// Copyright 2019 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package loader import ( "bytes" "cmd/internal/bio" "cmd/internal/dwarf" "cmd/internal/goobj2" "cmd/internal/obj" "cmd/internal/objabi" "cmd/internal/sys" "cmd/link/internal/sym" "debug/elf" "fmt" "log" "math/bits" "os" "sort" "strconv" "strings" ) var _ = fmt.Print // Sym encapsulates a global symbol index, used to identify a specific // Go symbol. The 0-valued Sym is corresponds to an invalid symbol. type Sym int // Relocs encapsulates the set of relocations on a given symbol; an // instance of this type is returned by the Loader Relocs() method. type Relocs struct { Count int // number of relocs li int // local index of symbol whose relocs we're examining r *oReader // object reader for containing package l *Loader // loader extIdx Sym // index of external symbol we're examining or 0 } // Reloc contains the payload for a specific relocation. // TODO: replace this with sym.Reloc, once we change the // relocation target from "*sym.Symbol" to "loader.Sym" in sym.Reloc. type Reloc struct { Off int32 // offset to rewrite Size uint8 // number of bytes to rewrite: 0, 1, 2, or 4 Type objabi.RelocType // the relocation type Add int64 // addend Sym Sym // global index of symbol the reloc addresses } // oReader is a wrapper type of obj.Reader, along with some // extra information. // TODO: rename to objReader once the old one is gone? type oReader struct { *goobj2.Reader unit *sym.CompilationUnit version int // version of static symbol flags uint32 // read from object file pkgprefix string rcache []Sym // cache mapping local PkgNone symbol to resolved Sym } type objIdx struct { r *oReader i Sym // start index e Sym // end index } type nameVer struct { name string v int } type bitmap []uint32 // set the i-th bit. func (bm bitmap) set(i Sym) { n, r := uint(i)/32, uint(i)%32 bm[n] |= 1 << r } // unset the i-th bit. func (bm bitmap) unset(i Sym) { n, r := uint(i)/32, uint(i)%32 bm[n] &^= (1 << r) } // whether the i-th bit is set. func (bm bitmap) has(i Sym) bool { n, r := uint(i)/32, uint(i)%32 return bm[n]&(1< curLen { b = append(b, makeBitmap(reqLen+1-curLen)...) } return b } // A Loader loads new object files and resolves indexed symbol references. // // Notes on the layout of global symbol index space: // // - Go object files are read before host object files; each Go object // read allocates a new chunk of global index space of size P + NP, // where P is the number of package defined symbols in the object and // NP is the number of non-package defined symbols. // // - In loader.LoadRefs(), the loader makes a sweep through all of the // non-package references in each object file and allocates sym indices // for any symbols that have not yet been defined (start of this space // is marked by loader.extStart). // // - Host object file loading happens; the host object loader does a // name/version lookup for each symbol it finds; this can wind up // extending the external symbol index space range. The host object // loader currently stores symbol payloads in sym.Symbol objects, // which get handed off to the loader. // // - A given external symbol (Sym) either has a sym.Symbol acting as // its backing store (this will continue to be the case until we // finish rewriting the host object loader to work entirely with // loader.Sym) or it has a "payload" backing store (represented by // extSymPayload). Newly created external symbols (created by // a call to AddExtSym or equivalent) start out in the "has payload" // state, and continue until installSym is called for the sym // index in question. // // - At some point (when the wayfront is pushed through all of the // linker), all external symbols will be payload-based, and we can // get rid of the loader.Syms array. // type Loader struct { start map[*oReader]Sym // map from object file to its start index objs []objIdx // sorted by start index (i.e. objIdx.i) max Sym // current max index extStart Sym // from this index on, the symbols are externally defined builtinSyms []Sym // global index of builtin symbols ocache int // index (into 'objs') of most recent lookup symsByName [2]map[string]Sym // map symbol name to index, two maps are for ABI0 and ABIInternal extStaticSyms map[nameVer]Sym // externally defined static symbols, keyed by name overwrite map[Sym]Sym // overwrite[i]=j if symbol j overwrites symbol i payloads []extSymPayload // contents of linker-materialized external syms values []int64 // symbol values, indexed by global sym index itablink map[Sym]struct{} // itablink[j] defined if j is go.itablink.* objByPkg map[string]*oReader // map package path to its Go object reader Syms []*sym.Symbol // indexed symbols. XXX we still make sym.Symbol for now. symBatch []sym.Symbol // batch of symbols. anonVersion int // most recently assigned ext static sym pseudo-version // Bitmaps and other side structures used to store data used to store // symbol flags/attributes; these are to be accessed via the // corresponding loader "AttrXXX" and "SetAttrXXX" methods. Please // visit the comments on these methods for more details on the // semantics / interpretation of the specific flags or attribute. attrReachable bitmap // reachable symbols, indexed by global index attrOnList bitmap // "on list" symbols, indexed by global index attrLocal bitmap // "local" symbols, indexed by global index attrNotInSymbolTable bitmap // "not in symtab" symbols, indexed by glob idx attrVisibilityHidden bitmap // hidden symbols, indexed by ext sym index attrDuplicateOK bitmap // dupOK symbols, indexed by ext sym index attrShared bitmap // shared symbols, indexed by ext sym index attrExternal bitmap // external symbols, indexed by ext sym index attrReadOnly map[Sym]bool // readonly data for this sym attrTopFrame map[Sym]struct{} // top frame symbols attrSpecial map[Sym]struct{} // "special" frame symbols attrCgoExportDynamic map[Sym]struct{} // "cgo_export_dynamic" symbols attrCgoExportStatic map[Sym]struct{} // "cgo_export_static" symbols // Outer and Sub relations for symbols. // TODO: figure out whether it's more efficient to just have these // as fields on extSymPayload (note that this won't be a viable // strategy if somewhere in the linker we set sub/outer for a // non-external sym). outer map[Sym]Sym sub map[Sym]Sym align map[Sym]int32 // stores alignment for symbols dynimplib map[Sym]string // stores Dynimplib symbol attribute dynimpvers map[Sym]string // stores Dynimpvers symbol attribute localentry map[Sym]uint8 // stores Localentry symbol attribute extname map[Sym]string // stores Extname symbol attribute elfType map[Sym]elf.SymType // stores elf type symbol property symFile map[Sym]string // stores file for shlib-derived syms // Used to implement field tracking; created during deadcode if // field tracking is enabled. Reachparent[K] contains the index of // the symbol that triggered the marking of symbol K as live. Reachparent []Sym relocBatch []sym.Reloc // for bulk allocation of relocations flags uint32 strictDupMsgs int // number of strict-dup warning/errors, when FlagStrictDups is enabled elfsetstring elfsetstringFunc } type elfsetstringFunc func(s *sym.Symbol, str string, off int) // extSymPayload holds the payload (data + relocations) for linker-synthesized // external symbols (note that symbol value is stored in a separate slice). type extSymPayload struct { name string // TODO: would this be better as offset into str table? size int64 ver int kind sym.SymKind objidx uint32 // index of original object if sym made by cloneToExternal gotype Sym // Gotype (0 if not present) relocs []Reloc data []byte } const ( // Loader.flags FlagStrictDups = 1 << iota ) func NewLoader(flags uint32, elfsetstring elfsetstringFunc) *Loader { nbuiltin := goobj2.NBuiltin() return &Loader{ start: make(map[*oReader]Sym), objs: []objIdx{{nil, 0, 0}}, symsByName: [2]map[string]Sym{make(map[string]Sym), make(map[string]Sym)}, objByPkg: make(map[string]*oReader), outer: make(map[Sym]Sym), sub: make(map[Sym]Sym), align: make(map[Sym]int32), dynimplib: make(map[Sym]string), dynimpvers: make(map[Sym]string), localentry: make(map[Sym]uint8), extname: make(map[Sym]string), attrReadOnly: make(map[Sym]bool), elfType: