// Copyright 2016 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package noder import ( "fmt" "go/constant" "go/token" "os" "path/filepath" "runtime" "strconv" "strings" "unicode" "unicode/utf8" "cmd/compile/internal/base" "cmd/compile/internal/ir" "cmd/compile/internal/syntax" "cmd/compile/internal/typecheck" "cmd/compile/internal/types" "cmd/internal/objabi" "cmd/internal/src" ) func LoadPackage(filenames []string) { base.Timer.Start("fe", "parse") lines := ParseFiles(filenames) base.Timer.Stop() base.Timer.AddEvent(int64(lines), "lines") // Typecheck. Package() // With all user code typechecked, it's now safe to verify unused dot imports. CheckDotImports() base.ExitIfErrors() } // ParseFiles concurrently parses files into *syntax.File structures. // Each declaration in every *syntax.File is converted to a syntax tree // and its root represented by *Node is appended to Target.Decls. // Returns the total count of parsed lines. func ParseFiles(filenames []string) uint { noders := make([]*noder, 0, len(filenames)) // Limit the number of simultaneously open files. sem := make(chan struct{}, runtime.GOMAXPROCS(0)+10) for _, filename := range filenames { p := &noder{ basemap: make(map[*syntax.PosBase]*src.PosBase), err: make(chan syntax.Error), trackScopes: base.Flag.Dwarf, } noders = append(noders, p) go func(filename string) { sem <- struct{}{} defer func() { <-sem }() defer close(p.err) base := syntax.NewFileBase(filename) f, err := os.Open(filename) if err != nil { p.error(syntax.Error{Msg: err.Error()}) return } defer f.Close() p.file, _ = syntax.Parse(base, f, p.error, p.pragma, syntax.CheckBranches) // errors are tracked via p.error }(filename) } var lines uint for _, p := range noders { for e := range p.err { p.errorAt(e.Pos, "%s", e.Msg) } p.node() lines += p.file.Lines p.file = nil // release memory if base.SyntaxErrors() != 0 { base.ErrorExit() } // Always run CheckDclstack here, even when debug_dclstack is not set, as a sanity measure. types.CheckDclstack() } for _, p := range noders { p.processPragmas() } types.LocalPkg.Height = myheight return lines } func Package() { typecheck.DeclareUniverse() typecheck.TypecheckAllowed = true // Process top-level declarations in phases. // Phase 1: const, type, and names and types of funcs. // This will gather all the information about types // and methods but doesn't depend on any of it. // // We also defer type alias declarations until phase 2 // to avoid cycles like #18640. // TODO(gri) Remove this again once we have a fix for #25838. // Don't use range--typecheck can add closures to Target.Decls. base.Timer.Start("fe", "typecheck", "top1") for i := 0; i < len(typecheck.Target.Decls); i++ { n := typecheck.Target.Decls[i] if op := n.Op(); op != ir.ODCL && op != ir.OAS && op != ir.OAS2 && (op != ir.ODCLTYPE || !n.(*ir.Decl).X.Alias()) { typecheck.Target.Decls[i] = typecheck.Stmt(n) } } // Phase 2: Variable assignments. // To check interface assignments, depends on phase 1. // Don't use range--typecheck can add closures to Target.Decls. base.Timer.Start("fe", "typecheck", "top2") for i := 0; i < len(typecheck.Target.Decls); i++ { n := typecheck.Target.Decls[i] if op := n.Op(); op == ir.ODCL || op == ir.OAS || op == ir.OAS2 || op == ir.ODCLTYPE && n.(*ir.Decl).X.Alias() { typecheck.Target.Decls[i] = typecheck.Stmt(n) } } // Phase 3: Type check function bodies. // Don't use range--typecheck can add closures to Target.Decls. base.Timer.Start("fe", "typecheck", "func") var fcount int64 for i := 0; i < len(typecheck.Target.Decls); i++ { n := typecheck.Target.Decls[i] if n.Op() == ir.ODCLFUNC { if base.Flag.W > 1 { s := fmt.Sprintf("\nbefore typecheck %v", n) ir.Dump(s, n) } typecheck.FuncBody(n.(*ir.Func)) if base.Flag.W > 1 { s := fmt.Sprintf("\nafter typecheck %v", n) ir.Dump(s, n) } fcount++ } } // Phase 4: Check external declarations. // TODO(mdempsky): This should be handled when type checking their // corresponding ODCL nodes. base.Timer.Start("fe", "typecheck", "externdcls") for i, n := range typecheck.Target.Externs { if n.Op() == ir.ONAME { typecheck.Target.Externs[i] = typecheck.Expr(typecheck.Target.Externs[i]) } } // Phase 5: With all user code type-checked, it's now safe to verify map keys. typecheck.CheckMapKeys() } // makeSrcPosBase translates from a *syntax.PosBase to a *src.PosBase. func (p *noder) makeSrcPosBase(b0 *syntax.PosBase) *src.PosBase { // fast path: most likely PosBase hasn't changed if p.basecache.last == b0 { return p.basecache.base } b1, ok := p.basemap[b0] if !ok { fn := b0.Filename() if b0.IsFileBase() { b1 = src.NewFileBase(fn, absFilename(fn)) } else { // line directive base p0 := b0.Pos() p0b := p0.Base() if p0b == b0 { panic("infinite recursion in makeSrcPosBase") } p1 := src.MakePos(p.makeSrcPosBase(p0b), p0.Line(), p0.Col()) b1 = src.NewLinePragmaBase(p1, fn, fileh(fn), b0.Line(), b0.Col()) } p.basemap[b0] = b1 } // update cache p.basecache.last = b0 p.basecache.base = b1 return b1 } func (p *noder) makeXPos(pos syntax.Pos) (_ src.XPos) { return base.Ctxt.PosTable.XPos(src.MakePos(p.makeSrcPosBase(pos.Base()), pos.Line(), pos.Col())) } func (p *noder) errorAt(pos syntax.Pos, format string, args ...interface{}) { base.ErrorfAt(p.makeXPos(pos), format, args...) } // TODO(gri) Can we eliminate fileh in favor of absFilename? func fileh(name string) string { return objabi.AbsFile("", name, base.Flag.TrimPath) } func absFilename(name string) string { return objabi.AbsFile(base.Ctxt.Pathname, name, base.Flag.TrimPath) } // noder transforms package syntax's AST into a Node tree. type noder struct { basemap map[*syntax.PosBase]*src.PosBase basecache struct { last *syntax.PosBase base *src.PosBase } file *syntax.File linknames []linkname pragcgobuf [][]string err chan syntax.Error scope ir.ScopeID importedUnsafe bool importedEmbed bool // scopeVars is a stack tracking the number of variables declared in the // current function at the moment each open scope was opened. trackScopes bool scopeVars []int lastCloseScopePos syntax.Pos } func (p *noder) funcBody(fn *ir.Func, block *syntax.BlockStmt) { oldScope := p.scope p.scope = 0 typecheck.StartFuncBody(fn) if block != nil { body := p.stmts(block.List) if body == nil { body = []ir.Node{ir.NewBlockStmt(base.Pos, nil)} } fn.Body = body base.Pos = p.makeXPos(block.Rbrace) fn.Endlineno = base.Pos } typecheck.FinishFuncBody() p.scope = oldScope } func (p *noder) openScope(pos syntax.Pos) { types.Markdcl() if p.trackScopes { ir.CurFunc.Parents = append(ir.CurFunc.Parents, p.scope) p.scopeVars = append(p.scopeVars, len(ir.CurFunc.Dcl)) p.scope = ir.ScopeID(len(ir.CurFunc.Parents)) p.markScope(pos) } } func (p *noder) closeScope(pos syntax.Pos) { p.lastCloseScopePos = pos types.Popdcl() if p.trackScopes { scopeVars := p.scopeVars[len(p.scopeVars)-1] p.scopeVars = p.scopeVars[:len(p.scopeVars)-1] if scopeVars == len(ir.CurFunc.Dcl) { // no variables were declared in this scope, so we can retract it. if int(p.scope) != len(ir.CurFunc.Parents) { base.Fatalf("scope tracking inconsistency, no variables declared but scopes were not retracted") } p.scope = ir.CurFunc.Parents[p.scope-1] ir.CurFunc.Parents = ir.CurFunc.Parents[:len(ir.CurFunc.Parents)-1] nmarks := len(ir.CurFunc.Marks) ir.CurFunc.Marks[nmarks-1].Scope = p.scope prevScope := ir.ScopeID(0) if nmarks >= 2 { prevScope = ir.CurFunc.Marks[nmarks-2].Scope } if ir.CurFunc.Marks[nmarks-1].Scope == prevScope { ir.CurFunc.Marks = ir.CurFunc.Marks[:nmarks-1] } return } p.scope = ir.CurFunc.Parents[p.scope-1] p.markScope(pos) } } func (p *noder) markScope(pos syntax.Pos) { xpos := p.makeXPos(pos) if i := len(ir.CurFunc.Marks); i > 0 && ir.CurFunc.Marks[i-1].Pos == xpos { ir.CurFunc.Marks[i-1].Scope = p.scope } else { ir.CurFunc.Marks = append(ir.CurFunc.Marks, ir.Mark{Pos: xpos, Scope: p.scope}) } } // closeAnotherScope is like closeScope, but it reuses the same mark // position as the last closeScope call. This is useful for "for" and // "if" statements, as their implicit blocks always end at the same // position as an explicit block. func (p *noder) closeAnotherScope() { p.closeScope(p.lastCloseScopePos) } // linkname records a //go:linkname directive. type linkname struct { pos syntax.Pos local string remote string } func (p *noder) node() { types.Block = 1 p.importedUnsafe = false p.importedEmbed = false p.setlineno(p.file.PkgName) mkpackage(p.file.PkgName.Value) if pragma, ok := p.file.Pragma.(*pragmas); ok { pragma.Flag &^= ir.GoBuildPragma p.checkUnused(pragma) } typecheck.Target.Decls = append(typecheck.Target.Decls, p.decls(p.file.DeclList)...) base.Pos = src.NoXPos clearImports() } func (p *noder) processPragmas() { for _, l := range p.linknames { if !p.importedUnsafe { p.errorAt(l.pos, "//go:linkname only allowed in Go files that import \"unsafe\"") continue } n := ir.AsNode(typecheck.Lookup(l.local).Def) if n == nil || n.Op() != ir.ONAME { // TODO(mdempsky): Change to p.errorAt before Go 1.17 release. // base.WarnfAt(p.makeXPos(l.pos), "//go:linkname must refer to declared function or variable (will be an error in Go 1.17)") continue } if n.Sym().Linkname != "" { p.errorAt(l.pos, "duplicate //go:linkname for %s", l.local) continue } n.Sym().Linkname = l.remote } typecheck.Target.CgoPragmas = append(typecheck.Target.CgoPragmas, p.pragcgobuf...) } func (p *noder) decls(decls []syntax.Decl) (l []ir.Node) { var cs constState for _, decl := range decls { p.setlineno(decl) switch decl := decl.(type) { case *syntax.ImportDecl: p.importDecl(decl) case *syntax.VarDecl: l = append(l, p.varDecl(decl)...) case *syntax.ConstDecl: l = append(l, p.constDecl(decl, &cs)...) case *syntax.TypeDecl: l = append(l, p.typeDecl(decl)) case *syntax.FuncDecl: l = append(l, p.funcDecl(decl)) default: panic("unhandled Decl") } } return } func (p *noder) importDecl(imp *syntax.ImportDecl) { if imp.Path.Bad { return // avoid follow-on errors if there was a syntax error } if pragma, ok := imp.Pragma.(*pragmas); ok { p.checkUnused(pragma) } ipkg := importfile(p.basicLit(imp.Path)) if ipkg == nil { if base.Errors() == 0 { base.Fatalf("phase error in import") } return } if ipkg == ir.Pkgs.Unsafe { p.importedUnsafe = true } if ipkg.Path == "embed" { p.importedEmbed = true } if !ipkg.Direct { typecheck.Target.Imports = append(typecheck.Target.Imports, ipkg) } ipkg.Direct = true var my *types.Sym if imp.LocalPkgName != nil { my = p.name(imp.LocalPkgName) } else { my = typecheck.Lookup(ipkg.Name) } pack := ir.NewPkgName(p.pos(imp), my, ipkg) switch my.Name { case ".": importDot(pack) return case "init": base.ErrorfAt(pack.Pos(), "cannot import package as init - init must be a func") return case "_": return } if my.Def != nil { typecheck.Redeclared(pack.Pos(), my, "as imported package name") } my.Def = pack my.Lastlineno = pack.Pos() my.Block = 1 // at top level } func (p *noder) varDecl(decl *syntax.VarDecl) []ir.Node { names := p.declNames(ir.ONAME, decl.NameList) typ := p.typeExprOrNil(decl.Type) exprs := p.exprList(decl.Values) if pragma, ok := decl.Pragma.(*pragmas); ok { if len(pragma.Embeds) > 0 { if !p.importedEmbed { // This check can't be done when building the list pragma.Embeds // because that list is created before the noder starts walking over the file, // so at that point it hasn't seen the imports. // We're left to check now, just before applying the //go:embed lines. for _, e := range pragma.Embeds { p.errorAt(e.Pos, "//go:embed only allowed in Go files that import \"embed\"") } } else { exprs = varEmbed(p, names, typ, exprs, pragma.Embeds) } pragma.Embeds = nil } p.checkUnused(pragma) } var init []ir.Node p.setlineno(decl) if len(names) > 1 && len(exprs) == 1 { as2 := ir.NewAssignListStmt(base.Pos, ir.OAS2, nil, exprs) for _, v := range names { as2.Lhs.Append(v) typecheck.Declare(v, typecheck.DeclContext) v.Ntype = typ v.Defn = as2 if ir.CurFunc != nil { init = append(init, ir.NewDecl(base.Pos, ir.ODCL, v)) } } return append(init, as2) } for i, v := range names { var e ir.Node if i < len(exprs) { e = exprs[i] } typecheck.Declare(v, typecheck.DeclContext) v.Ntype = typ if ir.CurFunc != nil { init = append(init, ir.NewDecl(base.Pos, ir.ODCL, v)) } as := ir.NewAssignStmt(base.Pos, v, e) init = append(init, as) if e != nil || ir.CurFunc == nil { v.Defn = as } } if len(exprs) != 0 && len(names) != len(exprs) { base.Errorf("assignment mismatch: %d variables but %d values", len(names), len(exprs)) } return init } // constState tracks state between constant specifiers within a // declaration group. This state is kept separate from noder so nested // constant declarations are handled correctly (e.g., issue 15550). type constState struct { group *syntax.Group typ ir.Ntype values []ir.Node iota int64 } func (p *noder) constDecl(decl *syntax.ConstDecl, cs *constState) []ir.Node { if decl.Group == nil || decl.Group != cs.group { *cs = constState{ group: decl.Group, } } if pragma, ok := decl.Pragma.