } if ftyp.List != nil { for i, n := 0, ftyp.List.Len(); i < n; i++ { if x, ok := ftyp.List.At(i).(*AST.Ident); ok { P.DeclareInScope(P.top_scope, x, AST.VAR, nil); } } } } P.ParseStatementList(b.List); P.CloseScope(); if tok == Scanner.LBRACE { b.End = P.pos; P.Expect(Scanner.RBRACE); P.opt_semi = true; } return b; } // ---------------------------------------------------------------------------- // Expressions func (P *Parser) ParseExpressionList() AST.Expr { if P.verbose { P.Trace("ExpressionList"); defer P.Ecart(); } x := P.ParseExpression(1); for first := true; P.tok == Scanner.COMMA; { pos := P.pos; P.Next(); y := P.ParseExpression(1); if first { x = P.NewBinary(pos, Scanner.COMMA, x, y); first = false; } else { x.(*AST.BinaryExpr).Y = P.NewBinary(pos, Scanner.COMMA, x.(*AST.BinaryExpr).Y, y); } } return x; } func (P *Parser) ParseFunctionLit() AST.Expr { if P.verbose { P.Trace("FunctionLit"); defer P.Ecart(); } pos := P.pos; P.Expect(Scanner.FUNC); typ := P.ParseSignature(); P.expr_lev++; P.scope_lev++; body := P.ParseBlock(typ, Scanner.LBRACE); P.scope_lev--; P.expr_lev--; return &AST.FunctionLit{pos, typ, body}; } func (P *Parser) ParseOperand() AST.Expr { if P.verbose { P.Trace("Operand"); defer P.Ecart(); } switch P.tok { case Scanner.IDENT: return P.ParseIdent(P.top_scope); case Scanner.LPAREN: // TODO we could have a function type here as in: new(()) // (currently not working) P.Next(); P.expr_lev++; x := P.ParseExpression(1); P.expr_lev--; P.Expect(Scanner.RPAREN); return x; case Scanner.INT, Scanner.FLOAT, Scanner.STRING: x := &AST.BasicLit{P.pos, P.tok, P.val}; P.Next(); if x.Tok == Scanner.STRING { // TODO should remember the list instead of // concatenate the strings here for ; P.tok == Scanner.STRING; P.Next() { x.Val += P.val; } } return x; case Scanner.FUNC: return P.ParseFunctionLit(); default: t := P.TryType(); if t != nil { return &AST.TypeLit{t}; } else { P.Error(P.pos, "operand expected"); P.Next(); // make progress } } return &AST.BadExpr{P.pos}; } func (P *Parser) ParseSelectorOrTypeGuard(x AST.Expr) AST.Expr { if P.verbose { P.Trace("SelectorOrTypeGuard"); defer P.Ecart(); } pos := P.pos; P.Expect(Scanner.PERIOD); if P.tok == Scanner.IDENT { x = &AST.Selector{pos, x, P.ParseIdent(nil)}; } else { P.Expect(Scanner.LPAREN); x = &AST.TypeGuard{pos, x, P.ParseType()}; P.Expect(Scanner.RPAREN); } return x; } func (P *Parser) ParseIndex(x AST.Expr) AST.Expr { if P.verbose { P.Trace("IndexOrSlice"); defer P.Ecart(); } pos := P.pos; P.Expect(Scanner.LBRACK); P.expr_lev++; i := P.ParseExpression(0); P.expr_lev--; P.Expect(Scanner.RBRACK); return &AST.Index{pos, x, i}; } func (P *Parser) ParseBinaryExpr(prec1 int) AST.Expr func (P *Parser) ParseCall(f AST.Expr) AST.Expr { if P.verbose { P.Trace("Call"); defer P.Ecart(); } call := &AST.Call{P.pos, f, nil}; P.Expect(Scanner.LPAREN); if P.tok != Scanner.RPAREN { P.expr_lev++; var t *AST.Type; if x0, ok := f.