make(map[Sym]elf.SymType), symFile: make(map[Sym]string), attrTopFrame: make(map[Sym]struct{}), attrSpecial: make(map[Sym]struct{}), attrCgoExportDynamic: make(map[Sym]struct{}), attrCgoExportStatic: make(map[Sym]struct{}), overwrite: make(map[Sym]Sym), itablink: make(map[Sym]struct{}), extStaticSyms: make(map[nameVer]Sym), builtinSyms: make([]Sym, nbuiltin), flags: flags, elfsetstring: elfsetstring, } } // Return the start index in the global index space for a given object file. func (l *Loader) startIndex(r *oReader) Sym { return l.start[r] } // Add object file r, return the start index. func (l *Loader) addObj(pkg string, r *oReader) Sym { if _, ok := l.start[r]; ok { panic("already added") } pkg = objabi.PathToPrefix(pkg) // the object file contains escaped package path if _, ok := l.objByPkg[pkg]; !ok { l.objByPkg[pkg] = r } n := r.NSym() + r.NNonpkgdef() i := l.max + 1 l.start[r] = i l.objs = append(l.objs, objIdx{r, i, i + Sym(n) - 1}) l.max += Sym(n) l.growValues(int(l.max)) return i } // Add a symbol with a given index, return if it is added. func (l *Loader) AddSym(name string, ver int, i Sym, r *oReader, dupok bool, typ sym.SymKind) bool { if l.extStart != 0 { panic("AddSym called after AddExtSym is called") } if ver == r.version { // Static symbol. Add its global index but don't // add to name lookup table, as it cannot be // referenced by name. return true } if oldi, ok := l.symsByName[ver][name]; ok { if dupok { if l.flags&FlagStrictDups != 0 { l.checkdup(name, i, r, oldi) } return false } oldr, li := l.toLocal(oldi) oldsym := goobj2.Sym{} oldsym.Read(oldr.Reader, oldr.SymOff(li)) if oldsym.Dupok() { return false } overwrite := r.DataSize(int(i-l.startIndex(r))) != 0 if overwrite { // new symbol overwrites old symbol. oldtyp := sym.AbiSymKindToSymKind[objabi.SymKind(oldsym.Type)] if !oldtyp.IsData() && r.DataSize(li) == 0 { log.Fatalf("duplicated definition of symbol " + name) } l.overwrite[oldi] = i } else { // old symbol overwrites new symbol. if typ != sym.SDATA && typ != sym.SNOPTRDATA && typ != sym.SBSS && typ != sym.SNOPTRBSS { // only allow overwriting data symbol log.Fatalf("duplicated definition of symbol " + name) } l.overwrite[i] = oldi return false } } l.symsByName[ver][name] = i return true } // newExtSym creates a new external sym with the specified // name/version. func (l *Loader) newExtSym(name string, ver int) Sym { l.max++ i := l.max if l.extStart == 0 { l.extStart = i } l.growSyms(int(i)) pi := i - l.extStart l.payloads[pi].name = name l.payloads[pi].ver = ver return i } // Add an external symbol (without index). Return the index of newly added // symbol, or 0 if not added. func (l *Loader) AddExtSym(name string, ver int) Sym { i := l.Lookup(name, ver) if i != 0 { return 0 } i = l.newExtSym(name, ver) static := ver >= sym.SymVerStatic || ver < 0 if static { l.extStaticSyms[nameVer{name, ver}] = i } else { l.symsByName[ver][name] = i } return i } // LookupOrCreateSym looks up the symbol with the specified name/version, // returning its Sym index if found. If the lookup fails, a new external // Sym will be created, entered into the lookup tables, and returned. func (l *Loader) LookupOrCreateSym(name string, ver int) Sym { i := l.Lookup(name, ver) if i != 0 { return i } i = l.newExtSym(name, ver) static := ver >= sym.SymVerStatic || ver < 0 if static { l.extStaticSyms[nameVer{name, ver}] = i } else { l.symsByName[ver][name] = i } return i } func (l *Loader) IsExternal(i Sym) bool { return l.extStart != 0 && i >= l.extStart } // getPayload returns a pointer to the extSymPayload struct for an // external symbol if the symbol has a payload, or nil if the // data for the sym is being stored in a sym.Symbol. Will panic if // the symbol in question is bogus (zero or not an external sym). func (l *Loader) getPayload(i Sym) *extSymPayload { if l.extStart == 0 || i < l.extStart { panic(fmt.Sprintf("bogus symbol index %d in getPayload", i)) } if l.Syms[i] != nil { return nil } pi := i - l.extStart return &l.payloads[pi] } func (ms *extSymPayload) Grow(siz int64) { if int64(int(siz)) != siz { log.Fatalf("symgrow size %d too long", siz) } if int64(len(ms.data)) >= siz { return } if cap(ms.data) < int(siz) { cl := len(ms.data) ms.data = append(ms.data, make([]byte, int(siz)+1-cl)...) ms.data = ms.data[0:cl] } ms.data = ms.data[:siz] } // Ensure Syms slice has enough space, as well as growing the // 'payloads' slice. func (l *Loader) growSyms(i int) { n := len(l.Syms) if n > i { return } l.Syms = append(l.Syms, make([]*sym.Symbol, i+1-n)...) l.payloads = append(l.payloads, make([]extSymPayload, i+1-n)...) l.growValues(int(i) + 1) l.growAttrBitmaps(int(i) + 1) } // getOverwrite returns the overwrite symbol for 'symIdx', while // collapsing any chains of overwrites along the way. This is // apparently needed in cases where we add an overwrite entry X -> Y // during preload (where both X and Y are non-external symbols), and // then we add an additional entry to the overwrite map Y -> W in // cloneToExternal when we encounter the real definition of the symbol // in a host object file, and we need to build up W's content. // // Note: it would be nice to avoid this sort of complexity. One of the // main reasons we wind up with overwrites has to do with the way the // compiler handles link-named symbols that are 'defined elsewhere': // at the moment they wind up as no-package defs. For example, consider // the variable "runtime.no_pointers_stackmap". This variable is defined // in an assembly file as RODATA, then in one of the Go files it is // declared this way: // // var no_pointers_stackmap uint64 // defined in assembly // // This generates what amounts to a weak definition (in the object // containing the line of code above), which is then overriden by the // stronger def from the assembly file. Rather than have things work // this way, it would be better if in the Go file we emitted a // no-package ref instead of a no-package def, which would eliminate // the need for overwrites. Doing this would also require changing the // semantics of //go:linkname, however; we'd have to insure that in // the cross-package case there is a go:linkname directive on both // ends. func (l *Loader) getOverwrite(symIdx Sym) Sym { var seen map[Sym]bool result := symIdx cur := symIdx for { if ov, ok := l.overwrite[cur]; ok { if seen == nil { seen = make(map[Sym]bool) seen[symIdx] = true } if _, ok := seen[ov]; ok { panic("cycle in overwrite map") } else { seen[cur] = true } cur = ov } else { break } } if cur != symIdx { result = cur cur = symIdx for { if ov, ok := l.overwrite[cur]; ok { l.overwrite[cur] = result cur = ov } else { break } } } return result } // Convert a local index to a global index. func (l *Loader) toGlobal(r *oReader, i int) Sym { g := l.startIndex(r) + Sym(i) g = l.getOverwrite(g) return g } // Convert a global index to a local index. func (l *Loader) toLocal(i Sym) (*oReader, int) { if ov, ok := l.overwrite[i]; ok { i = ov } if l.IsExternal(i) { return nil, int(i - l.extStart) } oc := l.ocache if oc != 0 && i >= l.objs[oc].i && i <= l.objs[oc].e { return l.objs[oc].r, int(i - l.objs[oc].i) } // Search for the local object holding index i. // Below k is the first one that has its start index > i, // so k-1 is the one we want. k := sort.Search(len(l.objs), func(k int) bool { return l.objs[k].i > i }) l.ocache = k - 1 return l.objs[k-1].r, int(i - l.objs[k-1].i) } // rcacheGet checks for a valid entry for 's' in the readers cache, // where 's' is a local PkgIdxNone ref or def, or zero if // the cache is empty or doesn't contain a value for 's'. func (or *oReader) rcacheGet(symIdx uint32) Sym { if len(or.rcache) > 0 { return or.rcache[symIdx] } return 0 } // rcacheSet installs a new entry in the oReader's PkgNone // resolver cache for the specified PkgIdxNone ref or def, // allocating a new cache if needed. func (or *oReader) rcacheSet(symIdx uint32, gsym Sym) { if len(or.rcache) == 0 { or.rcache = make([]Sym, or.NNonpkgdef()+or.NNonpkgref()) } or.rcache[symIdx] = gsym } // Resolve a local symbol reference. Return global index. func (l *Loader) resolve(r *oReader, s goobj2.SymRef) Sym { var rr *oReader switch p := s.PkgIdx; p { case goobj2.PkgIdxInvalid: if s.SymIdx != 0 { panic("bad