(*pragmas); ok { p.checkUnused(pragma) } names := p.declNames(ir.OLITERAL, decl.NameList) typ := p.typeExprOrNil(decl.Type) var values []ir.Node if decl.Values != nil { values = p.exprList(decl.Values) cs.typ, cs.values = typ, values } else { if typ != nil { base.Errorf("const declaration cannot have type without expression") } typ, values = cs.typ, cs.values } nn := make([]ir.Node, 0, len(names)) for i, n := range names { if i >= len(values) { base.Errorf("missing value in const declaration") break } v := values[i] if decl.Values == nil { v = ir.DeepCopy(n.Pos(), v) } typecheck.Declare(n, typecheck.DeclContext) n.Ntype = typ n.Defn = v n.SetIota(cs.iota) nn = append(nn, ir.NewDecl(p.pos(decl), ir.ODCLCONST, n)) } if len(values) > len(names) { base.Errorf("extra expression in const declaration") } cs.iota++ return nn } func (p *noder) typeDecl(decl *syntax.TypeDecl) ir.Node { n := p.declName(ir.OTYPE, decl.Name) typecheck.Declare(n, typecheck.DeclContext) // decl.Type may be nil but in that case we got a syntax error during parsing typ := p.typeExprOrNil(decl.Type) n.Ntype = typ n.SetAlias(decl.Alias) if pragma, ok := decl.Pragma.(*pragmas); ok { if !decl.Alias { n.SetPragma(pragma.Flag & typePragmas) pragma.Flag &^= typePragmas } p.checkUnused(pragma) } nod := ir.NewDecl(p.pos(decl), ir.ODCLTYPE, n) if n.Alias() && !types.AllowsGoVersion(types.LocalPkg, 1, 9) { base.ErrorfAt(nod.Pos(), "type aliases only supported as of -lang=go1.9") } return nod } func (p *noder) declNames(op ir.Op, names []*syntax.Name) []*ir.Name { nodes := make([]*ir.Name, 0, len(names)) for _, name := range names { nodes = append(nodes, p.declName(op, name)) } return nodes } func (p *noder) declName(op ir.Op, name *syntax.Name) *ir.Name { return ir.NewDeclNameAt(p.pos(name), op, p.name(name)) } func (p *noder) funcDecl(fun *syntax.FuncDecl) ir.Node { name := p.name(fun.Name) t := p.signature(fun.Recv, fun.Type) f := ir.NewFunc(p.pos(fun)) if fun.Recv == nil { if name.Name == "init" { name = renameinit() if len(t.Params) > 0 || len(t.Results) > 0 { base.ErrorfAt(f.Pos(), "func init must have no arguments and no return values") } typecheck.Target.Inits = append(typecheck.Target.Inits, f) } if types.LocalPkg.Name == "main" && name.Name == "main" { if len(t.Params) > 0 || len(t.Results) > 0 { base.ErrorfAt(f.Pos(), "func main must have no arguments and no return values") } } } else { f.Shortname = name name = ir.BlankNode.Sym() // filled in by tcFunc } f.Nname = ir.NewNameAt(p.pos(fun.Name), name) f.Nname.Func = f f.Nname.Defn = f f.Nname.Ntype = t if pragma, ok := fun.Pragma.(*pragmas); ok { f.Pragma = pragma.Flag & funcPragmas if pragma.Flag&ir.Systemstack != 0 && pragma.Flag&ir.Nosplit != 0 { base.ErrorfAt(f.Pos(), "go:nosplit and go:systemstack cannot be combined") } pragma.Flag &^= funcPragmas p.checkUnused(pragma) } if fun.Recv == nil { typecheck.Declare(f.Nname, ir.PFUNC) } p.funcBody(f, fun.Body) if fun.Body != nil { if f.Pragma&ir.Noescape != 0 { base.ErrorfAt(f.Pos(), "can only use //go:noescape with external func implementations") } } else { if base.Flag.Complete || strings.HasPrefix(ir.FuncName(f), "init.") { // Linknamed functions are allowed to have no body. Hopefully // the linkname target has a body. See issue 23311. isLinknamed := false for _, n := range p.linknames { if ir.FuncName(f) == n.local { isLinknamed = true break } } if !isLinknamed { base.ErrorfAt(f.Pos(), "missing function body") } } } return f } func (p *noder) signature(recv *syntax.Field, typ *syntax.FuncType) *ir.FuncType { var rcvr *ir.Field if recv != nil { rcvr = p.param(recv, false, false) } return ir.NewFuncType(p.pos(typ), rcvr, p.params(typ.ParamList, true), p.params(typ.ResultList, false)) } func (p *noder) params(params []*syntax.Field, dddOk bool) []*ir.Field { nodes := make([]*ir.Field, 0, len(params)) for i, param := range params { p.setlineno(param) nodes = append(nodes, p.param(param, dddOk, i+1 == len(params))) } return nodes } func (p *noder) param(param *syntax.Field, dddOk, final bool) *ir.Field { var name *types.Sym if param.Name != nil { name = p.name(param.Name) } typ := p.typeExpr(param.Type) n := ir.NewField(p.pos(param), name, typ, nil) // rewrite ...T parameter if typ, ok := typ.(*ir.SliceType); ok && typ.DDD { if !dddOk { // We mark these as syntax errors to get automatic elimination // of multiple such errors per line (see ErrorfAt in subr.go). base.Errorf("syntax error: cannot use ... in receiver or result parameter list") } else if !final { if param.Name == nil { base.Errorf("syntax error: cannot use ... with non-final parameter") } else { p.errorAt(param.Name.Pos(), "syntax error: cannot use ... with non-final parameter %s", param.Name.Value) } } typ.DDD = false n.IsDDD = true } return n } func (p *noder) exprList(expr syntax.Expr) []ir.Node { switch expr := expr.(type) { case nil: return nil case *syntax.ListExpr: return p.exprs(expr.ElemList) default: return []ir.Node{p.expr(expr)} } } func (p *noder) exprs(exprs []syntax.Expr) []ir.Node { nodes := make([]ir.Node, 0, len(exprs)) for _, expr := range exprs { nodes = append(nodes, p.expr(expr)) } return nodes } func (p *noder) expr(expr syntax.Expr) ir.Node { p.setlineno(expr) switch expr := expr.