(*AST.Ident); ok && (x0.Obj.Ident == "new" || x0.Obj.Ident == "make") { // heuristic: assume it's a new(T) or make(T, ...) call, try to parse a type t = P.TryType(); } if t != nil { // we found a type args := &AST.TypeLit{t}; if P.tok == Scanner.COMMA { pos := P.pos; P.Next(); y := P.ParseExpressionList(); // create list manually because NewExpr checks for type expressions args := &AST.BinaryExpr{pos, Scanner.COMMA, args, y}; } call.Args = args; } else { // normal argument list call.Args = P.ParseExpressionList(); } P.expr_lev--; } P.Expect(Scanner.RPAREN); return call; } func (P *Parser) ParseCompositeElements() AST.Expr { x := P.ParseExpression(0); if P.tok == Scanner.COMMA { pos := P.pos; P.Next(); // first element determines mode singles := true; if t, is_binary := x.(*AST.BinaryExpr); is_binary && t.Tok == Scanner.COLON { singles = false; } var last *AST.BinaryExpr; for P.tok != Scanner.RBRACE && P.tok != Scanner.EOF { y := P.ParseExpression(0); if singles { if t, is_binary := y.(*AST.BinaryExpr); is_binary && t.Tok == Scanner.COLON { P.Error(t.X.Pos(), "single value expected; found pair"); } } else { if t, is_binary := y.(*AST.BinaryExpr); !is_binary || t.Tok != Scanner.COLON { P.Error(y.Pos(), "key:value pair expected; found single value"); } } if last == nil { last = P.NewBinary(pos, Scanner.COMMA, x, y); x = last; } else { last.Y = P.NewBinary(pos, Scanner.COMMA, last.Y, y); last = last.Y; } if P.tok == Scanner.COMMA { pos = P.pos; P.Next(); } else { break; } } } return x; } func (P *Parser) ParseCompositeLit(t *AST.Type) AST.Expr { if P.verbose { P.Trace("CompositeLit"); defer P.Ecart(); } pos := P.pos; P.Expect(Scanner.LBRACE); var elts AST.Expr; if P.tok != Scanner.RBRACE { elts = P.ParseCompositeElements(); } P.Expect(Scanner.RBRACE); return &AST.CompositeLit{pos, t, elts}; } func (P *Parser) ParsePrimaryExpr() AST.Expr { if P.verbose { P.Trace("PrimaryExpr"); defer P.Ecart(); } x := P.ParseOperand(); for { switch P.tok { case Scanner.PERIOD: x = P.ParseSelectorOrTypeGuard(x); case Scanner.LBRACK: x = P.ParseIndex(x); case Scanner.LPAREN: x = P.ParseCall(x); case Scanner.LBRACE: // assume a composite literal only if x could be a type // and if we are not inside a control clause (expr_lev >= 0) // (composites inside control clauses must be parenthesized) var t *AST.Type; if P.expr_lev >= 0 { t = exprType(x); } if t != nil { x = P.ParseCompositeLit(t); } else { return x; } default: return x; } } unreachable(); return nil; } func (P *Parser) ParseUnaryExpr() AST.Expr { if P.verbose { P.Trace("UnaryExpr"); defer P.Ecart(); } switch P.tok { case Scanner.ADD, Scanner.SUB, Scanner.MUL, Scanner.NOT, Scanner.XOR, Scanner.ARROW, Scanner.AND: pos, tok := P.pos, P.tok; P.Next(); y := P.ParseUnaryExpr(); if lit, ok := y.(*AST.TypeLit); ok && tok == Scanner.MUL { // pointer type t := AST.NewType(pos, AST.POINTER); t.Elt = lit.Typ; return &AST.TypeLit{t}; } else { return &AST.UnaryExpr{pos, tok, y}; } } return P.ParsePrimaryExpr(); } func (P *Parser) ParseBinaryExpr(prec1 int) AST.Expr { if P.verbose { P.Trace("BinaryExpr"); defer P.Ecart(); } x := P.ParseUnaryExpr(); for prec := Scanner.Precedence(P.tok); prec >= prec1; prec-- { for Scanner.Precedence(P.tok) == prec { pos, tok := P.pos, P.tok; P.Next(); y := P.ParseBinaryExpr(prec + 1); x = P.NewBinary(pos, tok, x, y); } } return x; } func (P *Parser) ParseExpression(prec int) AST.Expr { if P.verbose { P.Trace("Expression"); defer P.Ecart(); defer P.VerifyIndent(P.indent); } if prec < 0 { panic("precedence must be >= 0"); } return P.NoType(P.ParseBinaryExpr(prec)); } // ---------------------------------------------------------------------------- // Statements func (P *Parser) ParseSimpleStat(range_ok bool) AST.Stat { if P.verbose { P.Trace("SimpleStat"); defer P.Ecart(); } x := P.ParseExpressionList(); switch P.tok { case Scanner.COLON: // label declaration pos := P.pos; P.Next(); // consume ":" if AST.ExprLen(x) == 1 { if label, is_ident := x.(*AST.Ident); is_ident { return &AST.LabelDecl{pos, label}; } } P.Error(x.Pos(), "illegal label declaration"); return nil; case Scanner.DEFINE, Scanner.ASSIGN, Scanner.ADD_ASSIGN, Scanner.SUB_ASSIGN, Scanner.MUL_ASSIGN, Scanner.QUO_ASSIGN, Scanner.REM_ASSIGN, Scanner.AND_ASSIGN, Scanner.OR_ASSIGN, Scanner.XOR_ASSIGN, Scanner.SHL_ASSIGN, Scanner.SHR_ASSIGN: // declaration/assignment pos, tok := P.pos, P.tok; P.Next(); var y AST.Expr; if range_ok && P.tok == Scanner.RANGE { range_pos := P.pos; P.Next(); y = &AST.UnaryExpr{range_pos, Scanner.RANGE, P.ParseExpression(1)}; if tok != Scanner.DEFINE && tok != Scanner.ASSIGN { P.Error(pos, "expected '=' or ':=', found '" + Scanner.TokenString(tok) + "'"); } } else { y = P.ParseExpressionList(); if xl, yl := AST.ExprLen(x), AST.ExprLen(y); xl > 1 && yl > 1 && xl != yl { P.Error(x.Pos(), "arity of lhs doesn't match rhs"); } } // TODO changed ILLEGAL -> NONE return &AST.ExpressionStat{x.Pos(), Scanner.ILLEGAL, P.NewBinary(pos, tok, x, y)}; default: if AST.ExprLen(x) != 1 { P.Error(x.Pos(), "only one expression allowed"); } if P.tok == Scanner.INC || P.tok == Scanner.DEC { s := &AST.ExpressionStat{P.pos, P.tok, x}; P.Next(); // consume "++" or "--" return s; } // TODO changed ILLEGAL -> NONE return &AST.ExpressionStat{x.Pos(), Scanner.ILLEGAL, x}; } unreachable(); return nil; } func (P *Parser) OldParseSimpleStat(range_ok bool) *AST.StatImpl { if P.verbose { P.Trace("SimpleStat"); defer P.Ecart(); } s := AST.OldBadStat; x := P.ParseExpressionList(); switch P.tok { case Scanner.COLON: // label declaration s = AST.NewStat(P.pos, Scanner.COLON); s.Expr = x; if AST.ExprLen(x) != 1 { P.Error(x.Pos(), "illegal label declaration"); } P.Next(); // consume ":" P.opt_semi = true; case Scanner.DEFINE, Scanner.ASSIGN, Scanner.ADD_ASSIGN, Scanner.SUB_ASSIGN, Scanner.MUL_ASSIGN, Scanner.QUO_ASSIGN, Scanner.REM_ASSIGN, Scanner.AND_ASSIGN, Scanner.OR_ASSIGN, Scanner.XOR_ASSIGN, Scanner.SHL_ASSIGN, Scanner.SHR_ASSIGN: // declaration/assignment pos, tok := P.pos, P.tok; P.Next(); var y AST.Expr = &AST.BadExpr{pos}; if range_ok && P.tok == Scanner.RANGE { range_pos := P.pos; P.Next(); y = P.ParseExpression(1); y = P.NewBinary(range_pos, Scanner.RANGE, nil, y); if tok != Scanner.DEFINE && tok != Scanner.ASSIGN { P.Error(pos, "expected '=' or ':=', found '" + Scanner.TokenString(tok) + "'"); } } else { y = P.ParseExpressionList(); if