sym ref") } return 0 case goobj2.PkgIdxNone: // Check for cached version first if cached := r.rcacheGet(s.SymIdx); cached != 0 { ov := l.getOverwrite(cached) if cached != ov { r.rcacheSet(s.SymIdx, ov) return ov } } // Resolve by name i := int(s.SymIdx) + r.NSym() osym := goobj2.Sym{} osym.Read(r.Reader, r.SymOff(i)) name := strings.Replace(osym.Name, "\"\".", r.pkgprefix, -1) v := abiToVer(osym.ABI, r.version) gsym := l.getOverwrite(l.Lookup(name, v)) // Add to cache, then return. r.rcacheSet(s.SymIdx, gsym) return gsym case goobj2.PkgIdxBuiltin: return l.builtinSyms[s.SymIdx] case goobj2.PkgIdxSelf: rr = r default: pkg := r.Pkg(int(p)) var ok bool rr, ok = l.objByPkg[pkg] if !ok { log.Fatalf("reference of nonexisted package %s, from %v", pkg, r.unit.Lib) } } return l.toGlobal(rr, int(s.SymIdx)) } // Look up a symbol by name, return global index, or 0 if not found. // This is more like Syms.ROLookup than Lookup -- it doesn't create // new symbol. func (l *Loader) Lookup(name string, ver int) Sym { if ver >= sym.SymVerStatic || ver < 0 { return l.extStaticSyms[nameVer{name, ver}] } return l.symsByName[ver][name] } // Returns whether i is a dup of another symbol, and i is not // "primary", i.e. Lookup i by name will not return i. func (l *Loader) IsDup(i Sym) bool { if _, ok := l.overwrite[i]; ok { return true } if l.IsExternal(i) { return false } r, li := l.toLocal(i) osym := goobj2.Sym{} osym.Read(r.Reader, r.SymOff(li)) if !osym.Dupok() { return false } if osym.Name == "" { return false // Unnamed aux symbol cannot be dup. } if osym.ABI == goobj2.SymABIstatic { return false // Static symbol cannot be dup. } name := strings.Replace(osym.Name, "\"\".", r.pkgprefix, -1) ver := abiToVer(osym.ABI, r.version) return l.symsByName[ver][name] != i } // Check that duplicate symbols have same contents. func (l *Loader) checkdup(name string, i Sym, r *oReader, dup Sym) { li := int(i - l.startIndex(r)) p := r.Data(li) if strings.HasPrefix(name, "go.info.") { p, _ = patchDWARFName1(p, r) } rdup, ldup := l.toLocal(dup) pdup := rdup.Data(ldup) if strings.HasPrefix(name, "go.info.") { pdup, _ = patchDWARFName1(pdup, rdup) } if bytes.Equal(p, pdup) { return } reason := "same length but different contents" if len(p) != len(pdup) { reason = fmt.Sprintf("new length %d != old length %d", len(p), len(pdup)) } fmt.Fprintf(os.Stderr, "cmd/link: while reading object for '%v': duplicate symbol '%s', previous def at '%v', with mismatched payload: %s\n", r.unit.Lib, name, rdup.unit.Lib, reason) // For the moment, whitelist DWARF subprogram DIEs for // auto-generated wrapper functions. What seems to happen // here is that we get different line numbers on formal // params; I am guessing that the pos is being inherited // from the spot where the wrapper is needed. whitelist := strings.HasPrefix(name, "go.info.go.interface") || strings.HasPrefix(name, "go.info.go.builtin") || strings.HasPrefix(name, "go.debuglines") if !whitelist { l.strictDupMsgs++ } } func (l *Loader) NStrictDupMsgs() int { return l.strictDupMsgs } // Number of total symbols. func (l *Loader) NSym() int { return int(l.max + 1) } // Number of defined Go symbols. func (l *Loader) NDef() int { return int(l.extStart) } // Returns the raw (unpatched) name of the i-th symbol. func (l *Loader) RawSymName(i Sym) string { if l.IsExternal(i) { if s := l.Syms[i]; s != nil { return s.Name } pp := l.getPayload(i) return pp.name } r, li := l.toLocal(i) osym := goobj2.Sym{} osym.Read(r.Reader, r.SymOff(li)) return osym.Name } // Returns the (patched) name of the i-th symbol. func (l *Loader) SymName(i Sym) string { if l.IsExternal(i) { if s := l.Syms[i]; s != nil { return s.Name // external name should already be patched? } pp := l.getPayload(i) return pp.name } r, li := l.toLocal(i) osym := goobj2.Sym{} osym.Read(r.Reader, r.SymOff(li)) return strings.Replace(osym.Name, "\"\".", r.pkgprefix, -1) } // Returns the version of the i-th symbol. func (l *Loader) SymVersion(i Sym) int { if l.IsExternal(i) { if s := l.Syms[i]; s != nil { return int(s.Version) } pp := l.getPayload(i) return pp.ver } r, li := l.toLocal(i) osym := goobj2.Sym{} osym.Read(r.Reader, r.SymOff(li)) return int(abiToVer(osym.ABI, r.version)) } // Returns the type of the i-th symbol. func (l *Loader) SymType(i Sym) sym.SymKind { if l.IsExternal(i) { if s := l.Syms[i]; s != nil { return s.Type } pp := l.getPayload(i) if pp != nil { return pp.kind } return 0 } r, li := l.toLocal(i) osym := goobj2.Sym{} osym.Read(r.Reader, r.SymOff(li)) return sym.AbiSymKindToSymKind[objabi.SymKind(osym.Type)] } // Returns the attributes of the i-th symbol. func (l *Loader) SymAttr(i Sym) uint8 { if l.IsExternal(i) { // TODO: do something? External symbols have different representation of attributes. For now, ReflectMethod is the only thing matters and it cannot be set by external symbol. return 0 } r, li := l.toLocal(i) osym := goobj2.Sym{} osym.Read(r.Reader, r.SymOff(li)) return osym.Flag } // AttrReachable returns true for symbols that are transitively // referenced from the entry points. Unreachable symbols are not // written to the output. func (l *Loader) AttrReachable(i Sym) bool { return l.attrReachable.has(i) } // SetAttrReachable sets the reachability property for a symbol (see // AttrReachable). func (l *Loader) SetAttrReachable(i Sym, v bool) { if v { l.attrReachable.set(i) } else { l.attrReachable.unset(i) } } // AttrOnList returns true for symbols that are on some list (such as // the list of all text symbols, or one of the lists of data symbols) // and is consulted to avoid bugs where a symbol is put on a list // twice. func (l *Loader) AttrOnList(i Sym) bool { return l.attrOnList.has(i) } // SetAttrOnList sets the "on list" property for a symbol (see // AttrOnList). func (l *Loader) SetAttrOnList(i Sym, v bool) { if v { l.attrOnList.set(i) } else { l.attrOnList.unset(i) } } // AttrLocal returns true for symbols that are only visible within the // module (executable or shared library) being linked. This attribute // is applied to thunks and certain other linker-generated symbols. func (l *Loader) AttrLocal(i Sym) bool { return l.attrLocal.has(i) } // SetAttrLocal the "local" property for a symbol (see AttrLocal above). func (l *Loader) SetAttrLocal(i Sym, v bool) { if v { l.attrLocal.set(i) } else { l.attrLocal.unset(i) } } // AttrNotInSymbolTable returns true for symbols that should not be // added to the symbol table of the final generated load module. func (l *Loader) AttrNotInSymbolTable(i Sym) bool { return l.attrNotInSymbolTable.has(i) } // SetAttrNotInSymbolTable the "not in symtab" property for a symbol // (see AttrNotInSymbolTable above). func (l *Loader) SetAttrNotInSymbolTable(i Sym, v bool) { if v { l.attrNotInSymbolTable.set(i) } else { l.attrNotInSymbolTable.unset(i) } } // AttrVisibilityHidden symbols returns true for ELF symbols with // visibility set to STV_HIDDEN. They become local symbols in // the final executable. Only relevant when internally linking // on an ELF platform. func (l *Loader) AttrVisibilityHidden(i Sym) bool { if i < l.extStart { return false } return l.attrVisibilityHidden.has(i - l.extStart) } // SetAttrVisibilityHidden sets the "hidden visibility" property for a // symbol (see AttrVisibilityHidden). func (l *Loader) SetAttrVisibilityHidden(i Sym, v bool) { if i < l.extStart { panic("tried to set visibility attr on non-external symbol") } if v { l.attrVisibilityHidden.set(i - l.extStart) } else { l.attrVisibilityHidden.unset(i - l.extStart) } } // AttrDuplicateOK returns true for a symbol that can be present in // multiple object files. func (l *Loader) AttrDuplicateOK(i Sym) bool { if i < l.extStart { // TODO: if this path winds up being taken frequently, it // might make more sense to copy the flag value out of the object // into a larger bitmap during preload. r, li := l.toLocal(i) osym := goobj2.Sym{} osym.Read(r.Reader, r.SymOff(li)) return osym.Dupok() } return l.attrDuplicateOK.has(i - l.extStart) } // SetAttrDuplicateOK sets the "duplicate OK" property for an external // symbol (see AttrDuplicateOK). func (l *Loader) SetAttrDuplicateOK(i Sym, v bool) { if i < l.extStart { panic("tried to set dupok attr on non-external symbol") } if v { l.attrDuplicateOK.set(i - l.extStart) } else { l.attrDuplicateOK.unset(i - l.extStart) } } // AttrShared returns true for symbols compiled with the -shared option. func (l *Loader) AttrShared(i Sym) bool { if i < l.extStart { // TODO: if this path winds up being taken frequently, it // might make more sense to copy the flag value out of the // object into a larger bitmap during preload. r, _ := l.toLocal(i) return (r.Flags() & goobj2.ObjFlagShared) != 0 } return l.attrShared.has(i - l.extStart) } // SetAttrShared sets the "shared" property for an external // symbol (see AttrShared). func (l *Loader) SetAttrShared(i Sym, v bool) { if i < l.extStart { panic("tried to set shared attr on non-external symbol") } if v { l.attrShared.set(i - l.extStart) } else { l.attrShared.unset(i - l.extStart) } } // AttrExternal returns true for function symbols loaded from host // object files. func (l *Loader) AttrExternal(i Sym) bool { if i < l.extStart { return false } return l.attrExternal.has(i - l.extStart) } // SetAttrExternal sets the "external" property for an host object // symbol (see AttrExternal). func (l *Loader) SetAttrExternal(i Sym, v bool) { if i < l.extStart { panic("tried to set external attr on non-external symbol") } if v { l.attrExternal.set(i - l.extStart) } else { l.attrExternal.unset(i - l.extStart) } } // AttrTopFrame returns true for a function symbol that is an entry // point, meaning that unwinders should stop when they hit this // function. func (l *Loader) AttrTopFrame(i Sym) bool { _, ok := l.attrTopFrame[i] return ok } // SetAttrTopFrame sets the "top frame" property for a symbol (see // AttrTopFrame). func (l *Loader) SetAttrTopFrame(i Sym, v bool) { if v { l.attrTopFrame[i] = struct{}{} } else { delete(l.attrTopFrame, i) } } // AttrSpecial returns true for a symbols that do not have their // address (i.e. Value) computed by the usual mechanism of // data.go:dodata() & data.go:address(). func (l *Loader) AttrSpecial(i Sym) bool { _, ok := l.attrSpecial[i] return ok } // SetAttrSpecial sets the "special" property for a symbol (see // AttrSpecial). func (l *Loader) SetAttrSpecial(i Sym, v bool) { if v { l.attrSpecial[i] = struct{}{} } else { delete(l.attrSpecial, i) } } // AttrCgoExportDynamic returns true for a symbol that has been // specially marked via the "cgo_export_dynamic" compiler directive // written by cgo (in response to //export directives in the source). func (l *Loader) AttrCgoExportDynamic(i Sym) bool { _, ok := l.attrCgoExportDynamic[i] return ok } // SetAttrCgoExportDynamic sets the "cgo_export_dynamic" for a symbol // (see AttrCgoExportDynamic). func (l *Loader) SetAttrCgoExportDynamic(i Sym, v bool) { if v { l.attrCgoExportDynamic[i] = struct{}{} } else { delete(l.attrCgoExportDynamic, i) } } // AttrCgoExportStatic returns true for a symbol that has been // specially marked via the "cgo_export_static" directive // written by cgo. func (l *Loader) AttrCgoExportStatic(i Sym) bool { _, ok := l.attrCgoExportStatic[i] return ok } // SetAttrCgoExportStatic sets the "cgo_export_dynamic" for a symbol // (see AttrCgoExportStatic). func (l *Loader) SetAttrCgoExportStatic(i Sym, v bool) { if v { l.attrCgoExportStatic[i] = struct{}{} } else { delete(l.attrCgoExportStatic, i) } } // AttrReadOnly returns true for a symbol whose underlying data // is stored via a read-only mmap. func (l *Loader) AttrReadOnly(i Sym) bool { if v, ok := l.attrReadOnly[i]; ok { return v } if i >= l.extStart { return false } r, _ := l.toLocal(i) return r.ReadOnly() } // SetAttrReadOnly sets the "cgo_export_dynamic" for a symbol // (see AttrReadOnly). func (l *Loader) SetAttrReadOnly(i Sym, v bool) { l.attrReadOnly[i] = v } // AttrSubSymbol returns true for symbols that are listed as a // sub-symbol of some other outer symbol. The sub/outer mechanism is // used when loading host objects (sections from the host object // become regular linker symbols and symbols go on the Sub list of // their section) and for constructing the global offset table when // internally linking a dynamic executable. func (l *Loader) AttrSubSymbol(i Sym) bool { // we don't explicitly store this attribute any more -- return // a value based on the sub-symbol setting. return l.OuterSym(i) != 0 } // AttrContainer returns true for symbols that are listed as a // sub-symbol of some other outer symbol. The sub/outer mechanism is // used when loading host objects (sections from the host object // become regular linker symbols and symbols go on the Sub list of // their section) and for constructing the global offset table when // internally linking a dynamic executable. func (l *Loader) AttrContainer(i Sym) bool { // we don't explicitly store this attribute any more -- return // a value based on the sub-symbol setting. return l.SubSym(i) != 0 } // Note that we don't have SetAttrSubSymbol' or 'SetAttrContainer' methods // in the loader; clients should just use methods like PrependSub // to establish these relationships // Returns whether the i-th symbol has ReflectMethod attribute set. func (l *Loader) IsReflectMethod(i Sym) bool { return l.SymAttr(i)&goobj2.SymFlagReflectMethod != 0 } // Returns whether this is a Go type symbol. func (l *Loader) IsGoType(i Sym) bool { return l.SymAttr(i)&goobj2.SymFlagGoType != 0 } // Returns whether this is a "go.itablink.*" symbol. func (l *Loader) IsItabLink(i Sym) bool { if _, ok := l.itablink[i]; ok { return true } return false } // growValues grows the slice used to store symbol values. func (l *Loader) growValues(reqLen int) { curLen := len(l.values) if reqLen > curLen { l.values = append(l.values, make([]int64, reqLen+1-curLen)...) } } // SymValue returns the value of the i-th symbol. i is global index. func (l *Loader) SymValue(i Sym) int64 { return l.values[i] } // SetSymValue sets the value of the i-th symbol. i is global index. func (l *Loader) SetSymValue(i Sym, val int64) { l.values[i] = val } // Returns the symbol content of the i-th symbol. i is global index. func (l *Loader) Data(i Sym) []byte { if l.IsExternal(i) { if s := l.Syms[i]; s != nil { return s.P } pp := l.getPayload(i) if pp != nil { return pp.data } return nil } r, li := l.toLocal(i) return r.Data(li) } // SymAlign returns the alignment for a symbol. func (l *Loader) SymAlign(i Sym) int32 { // If an alignment has been recorded, return that. if align, ok := l.align[i]; ok { return align } // TODO: would it make sense to return an arch-specific // alignment depending on section type? E.g. STEXT => 32, // SDATA => 1, etc? return 0 } // SetSymAlign sets the alignment for a symbol. func (l *Loader) SetSymAlign(i Sym, align int32) { // reject bad synbols if i > l.max || i == 0 { panic("bad symbol index in SetSymAlign") } // Reject nonsense alignments. // TODO: do we need this? if align < 0 { panic("bad alignment value") } if align == 0 { delete(l.align, i) } else { // Alignment should be a power of 2. if bits.OnesCount32(uint32(align)) != 1 { panic("bad alignment value") } l.align[i] = align } } // SymDynImplib returns the "dynimplib" attribute for the specified // symbol, making up a portion of the info for a symbol specified // on a "cgo_import_dynamic" compiler directive. func (l *Loader) SymDynimplib(i Sym) string { return l.dynimplib[i] } // SetSymDynimplib sets the "dynimplib" attribute for a symbol. func (l *Loader) SetSymDynimplib(i Sym, value string) { // reject bad symbols if i > l.max || i == 0 { panic("bad symbol index in SetDynimplib") } if value == "" { delete(l.dynimplib, i) } else { l.dynimplib[i] = value } } // SymDynimpvers returns the "dynimpvers" attribute for the specified // symbol, making up a portion of the info for a symbol specified // on a "cgo_import_dynamic" compiler directive. func (l *Loader) SymDynimpvers(i Sym) string { return l.dynimpvers[i] } // SetSymDynimpvers sets the "dynimpvers" attribute for a symbol. func (l *Loader) SetSymDynimpvers(i Sym, value string) { // reject bad symbols if i > l.max || i == 0 { panic("bad symbol index in SetDynimpvers") } if value == "" { delete(l.dynimpvers, i) } else { l.dynimpvers[i] = value } } // SymExtname returns the "extname" value for the specified // symbol. func (l *Loader) SymExtname(i Sym) string { return l.extname[i] } // SetSymExtname sets