(type) { case nil, *syntax.BadExpr: return nil case *syntax.Name: return p.mkname(expr) case *syntax.BasicLit: n := ir.NewBasicLit(p.pos(expr), p.basicLit(expr)) if expr.Kind == syntax.RuneLit { n.SetType(types.UntypedRune) } n.SetDiag(expr.Bad) // avoid follow-on errors if there was a syntax error return n case *syntax.CompositeLit: n := ir.NewCompLitExpr(p.pos(expr), ir.OCOMPLIT, p.typeExpr(expr.Type), nil) l := p.exprs(expr.ElemList) for i, e := range l { l[i] = p.wrapname(expr.ElemList[i], e) } n.List = l base.Pos = p.makeXPos(expr.Rbrace) return n case *syntax.KeyValueExpr: // use position of expr.Key rather than of expr (which has position of ':') return ir.NewKeyExpr(p.pos(expr.Key), p.expr(expr.Key), p.wrapname(expr.Value, p.expr(expr.Value))) case *syntax.FuncLit: return p.funcLit(expr) case *syntax.ParenExpr: return ir.NewParenExpr(p.pos(expr), p.expr(expr.X)) case *syntax.SelectorExpr: // parser.new_dotname obj := p.expr(expr.X) if obj.Op() == ir.OPACK { pack := obj.(*ir.PkgName) pack.Used = true return importName(pack.Pkg.Lookup(expr.Sel.Value)) } n := ir.NewSelectorExpr(base.Pos, ir.OXDOT, obj, p.name(expr.Sel)) n.SetPos(p.pos(expr)) // lineno may have been changed by p.expr(expr.X) return n case *syntax.IndexExpr: return ir.NewIndexExpr(p.pos(expr), p.expr(expr.X), p.expr(expr.Index)) case *syntax.SliceExpr: op := ir.OSLICE if expr.Full { op = ir.OSLICE3 } x := p.expr(expr.X) var index [3]ir.Node for i, n := range &expr.Index { if n != nil { index[i] = p.expr(n) } } return ir.NewSliceExpr(p.pos(expr), op, x, index[0], index[1], index[2]) case *syntax.AssertExpr: return ir.NewTypeAssertExpr(p.pos(expr), p.expr(expr.X), p.typeExpr(expr.Type)) case *syntax.Operation: if expr.Op == syntax.Add && expr.Y != nil { return p.sum(expr) } x := p.expr(expr.X) if expr.Y == nil { pos, op := p.pos(expr), p.unOp(expr.Op) switch op { case ir.OADDR: return typecheck.NodAddrAt(pos, x) case ir.ODEREF: return ir.NewStarExpr(pos, x) } return ir.NewUnaryExpr(pos, op, x) } pos, op, y := p.pos(expr), p.binOp(expr.Op), p.expr(expr.Y) switch op { case ir.OANDAND, ir.OOROR: return ir.NewLogicalExpr(pos, op, x, y) } return ir.NewBinaryExpr(pos, op, x, y) case *syntax.CallExpr: n := ir.NewCallExpr(p.pos(expr), ir.OCALL, p.expr(expr.Fun), p.exprs(expr.ArgList)) n.IsDDD = expr.HasDots return n case *syntax.ArrayType: var len ir.Node if expr.Len != nil { len = p.expr(expr.Len) } return ir.NewArrayType(p.pos(expr), len, p.typeExpr(expr.Elem)) case *syntax.SliceType: return ir.NewSliceType(p.pos(expr), p.typeExpr(expr.Elem)) case *syntax.DotsType: t := ir.NewSliceType(p.pos(expr), p.typeExpr(expr.Elem)) t.DDD = true return t case *syntax.StructType: return p.structType(expr) case *syntax.InterfaceType: return p.interfaceType(expr) case *syntax.FuncType: return p.signature(nil, expr) case *syntax.MapType: return ir.NewMapType(p.pos(expr), p.typeExpr(expr.Key), p.typeExpr(expr.Value)) case *syntax.ChanType: return ir.NewChanType(p.pos(expr), p.typeExpr(expr.Elem), p.chanDir(expr.Dir)) case *syntax.TypeSwitchGuard: var tag *ir.Ident if expr.Lhs != nil { tag = ir.NewIdent(p.pos(expr.Lhs), p.name(expr.Lhs)) if ir.IsBlank(tag) { base.Errorf("invalid variable name %v in type switch", tag) } } return ir.NewTypeSwitchGuard(p.pos(expr), tag, p.expr(expr.X)) } panic("unhandled Expr") } // sum efficiently handles very large summation expressions (such as // in issue #16394). In particular, it avoids left recursion and // collapses string literals. func (p *noder) sum(x syntax.Expr) ir.Node { // While we need to handle long sums with asymptotic // efficiency, the vast majority of sums are very small: ~95% // have only 2 or 3 operands, and ~99% of string literals are // never concatenated. adds := make([]*syntax.Operation, 0, 2) for { add, ok := x.(*syntax.Operation) if !ok || add.Op != syntax.Add || add.Y == nil { break } adds = append(adds, add) x = add.X } // nstr is the current rightmost string literal in the // summation (if any), and chunks holds its accumulated // substrings. // // Consider the expression x + "a" + "b" + "c" + y. When we // reach the string literal "a", we assign nstr to point to // its corresponding Node and initialize chunks to {"a"}. // Visiting the subsequent string literals "b" and "c", we // simply append their values to chunks. Finally, when we // reach the non-constant operand y, we'll join chunks to form // "abc" and reassign the "a" string literal's value. // // N.B., we need to be careful about named string constants // (indicated by Sym != nil) because 1) we can't modify their // value, as doing so would affect other uses of the string // constant, and 2) they may have types, which we need to // handle correctly. For now, we avoid these problems by // treating named string constants the same as non-constant // operands. var nstr ir.Node chunks := make([]string, 0, 1) n := p.expr(x) if ir.IsConst(n, constant.String) && n.Sym() == nil { nstr = n chunks = append(chunks, ir.StringVal(nstr)) } for i := len(adds) - 1; i >= 0; i-- { add := adds[i] r := p.expr(add.Y) if ir.IsConst(r, constant.String) && r.Sym() == nil { if nstr != nil { // Collapse r into nstr instead of adding to n. chunks = append(chunks, ir.StringVal(r)) continue } nstr = r chunks = append(chunks, ir.StringVal(nstr)) } else { if len(chunks) > 1 { nstr.SetVal(constant.MakeString(strings.Join(chunks, ""))) } nstr = nil chunks = chunks[:0] } n = ir.NewBinaryExpr(p.pos(add), ir.OADD, n, r) } if len(chunks) > 1 { nstr.SetVal(constant.MakeString(strings.Join(chunks, ""))) } return n } func (p *noder) typeExpr(typ syntax.Expr) ir.Ntype { // TODO(mdempsky): Be stricter? typecheck should handle errors anyway. n := p.expr(typ) if n == nil { return nil } if _, ok := n.(ir.Ntype); !ok { ir.Dump("NOT NTYPE", n) } return n.