xl, yl := AST.ExprLen(x), AST.ExprLen(y); xl > 1 && yl > 1 && xl != yl { P.Error(x.Pos(), "arity of lhs doesn't match rhs"); } } s = AST.NewStat(x.Pos(), Scanner.EXPRSTAT); s.Expr = P.NewBinary(pos, tok, x, y); default: var pos, tok int; if P.tok == Scanner.INC || P.tok == Scanner.DEC { pos, tok = P.pos, P.tok; P.Next(); } else { pos, tok = x.Pos(), Scanner.EXPRSTAT; } s = AST.NewStat(pos, tok); s.Expr = x; if AST.ExprLen(x) != 1 { P.Error(pos, "only one expression allowed"); panic(); // fix position } } return s; } func (P *Parser) ParseInvocationStat(keyword int) *AST.ExpressionStat { if P.verbose { P.Trace("InvocationStat"); defer P.Ecart(); } pos := P.pos; P.Expect(keyword); return &AST.ExpressionStat{pos, keyword, P.ParseExpression(1)}; } func (P *Parser) OldParseInvocationStat(keyword int) *AST.StatImpl { if P.verbose { P.Trace("InvocationStat"); defer P.Ecart(); } s := AST.NewStat(P.pos, keyword); P.Expect(keyword); s.Expr = P.ParseExpression(1); return s; } func (P *Parser) ParseReturnStat() *AST.ExpressionStat { if P.verbose { P.Trace("ReturnStat"); defer P.Ecart(); } pos := P.pos; P.Expect(Scanner.RETURN); var x AST.Expr; if P.tok != Scanner.SEMICOLON && P.tok != Scanner.RBRACE { x = P.ParseExpressionList(); } return &AST.ExpressionStat{pos, Scanner.RETURN, x}; } func (P *Parser) OldParseReturnStat() *AST.StatImpl { if P.verbose { P.Trace("ReturnStat"); defer P.Ecart(); } s := AST.NewStat(P.pos, Scanner.RETURN); P.Expect(Scanner.RETURN); if P.tok != Scanner.SEMICOLON && P.tok != Scanner.RBRACE { s.Expr = P.ParseExpressionList(); } return s; } func (P *Parser) ParseControlFlowStat(tok int) *AST.StatImpl { if P.verbose { P.Trace("ControlFlowStat"); defer P.Ecart(); } s := AST.NewStat(P.pos, tok); P.Expect(tok); if tok != Scanner.FALLTHROUGH && P.tok == Scanner.IDENT { s.Expr = P.ParseIdent(P.top_scope); } return s; } func (P *Parser) ParseControlClause(isForStat bool) (init AST.Stat, expr AST.Expr, post AST.Stat) { if P.verbose { P.Trace("ControlClause"); defer P.Ecart(); } if P.tok != Scanner.LBRACE { prev_lev := P.expr_lev; P.expr_lev = -1; if P.tok != Scanner.SEMICOLON { init = P.ParseSimpleStat(isForStat); // TODO check for range clause and exit if found } if P.tok == Scanner.SEMICOLON { P.Next(); if P.tok != Scanner.SEMICOLON && P.tok != Scanner.LBRACE { expr = P.ParseExpression(1); } if isForStat { P.Expect(Scanner.SEMICOLON); if P.tok != Scanner.LBRACE { post = P.ParseSimpleStat(false); } } } else { if init != nil { // guard in case of errors if s, is_expr_stat := init.(*AST.ExpressionStat); is_expr_stat { expr, init = s.Expr, nil; } else { P.Error(0, "illegal control clause"); } } } P.expr_lev = prev_lev; } return init, expr, post; } func (P *Parser) OldParseControlClause(keyword int) *AST.StatImpl { if P.verbose { P.Trace("ControlClause"); defer P.Ecart(); } s := AST.NewStat(P.pos, keyword); P.Expect(keyword); if P.tok != Scanner.LBRACE { prev_lev := P.expr_lev; P.expr_lev = -1; if P.tok != Scanner.SEMICOLON { s.Init = P.OldParseSimpleStat(keyword == Scanner.FOR); // TODO check for range clause and exit if found } if