the "extname" attribute for a symbol. func (l *Loader) SetSymExtname(i Sym, value string) { // reject bad symbols if i > l.max || i == 0 { panic("bad symbol index in SetExtname") } if value == "" { delete(l.extname, i) } else { l.extname[i] = value } } // SymElfType returns the previously recorded ELF type for a symbol // (used only for symbols read from shared libraries by ldshlibsyms). // It is not set for symbols defined by the packages being linked or // by symbols read by ldelf (and so is left as elf.STT_NOTYPE). func (l *Loader) SymElfType(i Sym) elf.SymType { if et, ok := l.elfType[i]; ok { return et } return elf.STT_NOTYPE } // SetSymElfType sets the elf type attribute for a symbol. func (l *Loader) SetSymElfType(i Sym, et elf.SymType) { // reject bad symbols if i > l.max || i == 0 { panic("bad symbol index in SetSymElfType") } if et == elf.STT_NOTYPE { delete(l.elfType, i) } else { l.elfType[i] = et } } // SymGoType returns the 'Gotype' property for a given symbol (set by // the Go compiler for variable symbols). This version relies on // reading aux symbols for the target sym -- it could be that a faster // approach would be to check for gotype during preload and copy the // results in to a map (might want to try this at some point and see // if it helps speed things up). func (l *Loader) SymGoType(i Sym) Sym { if l.IsExternal(i) { if l.Syms[i] != nil { panic("gotype already converted to sym.Symbol") } pp := l.getPayload(i) return pp.gotype } r, li := l.toLocal(i) naux := r.NAux(li) for j := 0; j < naux; j++ { a := goobj2.Aux{} a.Read(r.Reader, r.AuxOff(li, j)) switch a.Type { case goobj2.AuxGotype: return l.resolve(r, a.Sym) } } return 0 } // SymUnit returns the compilation unit for a given symbol (which will // typically be nil for external or linker-manufactured symbols). func (l *Loader) SymUnit(i Sym) *sym.CompilationUnit { if l.IsExternal(i) { if l.Syms[i] != nil { return l.Syms[i].Unit } pp := l.getPayload(i) if pp.objidx != 0 { r := l.objs[pp.objidx].r return r.unit } return nil } r, _ := l.toLocal(i) return r.unit } // SymFile returns the file for a symbol, which is normally the // package the symbol came from (for regular compiler-generated Go // symbols), but in the case of building with "-linkshared" (when a // symbol is read from a a shared library), will hold the library // name. func (l *Loader) SymFile(i Sym) string { if l.IsExternal(i) { if l.Syms[i] != nil { return l.Syms[i].File } if f, ok := l.symFile[i]; ok { return f } pp := l.getPayload(i) if pp.objidx != 0 { r := l.objs[pp.objidx].r return r.unit.Lib.File } return "" } r, _ := l.toLocal(i) return r.unit.Lib.File } // SetSymFile sets the file attribute for a symbol. This is // needed mainly for external symbols, specifically those imported // from shared libraries. func (l *Loader) SetSymFile(i Sym, file string) { // reject bad symbols if i > l.max || i == 0 { panic("bad symbol index in SetSymFile") } if !l.IsExternal(i) { panic("can't set file for non-external sym") } if l.Syms[i] != nil { l.Syms[i].File = file return } l.symFile[i] = file } // SymLocalentry returns the "local entry" value for the specified // symbol. func (l *Loader) SymLocalentry(i Sym) uint8 { return l.localentry[i] } // SetSymExtname sets the "extname" attribute for a symbol. func (l *Loader) SetSymLocalentry(i Sym, value uint8) { // reject bad symbols if i > l.max || i == 0 { panic("bad symbol index in SetExtname") } if value == 0 { delete(l.localentry, i) } else { l.localentry[i] = value } } // Returns the number of aux symbols given a global index. func (l *Loader) NAux(i Sym) int { if l.IsExternal(i) { return 0 } r, li := l.toLocal(i) return r.NAux(li) } // Returns the referred symbol of the j-th aux symbol of the i-th // symbol. func (l *Loader) AuxSym(i Sym, j int) Sym { if l.IsExternal(i) { return 0 } r, li := l.toLocal(i) a := goobj2.Aux{} a.Read(r.Reader, r.AuxOff(li, j)) return l.resolve(r, a.Sym) } // ReadAuxSyms reads the aux symbol ids for the specified symbol into the // slice passed as a parameter. If the slice capacity is not large enough, a new // larger slice will be allocated. Final slice is returned. func (l *Loader) ReadAuxSyms(symIdx Sym, dst []Sym) []Sym { if l.IsExternal(symIdx) { return dst[:0] } naux := l.NAux(symIdx) if naux == 0 { return dst[:0] } if cap(dst) < naux { dst = make([]Sym, naux) } dst = dst[:0] r, li := l.toLocal(symIdx) for i := 0; i < naux; i++ { a := goobj2.Aux{} a.Read(r.Reader, r.AuxOff(li, i)) dst = append(dst, l.resolve(r, a.Sym)) } return dst } // PrependSub prepends 'sub' onto the sub list for outer symbol 'outer'. // Will panic if 'sub' already has an outer sym or sub sym. // FIXME: should this be instead a method on SymbolBuilder? func (l *Loader) PrependSub(outer Sym, sub Sym) { if l.Syms[outer] != nil { panic("not implemented for sym.Symbol based syms") } // NB: this presupposes that an outer sym can't be a sub symbol of // some other outer-outer sym (I'm assuming this is true, but I // haven't tested exhaustively). if l.OuterSym(outer) != 0 { panic("outer has outer itself") } if l.SubSym(sub) != 0 { panic("sub set for subsym") } if l.OuterSym(sub) != 0 { panic("outer already set for subsym") } l.sub[sub] = l.sub[outer] l.sub[outer] = sub l.outer[sub] = outer } // OuterSym gets the outer symbol for host object loaded symbols. func (l *Loader) OuterSym(i Sym) Sym { sym := l.Syms[i] if sym != nil && sym.Outer != nil { outer := sym.Outer return l.Lookup(outer.Name, int(outer.Version)) } // FIXME: add check for isExternal? return l.outer[i] } // SubSym gets the subsymbol for host object loaded symbols. func (l *Loader) SubSym(i Sym) Sym { sym := l.Syms[i] if sym != nil && sym.Sub != nil { sub := sym.Sub return l.Lookup(sub.Name, int(sub.Version)) } // NB: note -- no check for l.isExternal(), since I am pretty sure // that later phases in the linker set subsym for "type." syms return l.sub[i] } // Initialize Reachable bitmap and its siblings for running deadcode pass. func (l *Loader) InitReachable() { l.growAttrBitmaps(l.NSym() + 1) } type symWithVal struct { s Sym v int64 } type bySymValue []symWithVal func (s bySymValue) Len() int { return len(s) } func (s bySymValue) Swap(i, j int) { s[i], s[j] = s[j], s[i] } func (s bySymValue) Less(i, j int) bool { return s[i].v < s[j].v } // SortSub walks through the sub-symbols for 's' and sorts them // in place by increasing value. Return value is the new // sub symbol for the specified outer symbol. func (l *Loader) SortSub(s Sym) Sym { if s == 0 || l.sub[s] == 0 { return s } // Sort symbols using a slice first. Use a stable sort on the off // chance that there's more than once symbol with the same value, // so as to preserve reproducible builds. sl := []symWithVal{} for ss := l.sub[s]; ss != 0; ss = l.sub[ss] { sl = append(sl, symWithVal{s: ss, v: l.SymValue(ss)}) } sort.Stable(bySymValue(sl)) // Then apply any changes needed to the sub map. ns := Sym(0) for i := len(sl) - 1; i >= 0; i-- { s := sl[i].s l.sub[s] = ns ns = s } // Update sub for outer symbol, then return l.sub[s] = sl[0].s return sl[0].s } // Insure that reachable bitmap and its siblings have enough size. func (l *Loader) growAttrBitmaps(reqLen int) { if reqLen > l.attrReachable.len() { // These are indexed by global symbol l.attrReachable = growBitmap(reqLen, l.attrReachable) l.attrOnList = growBitmap(reqLen, l.attrOnList) l.attrLocal = growBitmap(reqLen, l.attrLocal) l.attrNotInSymbolTable = growBitmap(reqLen, l.attrNotInSymbolTable) } // These are indexed by external symbol offset (e.g. i - l.extStart) if l.extStart == 0 { return } extReqLen := reqLen - int(l.extStart) if extReqLen > l.attrVisibilityHidden.len() { l.attrVisibilityHidden = growBitmap(extReqLen, l.attrVisibilityHidden) l.attrDuplicateOK = growBitmap(extReqLen, l.attrDuplicateOK) l.attrShared = growBitmap(extReqLen, l.attrShared) l.attrExternal = growBitmap(extReqLen, l.attrExternal) } } // At method returns the j-th reloc for a global symbol. func (relocs *Relocs) At(j int) Reloc { if s := relocs.l.Syms[relocs.extIdx]; s != nil { rel := s.R[j] return Reloc{ Off: rel.Off, Size: rel.Siz, Type: rel.Type, Add: rel.Add, Sym: relocs.l.Lookup(rel.Sym.Name, int(rel.Sym.Version)), } } if relocs.extIdx != 0 { pp := relocs.l.getPayload(relocs.extIdx) return pp.relocs[j] } rel := goobj2.Reloc{} rel.Read(relocs.r.Reader, relocs.r.RelocOff(relocs.li, j)) target := relocs.l.resolve(relocs.r, rel.Sym) return Reloc{ Off: rel.Off, Size: rel.Siz, Type: objabi.RelocType(rel.Type), Add: rel.Add, Sym: target, } } // ReadAll method reads all relocations for a symbol into the // specified slice. If the slice capacity is not large enough, a new // larger slice will be allocated. Final slice is returned. func (relocs *Relocs) ReadAll(dst []Reloc) []Reloc { if relocs.Count == 0 { return dst[:0] } if cap(dst) < relocs.Count { dst = make([]Reloc, relocs.Count) } dst = dst[:0] if s := relocs.l.Syms[relocs.extIdx]; s != nil { for i := 0; i < relocs.Count; i++ { erel := &s.R[i] rel := Reloc{ Off: erel.Off, Size: erel.Siz, Type: erel.Type, Add: erel.Add, Sym: relocs.l.Lookup(erel.Sym.Name, int(erel.Sym.Version)), } dst = append(dst, rel) } return dst } if relocs.extIdx != 0 { pp := relocs.l.getPayload(relocs.extIdx) dst = append(dst, pp.relocs...) return dst } off := relocs.r.RelocOff(relocs.li, 0) for i := 0; i < relocs.Count; i++ { rel := goobj2.Reloc{} rel.Read(relocs.r.Reader, off) off += uint32(rel.Size()) target := relocs.l.resolve(relocs.r, rel.Sym) dst = append(dst, Reloc{ Off: rel.Off, Size: rel.Siz, Type: objabi.RelocType(rel.Type), Add: rel.Add, Sym: target, }) } return dst } // Relocs returns a Relocs object for the given global sym. func (l *Loader) Relocs(i Sym) Relocs { if l.IsExternal(i) { if s := l.Syms[i]; s != nil { return Relocs{Count: len(s.R), l: l, extIdx: i} } pp := l.getPayload(i) if pp != nil { return Relocs{Count: len(pp.relocs), l: l, extIdx: i} } return Relocs{} } r, li := l.toLocal(i) if r == nil { panic(fmt.Sprintf("trying to get oreader for invalid sym %d\n\n", i)) } return l.relocs(r, li) } // Relocs returns a Relocs object given a local sym index and reader. func (l *Loader) relocs(r *oReader, li int) Relocs { return Relocs{ Count: r.NReloc(li), li: li, r: r, l: l, } } // RelocByOff implements sort.Interface for sorting relocations by offset. type RelocByOff []Reloc func (x RelocByOff) Len() int { return len(x) } func (x RelocByOff) Swap(i, j int) { x[i], x[j] = x[j], x[i] } func (x RelocByOff) Less(i, j int) bool { return x[i].Off < x[j].Off } // Preload a package: add autolibs, add symbols to the symbol table. // Does not read symbol data yet. func (l *Loader) Preload(arch *sys.Arch, syms *sym.Symbols, f *bio.Reader, lib *sym.Library, unit *sym.CompilationUnit, length int64, pn string, flags int) { roObject, readonly, err := f.Slice(uint64(length)) if err != nil { log.Fatal("cannot read object file:", err) } r := goobj2.NewReaderFromBytes(roObject, readonly) if r == nil { panic("cannot read object file") } localSymVersion := syms.IncVersion() pkgprefix := objabi.PathToPrefix(lib.Pkg) + "." or := &oReader{r, unit, localSymVersion, r.Flags(), pkgprefix, nil} // Autolib lib.ImportStrings = append(lib.ImportStrings, r.Autolib()...) // DWARF file table nfile := r.NDwarfFile() unit.DWARFFileTable = make([]string, nfile) for i := range unit.DWARFFileTable { unit.DWARFFileTable[i] = r.DwarfFile(i) } istart := l.addObj(lib.Pkg, or) ndef := r.NSym() nnonpkgdef := r.NNonpkgdef() l.growAttrBitmaps(int(istart) + ndef + nnonpkgdef) for i, n := 0, ndef+nnonpkgdef; i < n; i++ { osym := goobj2.Sym{} osym.Read(r, r.SymOff(i)) name := strings.Replace(osym.Name, "\"\".", pkgprefix, -1) if name == "" { continue // don't add unnamed aux symbol } v := abiToVer(osym.ABI, localSymVersion) dupok := osym.Dupok() added := l.AddSym(name, v, istart+Sym(i), or, dupok, sym.AbiSymKindToSymKind[objabi.SymKind(osym.Type)]) if !added { continue } if strings.HasPrefix(name, "go.itablink.") { l.itablink[istart+Sym(i)] = struct{}{} } if strings.HasPrefix(name, "runtime.") { if bi := goobj2.BuiltinIdx(name, v); bi != -1 { // This is a definition of a builtin symbol. Record where it is. l.builtinSyms[bi] = istart + Sym(i) } } if strings.HasPrefix(name, "go.string.") || strings.HasPrefix(name, "runtime.gcbits.") { l.SetAttrNotInSymbolTable(istart+Sym(i), true) } } // The caller expects us consuming all the data f.MustSeek(length, os.SEEK_CUR) } // Make sure referenced symbols are added. Most of them should already be added. // This should only be needed for referenced external symbols. func (l *Loader) LoadRefs(arch *sys.Arch, syms *sym.Symbols) { for _, o := range l.objs[1:] { loadObjRefs(l, o.r, arch, syms) } } func loadObjRefs(l *Loader, r *oReader, arch *sys.Arch, syms *sym.Symbols) { ndef := r.NSym() + r.NNonpkgdef() for i, n := 0, r.NNonpkgref(); i < n; i++ { osym := goobj2.Sym{} osym.Read(r.Reader, r.SymOff(ndef+i)) name := strings.Replace(osym.Name, "\"\".", r.pkgprefix, -1) v := abiToVer(osym.ABI, r.version) l.AddExtSym(name, v) } } func abiToVer(abi uint16, localSymVersion int) int { var v int if abi == goobj2.SymABIstatic { // Static v = localSymVersion } else if abiver := sym.ABIToVersion(obj.ABI(abi)); abiver != -1 { // Note that data symbols are "ABI0", which maps to version 0. v = abiver } else { log.Fatalf("invalid symbol ABI: %d", abi) } return v } func preprocess(arch *sys.Arch, s *sym.Symbol) { if s.Name != "" && s.Name[0] == '$' && len(s.Name) > 5 && s.Type == 0 && len(s.P) == 0 { x, err := strconv.ParseUint(s.Name[5:], 16, 64) if err != nil { log.Panicf("failed to parse $-symbol %s: %v", s.Name, err) } s.Type = sym.SRODATA s.Attr |= sym.AttrLocal switch s.Name[:5] { case "$f32.": if uint64(uint32(x)) != x { log.Panicf("$-symbol %s too large: %d", s.Name, x) } s.AddUint32(arch, uint32(x)) case "$f64.", "$i64.": s.AddUint64(arch, x) default: log.Panicf("unrecognized $-symbol: %s", s.Name) } } } // Load full contents. func (l *Loader) LoadFull(arch *sys.Arch, syms *sym.Symbols) { // create all Symbols first. l.growSyms(l.NSym()) nr := 0 // total number of sym.Reloc's we'll need for _, o := range l.objs[1:] { nr += loadObjSyms(l, syms, o.r) } // Make a first pass through the external symbols, making // sure that each external symbol has a non-nil entry in // l.Syms (note that relocations and symbol content will // be copied in a later loop). toConvert := make([]Sym, 0, l.max-l.extStart+1) for i := l.extStart; i <= l.max; i++ { if s := l.Syms[i]; s != nil { s.Attr.Set(sym.AttrReachable, l.attrReachable.has(i)) continue } if i != l.getOverwrite(i) { continue } sname := l.RawSymName(i) if !l.attrReachable.has(i) && !strings.HasPrefix(sname, "gofile..") { // XXX file symbols are used but not marked continue } pp := l.getPayload(i) nr += len(pp.relocs) // create and install the sym.Symbol here so that l.Syms will // be fully populated when we do relocation processing and // outer/sub processing below. Note that once we do this, // we'll need to get at the payload for a symbol with direct // reference to l.payloads[] as opposed to calling l.getPayload(). s := l.allocSym(sname, 0) l.installSym(i, s) toConvert = append(toConvert, i) } // allocate a single large slab of relocations for all live symbols l.relocBatch = make([]sym.Reloc, nr) // convert payload-based external symbols into sym.Symbol-based for _, i := range toConvert { // Copy kind/size/value etc. pp := &l.payloads[i-l.extStart] s := l.Syms[i] s.Version = int16(pp.ver) s.Type = pp.kind s.Size = pp.size s.Value = l.SymValue(i) if pp.gotype != 0 { s.Gotype = l.Syms[pp.gotype] } s.Value = l.values[i] if f, ok := l.symFile[i]; ok { s.File = f } else if pp.objidx != 0 { s.File = l.objs[pp.objidx].r.unit.Lib.File } // Copy relocations batch := l.relocBatch s.R = batch[:len(pp.relocs):len(pp.relocs)] l.relocBatch = batch[len(pp.relocs):] l.convertRelocations(pp.relocs, s) // Copy data s.P = pp.data // Transfer over attributes. l.migrateAttributes(i, s) // Preprocess symbol. May set 'AttrLocal'. preprocess(arch, s) } // load contents of defined symbols for _, o := range l.objs[1:] { loadObjFull(l, o.r) } // Note: resolution of ABI aliases is now also handled in // loader.convertRelocations, so once the host object loaders move // completely to loader.Sym, we can remove the code below. // Resolve ABI aliases for external symbols. This is only // needed for internal cgo linking. // (The old code does this in deadcode, but deadcode2 doesn't // do this.) for