(ir.Ntype) } func (p *noder) typeExprOrNil(typ syntax.Expr) ir.Ntype { if typ != nil { return p.typeExpr(typ) } return nil } func (p *noder) chanDir(dir syntax.ChanDir) types.ChanDir { switch dir { case 0: return types.Cboth case syntax.SendOnly: return types.Csend case syntax.RecvOnly: return types.Crecv } panic("unhandled ChanDir") } func (p *noder) structType(expr *syntax.StructType) ir.Node { l := make([]*ir.Field, 0, len(expr.FieldList)) for i, field := range expr.FieldList { p.setlineno(field) var n *ir.Field if field.Name == nil { n = p.embedded(field.Type) } else { n = ir.NewField(p.pos(field), p.name(field.Name), p.typeExpr(field.Type), nil) } if i < len(expr.TagList) && expr.TagList[i] != nil { n.Note = constant.StringVal(p.basicLit(expr.TagList[i])) } l = append(l, n) } p.setlineno(expr) return ir.NewStructType(p.pos(expr), l) } func (p *noder) interfaceType(expr *syntax.InterfaceType) ir.Node { l := make([]*ir.Field, 0, len(expr.MethodList)) for _, method := range expr.MethodList { p.setlineno(method) var n *ir.Field if method.Name == nil { n = ir.NewField(p.pos(method), nil, importName(p.packname(method.Type)).(ir.Ntype), nil) } else { mname := p.name(method.Name) if mname.IsBlank() { base.Errorf("methods must have a unique non-blank name") continue } sig := p.typeExpr(method.Type).(*ir.FuncType) sig.Recv = fakeRecv() n = ir.NewField(p.pos(method), mname, sig, nil) } l = append(l, n) } return ir.NewInterfaceType(p.pos(expr), l) } func (p *noder) packname(expr syntax.Expr) *types.Sym { switch expr := expr.(type) { case *syntax.Name: name := p.name(expr) if n := oldname(name); n.Name() != nil && n.Name().PkgName != nil { n.Name().PkgName.Used = true } return name case *syntax.SelectorExpr: name := p.name(expr.X.(*syntax.Name)) def := ir.AsNode(name.Def) if def == nil { base.Errorf("undefined: %v", name) return name } var pkg *types.Pkg if def.Op() != ir.OPACK { base.Errorf("%v is not a package", name) pkg = types.LocalPkg } else { def := def.(*ir.PkgName) def.Used = true pkg = def.Pkg } return pkg.Lookup(expr.Sel.Value) } panic(fmt.Sprintf("unexpected packname: %#v", expr)) } func (p *noder) embedded(typ syntax.Expr) *ir.Field { op, isStar := typ.(*syntax.Operation) if isStar { if op.Op != syntax.Mul || op.Y != nil { panic("unexpected Operation") } typ = op.X } sym := p.packname(typ) n := ir.NewField(p.pos(typ), typecheck.Lookup(sym.Name), importName(sym).(ir.Ntype), nil) n.Embedded = true if isStar { n.Ntype = ir.NewStarExpr(p.pos(op), n.Ntype) } return n } func (p *noder) stmts(stmts []syntax.Stmt) []ir.Node { return p.stmtsFall(stmts, false) } func (p *noder) stmtsFall(stmts []syntax.Stmt, fallOK bool) []ir.Node { var nodes []ir.Node for i, stmt := range stmts { s := p.stmtFall(stmt, fallOK && i+1 == len(stmts)) if s == nil { } else if s.Op() == ir.OBLOCK && len(s.(*ir.BlockStmt).List) > 0 { // Inline non-empty block. // Empty blocks must be preserved for CheckReturn. nodes = append(nodes, s.(*ir.BlockStmt).List...) } else { nodes = append(nodes, s) } } return nodes } func (p *noder) stmt(stmt syntax.Stmt) ir.Node { return p.stmtFall(stmt, false) } func (p *noder) stmtFall(stmt syntax.Stmt, fallOK bool) ir.Node { p.setlineno(stmt) switch stmt := stmt.(type) { case nil, *syntax.EmptyStmt: return nil case *syntax.LabeledStmt: return p.labeledStmt(stmt, fallOK) case *syntax.BlockStmt: l := p.blockStmt(stmt) if len(l) == 0 { // TODO(mdempsky): Line number? return ir.NewBlockStmt(base.Pos, nil) } return ir.NewBlockStmt(src.NoXPos, l) case *syntax.ExprStmt: return p.wrapname(stmt, p.expr(stmt.X)) case *syntax.SendStmt: return ir.NewSendStmt(p.pos(stmt), p.expr(stmt.Chan), p.expr(stmt.Value)) case *syntax.DeclStmt: return ir.NewBlockStmt(src.NoXPos, p.decls(stmt.DeclList)) case *syntax.AssignStmt: if stmt.Op != 0 && stmt.Op != syntax.Def { n := ir.NewAssignOpStmt(p.pos(stmt), p.binOp(stmt.Op), p.expr(stmt.Lhs), p.expr(stmt.Rhs)) n.IncDec = stmt.Rhs == syntax.ImplicitOne return n } rhs := p.exprList(stmt.Rhs) if list, ok := stmt.Lhs.(*syntax.ListExpr); ok && len(list.ElemList) != 1 || len(rhs) != 1 { n := ir.NewAssignListStmt(p.pos(stmt), ir.OAS2, nil, nil) n.Def = stmt.Op == syntax.Def n.Lhs = p.assignList(stmt.Lhs, n, n.Def) n.Rhs = rhs return n } n := ir.NewAssignStmt(p.pos(stmt), nil, nil) n.Def = stmt.Op == syntax.Def n.X = p.assignList(stmt.Lhs, n, n.Def)[0] n.Y = rhs[0] return n case *syntax.BranchStmt: var op ir.Op switch stmt.Tok { case syntax.Break: op = ir.OBREAK case syntax.Continue: op = ir.OCONTINUE case syntax.Fallthrough: if !fallOK { base.Errorf("fallthrough statement out of place") } op = ir.OFALL case syntax.Goto: op = ir.OGOTO default: panic("unhandled BranchStmt") } var sym *types.Sym if stmt.Label != nil { sym = p.name(stmt.Label) } return ir.NewBranchStmt(p.pos(stmt), op, sym) case *syntax.CallStmt: var op ir.Op switch stmt.Tok { case syntax.Defer: op = ir.ODEFER case syntax.Go: op = ir.OGO default: panic("unhandled CallStmt") } return ir.NewGoDeferStmt(p.pos(stmt), op, p.expr(stmt.Call)) case *syntax.ReturnStmt: n := ir.NewReturnStmt(p.pos(stmt), p.exprList(stmt.Results)) if len(n.Results) == 0 && ir.CurFunc != nil { for _, ln := range ir.CurFunc.Dcl { if ln.Class == ir.PPARAM { continue } if ln.Class != ir.PPARAMOUT { break } if ln.Sym().Def != ln { base.Errorf("%s is shadowed during return", ln.Sym().Name) } } } return n case *syntax.IfStmt: return p.ifStmt(stmt) case *syntax.ForStmt: return p.forStmt(stmt) case *syntax.SwitchStmt: return p.switchStmt(stmt) case *syntax.SelectStmt: return p.selectStmt(stmt) } panic("unhandled Stmt") } func (p *noder) assignList(expr syntax.Expr, defn ir.InitNode, colas bool) []ir.Node { if !colas { return p.exprList(expr) } var exprs []syntax.Expr if list, ok := expr.(*syntax.ListExpr); ok { exprs = list.ElemList } else { exprs = []syntax.Expr{expr} } res := make([]ir.Node, len(exprs)) seen := make(map[*types.Sym]bool, len(exprs)) newOrErr := false for i, expr := range exprs { p.setlineno(expr) res[i] = ir.BlankNode name, ok := expr.