P.tok == Scanner.SEMICOLON { P.Next(); if P.tok != Scanner.SEMICOLON && P.tok != Scanner.LBRACE { s.Expr = P.ParseExpression(1); } if keyword == Scanner.FOR { P.Expect(Scanner.SEMICOLON); if P.tok != Scanner.LBRACE { s.Post = P.OldParseSimpleStat(false); } } } else { if s.Init != nil { // guard in case of errors s.Expr, s.Init = s.Init.Expr, nil; } } P.expr_lev = prev_lev; } return s; } func (P *Parser) ParseIfStat() *AST.IfStat { if P.verbose { P.Trace("IfStat"); defer P.Ecart(); } P.OpenScope(); pos := P.pos; P.Expect(Scanner.IF); init, cond, dummy := P.ParseControlClause(false); body := P.ParseBlock(nil, Scanner.LBRACE); var else_ AST.Stat; if P.tok == Scanner.ELSE { P.Next(); if P.tok == Scanner.IF || P.tok == Scanner.LBRACE { else_ = P.ParseStatement(); } else if P.sixg { else_ = P.ParseStatement(); if else_ != nil { // not the empty statement // wrap in a block since we don't have one panic(); /* b := AST.NewStat(s1.Pos, Scanner.LBRACE); b.Body = AST.NewBlock(s1.Pos, Scanner.LBRACE); b.Body.List.Push(s1); s1 = b; */ } } else { P.Error(P.pos, "'if' or '{' expected - illegal 'else' branch"); } } P.CloseScope(); return &AST.IfStat{pos, init, cond, body, else_ }; } func (P *Parser) OldParseIfStat() *AST.StatImpl { if P.verbose { P.Trace("IfStat"); defer P.Ecart(); } P.OpenScope(); s := P.OldParseControlClause(Scanner.IF); s.Body = P.ParseBlock(nil, Scanner.LBRACE); if P.tok == Scanner.ELSE { P.Next(); s1 := AST.OldBadStat; if P.tok == Scanner.IF || P.tok == Scanner.LBRACE { s1 = P.OldParseStatement(); } else if P.sixg { s1 = P.OldParseStatement(); if s1 != nil { // not the empty statement assert(s1.Tok != Scanner.LBRACE); // wrap in a block since we don't have one b := AST.NewStat(s1.Pos, Scanner.LBRACE); b.Body = AST.NewBlock(s1.Pos, Scanner.LBRACE); b.Body.List.Push(s1); s1 = b; } } else { P.Error(P.pos, "'if' or '{' expected - illegal 'else' branch"); } s.Post = s1; } P.CloseScope(); return s; } func (P *Parser) ParseForStat() *AST.ForStat { if P.verbose { P.Trace("ForStat"); defer P.Ecart(); } P.OpenScope(); pos := P.pos; P.Expect(Scanner.FOR); init, cond, post := P.ParseControlClause(true); body := P.ParseBlock(nil, Scanner.LBRACE); P.CloseScope(); return &AST.ForStat{pos, init, cond, post, body}; } func (P *Parser) OldParseForStat() *AST.StatImpl { if P.verbose { P.Trace("ForStat"); defer P.Ecart(); } P.OpenScope(); s := P.OldParseControlClause(Scanner.FOR); s.Body = P.ParseBlock(nil, Scanner.LBRACE); P.CloseScope(); return s; } func (P *Parser) ParseSwitchCase() *AST.StatImpl { if P.verbose { P.Trace("SwitchCase"); defer P.Ecart(); } s := AST.NewStat(P.pos, P.tok); if P.tok == Scanner.CASE { P.Next(); s.Expr = P.ParseExpressionList(); } else { P.Expect(Scanner.DEFAULT); } return s; } func (P *Parser) ParseCaseClause() *AST.StatImpl { if P.verbose { P.Trace("CaseClause"); defer P.Ecart(); } s := P.ParseSwitchCase(); s.Body = P.ParseBlock(nil, Scanner.COLON); return s; } func (P *Parser) ParseSwitchStat() *AST.SwitchStat { if P.verbose { P.Trace("SwitchStat"); defer P.Ecart(); } P.OpenScope(); pos := P.pos; P.Expect(Scanner.SWITCH); init, tag, post := P.ParseControlClause(false); body := AST.NewBlock(P.pos, Scanner.LBRACE); P.Expect(Scanner.LBRACE); for P.tok != Scanner.RBRACE && P.tok != Scanner.EOF { body.List.Push(P.ParseCaseClause()); } body.End = P.pos; P.Expect(Scanner.RBRACE); P.opt_semi = true; P.CloseScope(); return &AST.SwitchStat{pos, init, tag, body}; } func (P *Parser) OldParseSwitchStat() *AST.StatImpl { if P.verbose { P.Trace("SwitchStat"); defer P.Ecart(); } P.OpenScope(); s := P.OldParseControlClause(Scanner.SWITCH); b := AST.NewBlock(P.pos, Scanner.LBRACE); P.Expect(Scanner.LBRACE); for P.tok != Scanner.RBRACE && P.tok != Scanner.EOF { b.List.Push(P.ParseCaseClause()); } b.End = P.pos; P.Expect(Scanner.RBRACE); P.opt_semi = true; P.CloseScope(); s.Body = b; return s; } func (P *Parser) ParseCommCase() *AST.StatImpl { if P.verbose { P.Trace("CommCase"); defer P.Ecart(); } s := AST.NewStat(P.pos, P.tok); if P.tok == Scanner.CASE { P.Next(); x := P.ParseExpression(1); if P.tok == Scanner.ASSIGN || P.tok == Scanner.DEFINE { pos, tok := P.pos, P.tok; P.Next(); if P.tok == Scanner.ARROW { y := P.ParseExpression(1); x = P.NewBinary(pos, tok, x, y); } else { P.Expect(Scanner.ARROW); // use Expect() error handling } } s.Expr = x; } else { P.Expect(Scanner.DEFAULT); } return s; } func (P *Parser) ParseCommClause() *AST.StatImpl { if P.verbose { P.Trace("CommClause"); defer P.Ecart(); } s := P.ParseCommCase(); s.Body = P.ParseBlock(nil, Scanner.COLON); return s; } func (P *Parser) ParseSelectStat() *AST.SelectStat { if P.verbose { P.Trace("SelectStat"); defer P.Ecart(); } P.OpenScope(); pos := P.pos; P.Expect(Scanner.SELECT); body := AST.NewBlock(P.pos, Scanner.LBRACE); P.Expect(Scanner.LBRACE); for P.tok != Scanner.RBRACE && P.tok != Scanner.EOF { body.List.Push(P.ParseCommClause()); } body.End = P.pos; P.Expect(Scanner.RBRACE); P.opt_semi = true; P.CloseScope(); return &AST.SelectStat{pos, body}; } func (P *Parser) OldParseSelectStat() *AST.StatImpl { if P.verbose { P.Trace("SelectStat"); defer P.Ecart(); } P.OpenScope(); s := AST.NewStat(P.pos, Scanner.SELECT); P.Expect(Scanner.SELECT); b := AST.NewBlock(P.pos, Scanner.LBRACE); P.Expect(Scanner.LBRACE); for P.tok != Scanner.RBRACE && P.tok != Scanner.EOF { b.List.Push(P.ParseCommClause()); } b.End = P.pos; P.Expect(Scanner.RBRACE); P.opt_semi = true; P.CloseScope(); s.Body = b; return s; } func (P *Parser) ParseStatement() AST.Stat { if P.verbose { P.Trace("Statement"); defer P.Ecart(); defer P.VerifyIndent(P.indent); } s := AST.OldBadStat; switch P.tok { case Scanner.CONST, Scanner.TYPE, Scanner.VAR: return &AST.DeclarationStat{P.ParseDeclaration()}; case Scanner.FUNC: // for now we do not allow local function declarations, // instead we assume this starts a function literal fallthrough; case // only the tokens that are legal top-level expression starts Scanner.IDENT, Scanner.INT, Scanner.FLOAT, Scanner.STRING, Scanner.LPAREN, // operand Scanner.LBRACK, Scanner.STRUCT, // composite type Scanner.MUL, Scanner.AND, Scanner.ARROW: // unary return P.ParseSimpleStat(false); case Scanner.GO, Scanner.DEFER: return P.ParseInvocationStat(P.tok); case Scanner.RETURN: return P.ParseReturnStat(); case Scanner.BREAK, Scanner.CONTINUE, Scanner.GOTO, Scanner.FALLTHROUGH: s = P.ParseControlFlowStat(P.tok); case Scanner.LBRACE: s = AST.NewStat(P.pos, Scanner.LBRACE); s.Body = P.ParseBlock(nil, Scanner.LBRACE); case Scanner.IF: return P.ParseIfStat(); case Scanner.FOR: return P.ParseForStat(); case Scanner.SWITCH: return P.ParseSwitchStat(); case Scanner.SELECT: return P.ParseSelectStat(); } // empty statement return nil; } func (P *Parser) OldParseStatement() *AST.StatImpl { if P.verbose { P.Trace("Statement"); defer P.Ecart(); defer P.VerifyIndent(P.indent); } s := AST.OldBadStat; switch P.tok { case Scanner.CONST, Scanner.TYPE, Scanner.VAR: s = AST.NewStat(P.pos, P.tok); s.Decl = P.ParseDeclaration(); case Scanner.FUNC: // for now we do not allow local function declarations, // instead we assume this starts a function literal fallthrough; case // only the tokens that are legal top-level expression starts Scanner.IDENT, Scanner.INT, Scanner.FLOAT, Scanner.STRING, Scanner.LPAREN, // operand Scanner.LBRACK, Scanner.STRUCT, // composite type Scanner.MUL, Scanner.AND, Scanner.ARROW: // unary s = P.OldParseSimpleStat(false); case Scanner.GO, Scanner.DEFER: s = P.OldParseInvocationStat(P.tok); case Scanner.RETURN: s = P.OldParseReturnStat(); case Scanner.BREAK, Scanner.CONTINUE, Scanner.GOTO, Scanner.FALLTHROUGH: s = P.ParseControlFlowStat(P.tok); case Scanner.LBRACE: s = AST.NewStat(P.pos, Scanner.LBRACE); s.Body = P.ParseBlock(nil, Scanner.LBRACE); case Scanner.IF: s = P.OldParseIfStat(); case Scanner.FOR: s = P.OldParseForStat(); case Scanner.SWITCH: s = P.OldParseSwitchStat(); case Scanner.SELECT: s = P.OldParseSelectStat(); default: // empty statement s = nil; } return s; } // ---------------------------------------------------------------------------- // Declarations func (P *Parser) ParseImportSpec(d *AST.Decl) { if P.verbose { P.Trace("ImportSpec"); defer P.Ecart(); } if P.tok == Scanner.PERIOD { P.Error(P.pos, `"import ." not yet handled properly`); P.Next(); } else if P.tok == Scanner.IDENT { d.Ident = P.ParseIdent(nil); } if P.tok == Scanner.STRING { // TODO eventually the scanner should strip the quotes d.Val = &AST.BasicLit{P.pos, Scanner.STRING, P.val}; P.Next(); } else { P.Expect(Scanner.STRING); // use Expect() error handling } } func (P *Parser) ParseConstSpec(d *AST.Decl) { if P.verbose { P.Trace("ConstSpec"); defer P.Ecart(); } d.Ident = P.ParseIdentList(); d.Typ = P.TryType(); if P.tok == Scanner.ASSIGN { P.Next(); d.Val = P.ParseExpressionList(); } } func (P *Parser) ParseTypeSpec(d *AST.Decl) { if P.verbose { P.Trace("TypeSpec"); defer P.Ecart(); } d.Ident = P.ParseIdent(nil); d.Typ = P.ParseType(); P.opt_semi = true; } func (P *Parser) ParseVarSpec(d *AST.Decl) { if P.verbose { P.Trace("VarSpec"); defer P.Ecart(); } d.Ident = P.ParseIdentList(); if P.tok == Scanner.ASSIGN { P.Next(); d.Val = P.ParseExpressionList(); } else { d.Typ = P.ParseVarType(); if P.tok == Scanner.ASSIGN { P.Next(); d.Val = P.ParseExpressionList(); } } } func (P *Parser) ParseSpec(d *AST.Decl) { kind := AST.NONE; switch d.Tok { case Scanner.IMPORT: P.ParseImportSpec(d); kind = AST.PACKAGE; case Scanner.CONST: P.ParseConstSpec(d); kind = AST.CONST; case Scanner.TYPE: P.ParseTypeSpec(d); kind = AST.TYPE; case Scanner.VAR: P.ParseVarSpec(d); kind = AST.VAR; default: unreachable(); } // semantic checks if d.Tok == Scanner.IMPORT { if d.Ident != nil { P.Declare(d.Ident, kind, nil); } } else { P.Declare(d.Ident, kind, d.Typ); if d.Val != nil { // initialization/assignment llen := AST.ExprLen(d.Ident); rlen := AST.ExprLen(d.Val); if llen == rlen { // TODO } else if rlen == 1 { // TODO } else { if llen < rlen { P.Error(AST.ExprAt(d.Val, llen).Pos(), "more expressions than variables"); } else { P.Error(AST.ExprAt(d.Ident, rlen).Pos(), "more variables than expressions"); } } } else { // TODO } } } func (P *Parser) ParseDecl(keyword int) *AST.Decl { if P.verbose { P.Trace("Decl"); defer P.Ecart(); } d := AST.NewDecl(P.pos, keyword); P.Expect(keyword); if P.tok == Scanner.LPAREN { P.Next(); d.List = array.New(0); for P.tok != Scanner.RPAREN && P.tok != Scanner.EOF { d1 := AST.NewDecl(P.pos, keyword); P.ParseSpec(d1); d.List.Push(d1); if P.tok == Scanner.SEMICOLON { P.Next(); } else { break; } } d.End = P.pos; P.Expect(Scanner.RPAREN); P.opt_semi = true; } else { P.ParseSpec(d); } return d; } // Function declarations // // func ident (params) // func ident (params) type // func ident (params) (results) // func (recv) ident (params) // func (recv) ident (params) type // func (recv) ident (params) (results) func (P *Parser) ParseFunctionDecl() *AST.Decl { if P.verbose { P.Trace("FunctionDecl"); defer P.Ecart(); } d := AST.NewDecl(P.pos, Scanner.FUNC); P.Expect(Scanner.FUNC); var recv *AST.Type; if P.tok == Scanner.LPAREN { pos := P.pos; recv = P.ParseParameters(true); if recv.Nfields() != 1 { P.Error(pos, "must have exactly one receiver"); } } ident := P.ParseIdent(nil); d.Ident = ident; d.Typ = P.ParseSignature(); d.Typ.Key = recv; if P.tok == Scanner.LBRACE { d.Body = P.ParseBlock(d.Typ, Scanner.LBRACE); } return d; } func (P *Parser) ParseDeclaration() *AST.Decl { if P.verbose { P.Trace("Declaration"); defer P.Ecart(); defer P.VerifyIndent(P.indent); } indent := P.indent; d := AST.BadDecl; switch P.tok { case Scanner.CONST, Scanner.TYPE, Scanner.VAR: d = P.ParseDecl(P.tok); case Scanner.FUNC: d = P.ParseFunctionDecl(); default: P.Error(P.pos, "declaration expected"); P.Next(); // make progress } return d; } // ---------------------------------------------------------------------------- // Program func (P *Parser) ParseProgram() *AST.Program { if P.verbose { P.Trace("Program"); defer P.Ecart(); } P.OpenScope(); p := AST.NewProgram(P.pos); P.Expect(Scanner.PACKAGE); p.Ident = P.ParseIdent(nil); // package body { P.OpenScope(); p.Decls = array.New(0); for P.tok == Scanner.IMPORT { p.Decls.Push(P.ParseDecl(Scanner.IMPORT)); P.OptSemicolon(); } if !P.deps { for P.tok != Scanner.EOF { p.Decls.Push(P.ParseDeclaration()); P.OptSemicolon(); } } P.CloseScope(); } p.Comments = P.comments; P.CloseScope(); return p; }