i := l.extStart; i <= l.max; i++ { if s := l.Syms[i]; s != nil && s.Attr.Reachable() { for ri := range s.R { r := &s.R[ri] if r.Sym != nil && r.Sym.Type == sym.SABIALIAS { r.Sym = r.Sym.R[0].Sym } } } } } // ExtractSymbols grabs the symbols out of the loader for work that hasn't been // ported to the new symbol type. func (l *Loader) ExtractSymbols(syms *sym.Symbols) { // Nil out overwritten symbols. // Overwritten Go symbols aren't a problem (as they're lazy loaded), but // symbols loaded from host object loaders are fully loaded, and we might // have multiple symbols with the same name. This loop nils them out. for oldI := range l.overwrite { l.Syms[oldI] = nil } // Add symbols to the ctxt.Syms lookup table. This explicitly skips things // created via loader.Create (marked with versions less than zero), since // if we tried to add these we'd wind up with collisions. We do, however, // add these symbols to the list of global symbols so that other future // steps (like pclntab generation) can find these symbols if neceassary. // Along the way, update the version from the negative anon version to // something larger than sym.SymVerStatic (needed so that // sym.symbol.IsFileLocal() works properly). anonVerReplacement := syms.IncVersion() for _, s := range l.Syms { if s == nil { continue } if s.Name != "" && s.Version >= 0 { syms.Add(s) } else { syms.Allsym = append(syms.Allsym, s) } if s.Version < 0 { s.Version = int16(anonVerReplacement) } } } // allocSym allocates a new symbol backing. func (l *Loader) allocSym(name string, version int) *sym.Symbol { batch := l.symBatch if len(batch) == 0 { batch = make([]sym.Symbol, 1000) } s := &batch[0] l.symBatch = batch[1:] s.Dynid = -1 s.Name = name s.Version = int16(version) return s } // installSym sets the underlying sym.Symbol for the specified sym index. func (l *Loader) installSym(i Sym, s *sym.Symbol) { if s == nil { panic("installSym nil symbol") } if l.Syms[i] != nil { panic("sym already present in installSym") } l.Syms[i] = s } // addNewSym adds a new sym.Symbol to the i-th index in the list of symbols. func (l *Loader) addNewSym(i Sym, name string, ver int, unit *sym.CompilationUnit, t sym.SymKind) *sym.Symbol { s := l.allocSym(name, ver) if s.Type != 0 && s.Type != sym.SXREF { fmt.Println("symbol already processed:", unit.Lib, i, s) panic("symbol already processed") } if t == sym.SBSS && (s.Type == sym.SRODATA || s.Type == sym.SNOPTRBSS) { t = s.Type } s.Type = t s.Unit = unit l.growSyms(int(i)) l.installSym(i, s) return s } // loadObjSyms creates sym.Symbol objects for the live Syms in the // object corresponding to object reader "r". Return value is the // number of sym.Reloc entries required for all the new symbols. func loadObjSyms(l *Loader, syms *sym.Symbols, r *oReader) int { istart := l.startIndex(r) nr := 0 for i, n := 0, r.NSym()+r.NNonpkgdef(); i < n; i++ { // If it's been previously loaded in host object loading, we don't need to do it again. if s := l.Syms[istart+Sym(i)]; s != nil { // Mark symbol as reachable as it wasn't marked as such before. s.Attr.Set(sym.AttrReachable, l.attrReachable.has(istart+Sym(i))) nr += r.NReloc(i) continue } osym := goobj2.Sym{} osym.Read(r.Reader, r.SymOff(i)) name := strings.Replace(osym.Name, "\"\".", r.pkgprefix, -1) if name == "" { continue } ver := abiToVer(osym.ABI, r.version) if osym.ABI != goobj2.SymABIstatic && l.symsByName[ver][name] != istart+Sym(i) { continue } t := sym.AbiSymKindToSymKind[objabi.SymKind(osym.Type)] if t == sym.SXREF { log.Fatalf("bad sxref") } if t == 0 { log.Fatalf("missing type for %s in %s", name, r.unit.Lib) } if !l.attrReachable.has(istart+Sym(i)) && !(t == sym.SRODATA && strings.HasPrefix(name, "type.")) && name != "runtime.addmoduledata" && name != "runtime.lastmoduledatap" { // No need to load unreachable symbols. // XXX some type symbol's content may be needed in DWARF code, but they are not marked. // XXX reference to runtime.addmoduledata may be generated later by the linker in plugin mode. continue } s := l.addNewSym(istart+Sym(i), name, ver, r.unit, t) l.migrateAttributes(istart+Sym(i), s) nr += r.NReloc(i) } return nr } // funcInfoSym records the sym.Symbol for a function, along with a copy // of the corresponding goobj2.Sym and the index of its FuncInfo aux sym. // We use this to delay populating FuncInfo until we can batch-allocate // slices for their sub-objects. type funcInfoSym struct { s *sym.Symbol // sym.Symbol for a live function osym goobj2.Sym // object file symbol data for that function isym int // global symbol index of FuncInfo aux sym for func } // funcAllocInfo records totals/counts for all functions in an objfile; // used to help with bulk allocation of sym.Symbol sub-objects. type funcAllocInfo struct { symPtr uint32 // number of *sym.Symbol's needed in file slices inlCall uint32 // number of sym.InlinedCall's needed in inltree slices pcData uint32 // number of sym.Pcdata's needed in pdata slices fdOff uint32 // number of int64's needed in all Funcdataoff slices } // loadSymbol loads a single symbol by name. // NB: This function does NOT set the symbol as reachable. func (l *Loader) loadSymbol(name string, version int) *sym.Symbol { global := l.Lookup(name, version) // If we're already loaded, bail. if global != 0 && int(global) < len(l.Syms) && l.Syms[global] != nil { return l.Syms[global] } // Read the symbol. r, i := l.toLocal(global) istart := l.startIndex(r) osym := goobj2.Sym{} osym.Read(r.Reader, r.SymOff(int(i))) if l.symsByName[version][name] != istart+Sym(i) { return nil } return l.addNewSym(istart+Sym(i), name, version, r.unit, sym.AbiSymKindToSymKind[objabi.SymKind(osym.Type)]) } // LookupOrCreate looks up a symbol by name, and creates one if not found. // Either way, it will also create a sym.Symbol for it, if not already. // This should only be called when interacting with parts of the linker // that still works on sym.Symbols (i.e. internal cgo linking, for now). func (l *Loader) LookupOrCreate(name string, version int) *sym.Symbol { i := l.Lookup(name, version) if i != 0 { // symbol exists if int(i) < len(l.Syms) && l.Syms[i] != nil { return l.Syms[i] } if l.IsExternal(i) { panic("Can't load an external symbol.") } return l.loadSymbol(name, version) } i = l.AddExtSym(name, version) s := l.allocSym(name, version) l.Syms[i] = s return s } // cloneToExternal takes the existing object file symbol (symIdx) // and creates a new external symbol that is a clone with respect // to name, version, type, relocations, etc. The idea here is that // if the linker decides it wants to update the contents of a // symbol originally discovered as part of an object file, it's // easier to do this if we make the updates to a new and similarly // named external copy of that symbol. func (l *Loader) cloneToExternal(symIdx Sym) Sym { if l.IsExternal(symIdx) { panic("sym is already external, no need for clone") } // Read the particulars from object. osym := goobj2.Sym{} r, li := l.toLocal(symIdx) osym.Read(r.Reader, r.SymOff(li)) sname := strings.Replace(osym.Name, "\"\".", r.pkgprefix, -1) sver := abiToVer(osym.ABI, r.version) skind := sym.AbiSymKindToSymKind[objabi.SymKind(osym.Type)] // Create new symbol, update version and kind. ns := l.newExtSym(sname, sver) pp := &l.payloads[ns-l.extStart] pp.kind = skind pp.ver = sver pp.size = int64(osym.Siz) pp.objidx = uint32(l.ocache) // If this is a def, then copy the guts. We expect this case // to be very rare (one case it may come up is with -X). if li < (r.NSym() + r.NNonpkgdef()) { // Copy relocations relocs := l.Relocs(symIdx) pp.relocs = relocs.ReadAll(nil) // Copy data pp.data = r.Data(li) // Copy read-only attr if r.ReadOnly() { l.attrReadOnly[ns] = true } } // If we're overriding a data symbol, collect the associated // Gotype, so as to propagate it to the new symbol. naux := r.NAux(li) for j := 0; j < naux; j++ { a := goobj2.Aux{} a.Read(r.Reader, r.AuxOff(li, j)) switch a.Type { case goobj2.AuxGotype: pp.gotype = l.resolve(r, a.Sym) default: log.Fatalf("internal error: cloneToExternal applied to %s symbol %s with non-gotype aux data %d", skind.String(), sname, a.Type) } } // Fix up the lookup tables if the symbol in question was // present in the lookup tables. At the moment it