(*syntax.Name) if !ok { p.errorAt(expr.Pos(), "non-name %v on left side of :=", p.expr(expr)) newOrErr = true continue } sym := p.name(name) if sym.IsBlank() { continue } if seen[sym] { p.errorAt(expr.Pos(), "%v repeated on left side of :=", sym) newOrErr = true continue } seen[sym] = true if sym.Block == types.Block { res[i] = oldname(sym) continue } newOrErr = true n := typecheck.NewName(sym) typecheck.Declare(n, typecheck.DeclContext) n.Defn = defn defn.PtrInit().Append(ir.NewDecl(base.Pos, ir.ODCL, n)) res[i] = n } if !newOrErr { base.ErrorfAt(defn.Pos(), "no new variables on left side of :=") } return res } func (p *noder) blockStmt(stmt *syntax.BlockStmt) []ir.Node { p.openScope(stmt.Pos()) nodes := p.stmts(stmt.List) p.closeScope(stmt.Rbrace) return nodes } func (p *noder) ifStmt(stmt *syntax.IfStmt) ir.Node { p.openScope(stmt.Pos()) init := p.stmt(stmt.Init) n := ir.NewIfStmt(p.pos(stmt), p.expr(stmt.Cond), p.blockStmt(stmt.Then), nil) if init != nil { *n.PtrInit() = []ir.Node{init} } if stmt.Else != nil { e := p.stmt(stmt.Else) if e.Op() == ir.OBLOCK { e := e.(*ir.BlockStmt) n.Else = e.List } else { n.Else = []ir.Node{e} } } p.closeAnotherScope() return n } func (p *noder) forStmt(stmt *syntax.ForStmt) ir.Node { p.openScope(stmt.Pos()) if r, ok := stmt.Init.(*syntax.RangeClause); ok { if stmt.Cond != nil || stmt.Post != nil { panic("unexpected RangeClause") } n := ir.NewRangeStmt(p.pos(r), nil, nil, p.expr(r.X), nil) if r.Lhs != nil { n.Def = r.Def lhs := p.assignList(r.Lhs, n, n.Def) n.Key = lhs[0] if len(lhs) > 1 { n.Value = lhs[1] } } n.Body = p.blockStmt(stmt.Body) p.closeAnotherScope() return n } n := ir.NewForStmt(p.pos(stmt), p.stmt(stmt.Init), p.expr(stmt.Cond), p.stmt(stmt.Post), p.blockStmt(stmt.Body)) p.closeAnotherScope() return n } func (p *noder) switchStmt(stmt *syntax.SwitchStmt) ir.Node { p.openScope(stmt.Pos()) init := p.stmt(stmt.Init) n := ir.NewSwitchStmt(p.pos(stmt), p.expr(stmt.Tag), nil) if init != nil { *n.PtrInit() = []ir.Node{init} } var tswitch *ir.TypeSwitchGuard if l := n.Tag; l != nil && l.Op() == ir.OTYPESW { tswitch = l.(*ir.TypeSwitchGuard) } n.Cases = p.caseClauses(stmt.Body, tswitch, stmt.Rbrace) p.closeScope(stmt.Rbrace) return n } func (p *noder) caseClauses(clauses []*syntax.CaseClause, tswitch *ir.TypeSwitchGuard, rbrace syntax.Pos) []*ir.CaseClause { nodes := make([]*ir.CaseClause, 0, len(clauses)) for i, clause := range clauses { p.setlineno(clause) if i > 0 { p.closeScope(clause.Pos()) } p.openScope(clause.Pos()) n := ir.NewCaseStmt(p.pos(clause), p.exprList(clause.Cases), nil) if tswitch != nil && tswitch.Tag != nil { nn := typecheck.NewName(tswitch.Tag.Sym()) typecheck.Declare(nn, typecheck.DeclContext) n.Var = nn // keep track of the instances for reporting unused nn.Defn = tswitch } // Trim trailing empty statements. We omit them from // the Node AST anyway, and it's easier to identify // out-of-place fallthrough statements without them. body := clause.Body for len(body) > 0 { if _, ok := body[len(body)-1].(*syntax.EmptyStmt); !ok { break } body = body[:len(body)-1] } n.Body = p.stmtsFall(body, true) if l := len(n.Body); l > 0 && n.Body[l-1].Op() == ir.OFALL { if tswitch != nil { base.Errorf("cannot fallthrough in type switch") } if i+1 == len(clauses) { base.Errorf("cannot fallthrough final case in switch") } } nodes = append(nodes, n) } if len(clauses) > 0 { p.closeScope(rbrace) } return nodes } func (p *noder) selectStmt(stmt *syntax.SelectStmt) ir.Node { return ir.NewSelectStmt(p.pos(stmt), p.commClauses(stmt.Body, stmt.Rbrace)) } func (p *noder) commClauses(clauses []*syntax.CommClause, rbrace syntax.Pos) []*ir.CommClause { nodes := make([]*ir.CommClause, len(clauses)) for i, clause := range clauses { p.setlineno(clause) if i > 0 { p.closeScope(clause.Pos()) } p.openScope(clause.Pos()) nodes[i] = ir.NewCommStmt(p.pos(clause), p.stmt(clause.Comm), p.stmts(clause.Body)) } if len(clauses) > 0 { p.closeScope(rbrace) } return nodes } func (p *noder) labeledStmt(label *syntax.LabeledStmt, fallOK bool) ir.Node { sym := p.name(label.Label) lhs := ir.NewLabelStmt(p.pos(label), sym) var ls ir.Node if label.Stmt != nil { // TODO(mdempsky): Should always be present. ls = p.stmtFall(label.Stmt, fallOK) // Attach label directly to control statement too. if ls != nil { switch ls.Op() { case ir.OFOR: ls := ls.(*ir.ForStmt) ls.Label = sym case ir.ORANGE: ls := ls.(*ir.RangeStmt) ls.Label = sym case ir.OSWITCH: ls := ls.(*ir.SwitchStmt) ls.Label = sym case ir.OSELECT: ls := ls.(*ir.SelectStmt) ls.Label = sym } } } l := []ir.Node{lhs} if ls != nil { if ls.Op() == ir.OBLOCK { ls := ls.(*ir.BlockStmt) l = append(l, ls.List...) } else { l = append(l, ls) } } return ir.NewBlockStmt(src.NoXPos, l) } var unOps = [...]ir.Op{ syntax.Recv: ir.ORECV, syntax.Mul: ir.ODEREF, syntax.And: ir.OADDR, syntax.Not: ir.ONOT, syntax.Xor: ir.OBITNOT, syntax.Add: ir.OPLUS, syntax.Sub: ir.ONEG, } func (p *noder) unOp(op syntax.Operator) ir.Op { if uint64(op) >= uint64(len(unOps)) || unOps[op] == 0 { panic("invalid Operator") } return unOps[op] } var binOps = [...]ir.Op{ syntax.OrOr: ir.OOROR, syntax.AndAnd: ir.OANDAND, syntax.Eql: ir.OEQ, syntax.Neq: ir.ONE, syntax.Lss: ir.OLT, syntax.Leq: ir.OLE, syntax.Gtr: ir.OGT, syntax.Geq: ir.OGE, syntax.Add: ir.OADD, syntax.Sub: ir.OSUB, syntax.Or: ir.OOR, syntax.Xor: ir.OXOR, syntax.Mul: ir.OMUL, syntax.Div: ir.ODIV, syntax.Rem: ir.OMOD, syntax.And: ir.OAND, syntax.AndNot: ir.OANDNOT, syntax.Shl: ir.OLSH, syntax.Shr: ir.ORSH, } func (p *noder) binOp(op syntax.Operator) ir.Op { if uint64(op) >= uint64(len(binOps)) || binOps[op] == 0 { panic("invalid Operator") } return binOps[op] } // checkLangCompat reports an error if the representation of a numeric // literal is not compatible with the current language version. func checkLangCompat(lit *syntax.BasicLit) { s := lit.Value if len(s) <= 2 || types.AllowsGoVersion(types.LocalPkg, 1, 13) { return } // len(s) > 2 if strings.Contains(s, "_") { base.ErrorfVers("go1.13", "underscores in numeric literals") return } if s[0] != '0' { return } radix := s[1] if radix == 'b' || radix == 'B' { base.ErrorfVers("go1.13", "binary literals") return } if radix == 'o' || radix == 'O' { base.ErrorfVers("go1.13", "0o/0O-style octal literals") return } if lit.Kind != syntax.IntLit && (radix == 'x' || radix == 'X') { base.ErrorfVers("go1.13", "hexadecimal floating-point literals") } } func (p *noder) basicLit(lit *syntax.BasicLit) constant.Value { // We don't use the errors of the conversion routines to determine // if a literal string is valid because the conversion routines may // accept a wider syntax than the language permits. Rely on lit.Bad // instead. if lit.Bad { return constant.MakeUnknown() } switch lit.Kind { case syntax.IntLit, syntax.FloatLit, syntax.ImagLit: checkLangCompat(lit) } v := constant.MakeFromLiteral(lit.Value, tokenForLitKind[lit.Kind], 0) if v.Kind() == constant.Unknown { // TODO(mdempsky): Better error message? p.errorAt(lit.Pos(), "malformed constant: %s", lit.Value) } // go/constant uses big.Rat by default, which is more precise, but // causes toolstash -cmp and some tests to fail. For now, convert // to big.Float to match cmd/compile's historical precision. // TODO(mdempsky): Remove. if v.Kind() == constant.Float { v = constant.Make(ir.BigFloat(v)) } return v } var tokenForLitKind = [...]token.Token{ syntax.IntLit: token.INT, syntax.RuneLit: token.CHAR, syntax.FloatLit: token.FLOAT, syntax.ImagLit: token.IMAG, syntax.StringLit: token.STRING, } func (p *noder) name(name *syntax.Name) *types.Sym { return typecheck.Lookup(name.Value) } func (p *noder) mkname(name *syntax.Name) ir.Node { // TODO(mdempsky): Set line number? return mkname(p.name(name)) } func (p *noder) wrapname(n syntax.Node, x ir.Node) ir.Node { // These nodes do not carry line numbers. // Introduce a wrapper node to give them the correct line. switch x.Op() { case ir.OTYPE, ir.OLITERAL: if x.Sym() == nil { break } fallthrough case ir.ONAME, ir.ONONAME, ir.OPACK: p := ir.NewParenExpr(p.pos(n), x) p.SetImplicit(true) return p } return x } func (p *noder) pos(n syntax.Node) src.XPos { // TODO(gri): orig.Pos() should always be known - fix package syntax xpos := base.Pos if pos := n.Pos(); pos.IsKnown() { xpos = p.makeXPos(pos) } return xpos } func (p *noder) setlineno(n syntax.Node) { if n != nil { base.Pos = p.pos(n) } } // error is called concurrently if files are parsed concurrently. func (p *noder) error(err error) { p.err <- err.(syntax.Error) } // pragmas that are allowed in the std lib, but don't have // a syntax.Pragma value (see lex.go) associated with them. var allowedStdPragmas = map[string]bool{ "go:cgo_export_static": true, "go:cgo_export_dynamic": true, "go:cgo_import_static": true, "go:cgo_import_dynamic": true, "go:cgo_ldflag": true, "go:cgo_dynamic_linker": true, "go:embed": true, "go:generate": true, } // *pragmas is the value stored in a syntax.pragmas during parsing. type pragmas struct { Flag ir.PragmaFlag // collected bits Pos []pragmaPos // position of each individual flag Embeds []pragmaEmbed } type pragmaPos struct { Flag ir.PragmaFlag Pos syntax.Pos } type pragmaEmbed struct { Pos syntax.Pos Patterns []string } func (p *noder) checkUnused(pragma *pragmas) { for _, pos := range pragma.Pos { if pos.Flag&pragma.Flag != 0 { p.errorAt(pos.Pos, "misplaced compiler directive") } } if len(pragma.Embeds) > 0 { for _, e := range pragma.Embeds { p.errorAt(e.Pos, "misplaced go:embed directive") } } } func (p *noder) checkUnusedDuringParse(pragma *pragmas) { for _, pos := range pragma.Pos { if pos.Flag&pragma.Flag != 0 { p.error(syntax.Error{Pos: pos.Pos, Msg: "misplaced compiler directive"}) } } if len(pragma.Embeds) > 0 { for _, e := range pragma.Embeds { p.error(syntax.Error{Pos: e.Pos, Msg: "misplaced go:embed directive"}) } } } // pragma is called concurrently if files are parsed concurrently. func (p *noder) pragma(pos syntax.Pos, blankLine bool, text string, old syntax.Pragma) syntax.Pragma { pragma, _ := old.(*pragmas) if pragma == nil { pragma = new(pragmas) } if text == "" { // unused pragma; only called with old != nil. p.checkUnusedDuringParse(pragma) return nil } if strings.HasPrefix(text, "line ") { // line directives are handled by syntax package panic("unreachable") } if !blankLine { // directive must be on line by itself p.error(syntax.Error{Pos: pos, Msg: "misplaced compiler directive"}) return pragma } switch { case strings.HasPrefix(text, "go:linkname "): f := strings.Fields(text) if !(2 <= len(f) && len(f) <= 3) { p.error(syntax.Error{Pos: pos, Msg: "usage: //go:linkname localname [linkname]"}) break } // The second argument is optional. If omitted, we use // the default object symbol name for this and // linkname only serves to mark this symbol as // something that may be referenced via the object // symbol name from another package. var target string if len(f) == 3 { target = f[2] } else if base.Ctxt.Pkgpath != "" { // Use the default object symbol name if the // user didn't provide one. target = objabi.PathToPrefix(base.Ctxt.Pkgpath) + "." + f[1] } else { p.error(syntax.Error{Pos: pos, Msg: "//go:linkname requires linkname argument or -p compiler flag"}) break } p.linknames = append(p.linknames, linkname{pos, f[1], target}) case text == "go:embed", strings.HasPrefix(text, "go:embed "): args, err := parseGoEmbed(text[len("go:embed"):]) if err != nil { p.error(syntax.Error{Pos: pos, Msg: err.Error()}) } if len(args) == 0 { p.error(syntax.Error{Pos: pos, Msg: "usage: //go:embed pattern..."}) break } pragma.Embeds = append(pragma.Embeds, pragmaEmbed{pos, args}) case strings.HasPrefix(text, "go:cgo_import_dynamic "): // This is permitted for general use because Solaris // code relies on it in golang.org/x/sys/unix and others. fields := pragmaFields(text) if len(fields) >= 4 { lib := strings.Trim(fields[3], `"`) if lib != "" && !safeArg(lib) && !isCgoGeneratedFile(pos) { p.error(syntax.Error{Pos: pos, Msg: fmt.Sprintf("invalid library name %q in cgo_import_dynamic directive", lib)}) } p.pragcgo(pos, text) pragma.Flag |= pragmaFlag("go:cgo_import_dynamic") break } fallthrough case strings.HasPrefix(text, "go:cgo_"): // For security, we disallow //go:cgo_* directives other // than cgo_import_dynamic outside cgo-generated files. // Exception: they are allowed in the standard library, for runtime and syscall. if !isCgoGeneratedFile(pos) && !base.Flag.Std { p.error(syntax.Error{Pos: pos, Msg: fmt.Sprintf("//%s only allowed in cgo-generated code", text)}) } p.pragcgo(pos, text) fallthrough // because of //go:cgo_unsafe_args default: verb := text if i := strings.Index(text, " "); i >= 0 { verb = verb[:i] } flag := pragmaFlag(verb) const runtimePragmas = ir.Systemstack | ir.Nowritebarrier | ir.Nowritebarrierrec | ir.Yeswritebarrierrec if !base.Flag.CompilingRuntime && flag&runtimePragmas != 0 { p.error(syntax.Error{Pos: pos, Msg: fmt.Sprintf("//%s only allowed in runtime", verb)}) } if flag == 0 && !allowedStdPragmas[verb] && base.Flag.Std { p.error(syntax.Error{Pos: pos, Msg: fmt.Sprintf("//%s is not allowed in the standard library", verb)}) } pragma.Flag |= flag pragma.Pos = append(pragma.Pos, pragmaPos{flag, pos}) } return pragma } // isCgoGeneratedFile reports whether pos is in a file // generated by cgo, which is to say a file with name // beginning with "_cgo_". Such files are allowed to // contain cgo directives, and for security reasons // (primarily misuse of linker flags), other files are not. // See golang.org/issue/23672. func isCgoGeneratedFile(pos syntax.Pos) bool { return strings.HasPrefix(filepath.Base(filepath.Clean(fileh(pos.Base().Filename()))), "_cgo_") } // safeArg reports whether arg is a "safe" command-line argument, // meaning that when it appears in a command-line, it probably // doesn't have some special meaning other than its own name. // This is copied from SafeArg in cmd/go/internal/load/pkg.go. func safeArg(name string) bool { if name == "" { return false } c := name[0] return '0' <= c && c <= '9' || 'A' <= c && c <= 'Z' || 'a' <= c && c <= 'z' || c == '.' || c == '_' || c == '/' || c >= utf8.RuneSelf } func mkname(sym *types.Sym) ir.Node { n := oldname(sym) if n.Name() != nil && n.Name().PkgName != nil { n.Name().PkgName.Used = true } return n } // parseGoEmbed parses the text following "//go:embed" to extract the glob patterns. // It accepts unquoted space-separated patterns as well as double-quoted and back-quoted Go strings. // go/build/read.go also processes these strings and contains similar logic. func parseGoEmbed(args string) ([]string, error) { var list []string for args = strings.TrimSpace(args); args != ""; args = strings.TrimSpace(args) { var path string Switch: switch args[0] { default: i := len(args) for j, c := range args { if unicode.IsSpace(c) { i = j break } } path = args[:i] args = args[i:] case '`': i := strings.Index(args[1:], "`") if i < 0 { return nil, fmt.Errorf("invalid quoted string in //go:embed: %s", args) } path = args[1 : 1+i] args = args[1+i+1:] case '"': i := 1 for ; i < len(args); i++ { if args[i] == '\\' { i++ continue } if args[i] == '"' { q, err := strconv.Unquote(args[:i+1]) if err != nil { return nil, fmt.Errorf("invalid quoted string in //go:embed: %s", args[:i+1]) } path = q args = args[i+1:] break Switch } } if i >= len(args) { return nil, fmt.Errorf("invalid quoted string in //go:embed: %s", args) } } if args != "" { r, _ := utf8.DecodeRuneInString(args) if !unicode.IsSpace(r) { return nil, fmt.Errorf("invalid quoted string in //go:embed: %s", args) } } list = append(list, path) } return list, nil } func fakeRecv() *ir.Field { return ir.NewField(base.Pos, nil, nil, types.FakeRecvType()) } func (p *noder) funcLit(expr *syntax.FuncLit) ir.Node { xtype := p.typeExpr(expr.Type) fn := ir.NewFunc(p.pos(expr)) fn.SetIsHiddenClosure(ir.CurFunc != nil) fn.Nname = ir.NewNameAt(p.pos(expr), ir.BlankNode.Sym()) // filled in by tcClosure fn.Nname.Func = fn fn.Nname.Ntype = xtype fn.Nname.Defn = fn clo := ir.NewClosureExpr(p.pos(expr), fn) fn.OClosure = clo p.funcBody(fn, expr.Body) ir.FinishCaptureNames(base.Pos, ir.CurFunc, fn) return clo } // A function named init is a special case. // It is called by the initialization before main is run. // To make it unique within a package and also uncallable, // the name, normally "pkg.init", is altered to "pkg.init.0". var renameinitgen int func renameinit() *types.Sym { s := typecheck.LookupNum("init.", renameinitgen) renameinitgen++ return s } // oldname returns the Node that declares symbol s in the current scope. // If no such Node currently exists, an ONONAME Node is returned instead. // Automatically creates a new closure variable if the referenced symbol was // declared in a different (containing) function. func oldname(s *types.Sym) ir.Node { if s.Pkg != types.LocalPkg { return ir.NewIdent(base.Pos, s) } n := ir.AsNode(s.Def) if n == nil { // Maybe a top-level declaration will come along later to // define s. resolve will check s.Def again once all input // source has been processed. return ir.NewIdent(base.Pos, s) } if n, ok := n.(*ir.Name); ok { // TODO(rsc): If there is an outer variable x and we // are parsing x := 5 inside the closure, until we get to // the := it looks like a reference to the outer x so we'll // make x a closure variable unnecessarily. return ir.CaptureName(base.Pos, ir.CurFunc, n) } return n } func varEmbed(p *noder, names []*ir.Name, typ ir.Ntype, exprs []ir.Node, embeds []pragmaEmbed) (newExprs []ir.Node) { haveEmbed := false for _, decl := range p.file.DeclList { imp, ok := decl.(*syntax.ImportDecl) if !ok { // imports always come first break } path, _ := strconv.Unquote(imp.Path.Value) if path == "embed" { haveEmbed = true break } } pos := embeds[0].Pos if !haveEmbed { p.errorAt(pos, "invalid go:embed: missing import \"embed\"") return exprs } if base.Flag.Cfg.Embed.Patterns == nil { p.errorAt(pos, "invalid go:embed: build system did not supply embed configuration") return exprs } if len(names) > 1 { p.errorAt(pos, "go:embed cannot apply to multiple vars") return exprs } if len(exprs) > 0 { p.errorAt(pos, "go:embed cannot apply to var with initializer") return exprs } if typ == nil { // Should not happen, since len(exprs) == 0 now. p.errorAt(pos, "go:embed cannot apply to var without type") return exprs } if typecheck.DeclContext != ir.PEXTERN { p.errorAt(pos, "go:embed cannot apply to var inside func") return exprs } v := names[0] typecheck.Target.Embeds = append(typecheck.Target.Embeds, v) v.Embed = new([]ir.Embed) for _, e := range embeds { *v.Embed = append(*v.Embed, ir.Embed{Pos: p.makeXPos(e.Pos), Patterns: e.Patterns}) } return exprs }