only makes // sense to do this sort of clone/update for symbols that are // in the symbol table (as opposed to anonymous symbols); // issue an error if we can't look up the original symbol. if sver >= sym.SymVerStatic { s, ok := l.extStaticSyms[nameVer{sname, sver}] if !ok || s != symIdx { panic("lookup failed for clone of non-external static symbol") } l.extStaticSyms[nameVer{sname, sver}] = ns } else { s, ok := l.symsByName[sver][sname] if !ok || s != symIdx { panic("lookup failed for clone of non-external symbol") } l.symsByName[sver][sname] = ns } // Copy over selected attributes / properties. This is // probably overkill for most of these attributes, but it's // simpler just to copy everything. l.copyAttributes(symIdx, ns) if l.SymExtname(symIdx) != "" { l.SetSymExtname(ns, l.SymExtname(symIdx)) } if l.SymDynimplib(symIdx) != "" { l.SetSymDynimplib(ns, l.SymDynimplib(symIdx)) } if l.SymDynimpvers(symIdx) != "" { l.SetSymDynimpvers(ns, l.SymDynimpvers(symIdx)) } // Add an overwrite entry (in case there are relocations against // the old symbol). l.overwrite[symIdx] = ns return ns } // copyAttributes copies over all of the attributes of symbol 'src' to // symbol 'dst'. The assumption is that 'dst' is an external symbol. func (l *Loader) copyAttributes(src Sym, dst Sym) { l.SetAttrReachable(dst, l.AttrReachable(src)) l.SetAttrOnList(dst, l.AttrOnList(src)) l.SetAttrLocal(dst, l.AttrLocal(src)) l.SetAttrNotInSymbolTable(dst, l.AttrNotInSymbolTable(src)) l.SetAttrVisibilityHidden(dst, l.AttrVisibilityHidden(src)) l.SetAttrDuplicateOK(dst, l.AttrDuplicateOK(src)) l.SetAttrShared(dst, l.AttrShared(src)) l.SetAttrExternal(dst, l.AttrExternal(src)) l.SetAttrTopFrame(dst, l.AttrTopFrame(src)) l.SetAttrSpecial(dst, l.AttrSpecial(src)) l.SetAttrCgoExportDynamic(dst, l.AttrCgoExportDynamic(src)) l.SetAttrCgoExportStatic(dst, l.AttrCgoExportStatic(src)) } // migrateAttributes copies over all of the attributes of symbol 'src' to // sym.Symbol 'dst'. func (l *Loader) migrateAttributes(src Sym, dst *sym.Symbol) { src = l.getOverwrite(src) dst.Attr.Set(sym.AttrReachable, l.AttrReachable(src)) dst.Attr.Set(sym.AttrOnList, l.AttrOnList(src)) dst.Attr.Set(sym.AttrLocal, l.AttrLocal(src)) dst.Attr.Set(sym.AttrNotInSymbolTable, l.AttrNotInSymbolTable(src)) dst.Attr.Set(sym.AttrVisibilityHidden, l.AttrVisibilityHidden(src)) dst.Attr.Set(sym.AttrDuplicateOK, l.AttrDuplicateOK(src)) dst.Attr.Set(sym.AttrShared, l.AttrShared(src)) dst.Attr.Set(sym.AttrExternal, l.AttrExternal(src)) dst.Attr.Set(sym.AttrTopFrame, l.AttrTopFrame(src)) dst.Attr.Set(sym.AttrSpecial, l.AttrSpecial(src)) dst.Attr.Set(sym.AttrCgoExportDynamic, l.AttrCgoExportDynamic(src)) dst.Attr.Set(sym.AttrCgoExportStatic, l.AttrCgoExportStatic(src)) // Convert outer/sub relationships if outer, ok := l.outer[src]; ok { dst.Outer = l.Syms[outer] } if sub, ok := l.sub[src]; ok { dst.Sub = l.Syms[sub] } // Set sub-symbol attribute. FIXME: would be better to do away // with this and just use l.OuterSymbol() != 0 elsewhere within // the linker. dst.Attr.Set(sym.AttrSubSymbol, dst.Outer != nil) // Copy over dynimplib, dynimpvers, extname. if l.SymExtname(src) != "" { dst.SetExtname(l.SymExtname(src)) } if l.SymDynimplib(src) != "" { dst.SetDynimplib(l.SymDynimplib(src)) } if l.SymDynimpvers(src) != "" { dst.SetDynimpvers(l.SymDynimpvers(src)) } // Copy ELF type if set. if et, ok := l.elfType[src]; ok { dst.SetElfType(et) } } // CreateExtSym creates a new external symbol with the specified name // without adding it to any lookup tables, returning a Sym index for it. func (l *Loader) CreateExtSym(name string) Sym { // Assign a new unique negative version -- this is to mark the // symbol so that it can be skipped when ExtractSymbols is adding // ext syms to the sym.Symbols hash. l.anonVersion-- return l.newExtSym(name, l.anonVersion) } // Create creates a symbol with the specified name, returning a // sym.Symbol object for it. This method is intended for static/hidden // symbols discovered while loading host objects. We can see more than // one instance of a given static symbol with the same name/version, // so we can't add them to the lookup tables "as is". Instead assign // them fictitious (unique) versions, starting at -1 and decreasing by // one for each newly created symbol, and record them in the // extStaticSyms hash. func (l *Loader) Create(name string) *sym.Symbol { i := l.max + 1 l.max++ if l.extStart == 0 { l.extStart = i } // Assign a new unique negative version -- this is to mark the // symbol so that it can be skipped when ExtractSymbols is adding // ext syms to the sym.Symbols hash. l.anonVersion-- ver := l.anonVersion l.growSyms(int(i)) s := l.allocSym(name, ver) l.installSym(i, s) l.extStaticSyms[nameVer{name, ver}] = i return s } func loadObjFull(l *Loader, r *oReader) { lib := r.unit.Lib istart := l.startIndex(r) resolveSymRef := func(s goobj2.SymRef) *sym.Symbol { i := l.resolve(r, s) return l.Syms[i] } funcs := []funcInfoSym{} fdsyms := []*sym.Symbol{} var funcAllocCounts funcAllocInfo pcdataBase := r.PcdataBase() rslice := []Reloc{} for i, n := 0, r.NSym()+r.NNonpkgdef(); i < n; i++ { osym := goobj2.Sym{} osym.Read(r.Reader, r.SymOff(i)) name := strings.Replace(osym.Name, "\"\".", r.pkgprefix, -1) if name == "" { continue } ver := abiToVer(osym.ABI, r.version) dupok := osym.Dupok() if dupok { if dupsym := l.symsByName[ver][name]; dupsym != istart+Sym(i) { if l.attrReachable.has(dupsym) { // A dupok symbol is resolved to another package. We still need // to record its presence in the current package, as the trampoline // pass expects packages are laid out in dependency order. s := l.Syms[dupsym] if s.Type == sym.STEXT { lib.DupTextSyms = append(lib.DupTextSyms, s) lib.DupTextSyms2 = append(lib.DupTextSyms2, sym.LoaderSym(dupsym)) } } continue } } s := l.Syms[istart+Sym(i)] if s == nil { continue } if s.Name != name { // Sanity check. We can remove it in the final version. fmt.Println("name mismatch:", lib, i, s.Name, name) panic("name mismatch") } local := osym.Local() makeTypelink := osym.Typelink() size := osym.Siz // Symbol data s.P = r.Data(i) s.Attr.Set(sym.AttrReadOnly, r.ReadOnly()) // Relocs relocs := l.relocs(r, i) rslice = relocs.ReadAll(rslice) batch := l.relocBatch s.R = batch[:relocs.Count:relocs.Count] l.relocBatch = batch[relocs.Count:] l.convertRelocations(rslice, s) // Aux symbol info isym := -1 naux := r.NAux(i) for j := 0; j < naux; j++ { a := goobj2.Aux{} a.Read(r.Reader, r.AuxOff(i, j)) switch a.Type { case goobj2.AuxGotype: typ := resolveSymRef(a.Sym) if typ != nil { s.Gotype = typ } case goobj2.AuxFuncdata: fdsyms = append(fdsyms, resolveSymRef(a.Sym)) case goobj2.AuxFuncInfo: if a.Sym.PkgIdx != goobj2.PkgIdxSelf { panic("funcinfo symbol not defined in current package") } isym = int(a.Sym.SymIdx) case goobj2.AuxDwarfInfo, goobj2.AuxDwarfLoc, goobj2.AuxDwarfRanges, goobj2.AuxDwarfLines: // ignored for now default: panic("unknown aux type") } } s.File = r.pkgprefix[:len(r.pkgprefix)-1] if dupok { s.Attr |= sym.AttrDuplicateOK } if s.Size < int64(size) { s.Size = int64(size) } s.Attr.Set(sym.AttrLocal, local) s.Attr.Set(sym.AttrMakeTypelink, makeTypelink) if s.Type == sym.SDWARFINFO { // For DWARF symbols, replace `"".` to actual package prefix // in the symbol content. // TODO: maybe we should do this in the compiler and get rid // of this. patchDWARFName(s, r) } if s.Type != sym.STEXT { continue } if isym == -1 { continue } // Record function sym and associated info for additional // processing in the loop below. fwis := funcInfoSym{s: s, isym: isym, osym: osym} funcs = append(funcs, fwis) // Read the goobj2.FuncInfo for this text symbol so that we can // collect allocation counts. We'll read it again in the loop // below. b := r.Data(isym) info := goobj2.FuncInfo{} info.Read(b) funcAllocCounts.symPtr += uint32(len(info.File)) funcAllocCounts.pcData += uint32(len(info.Pcdata)) funcAllocCounts.inlCall += uint32(len(info.InlTree)) funcAllocCounts.fdOff += uint32(len(info.Funcdataoff)) } // At this point we can do batch allocation of the sym.FuncInfo's, // along with the slices of sub-objects they use. fiBatch := make([]sym.FuncInfo, len(funcs)) inlCallBatch := make([]sym.InlinedCall, funcAllocCounts.inlCall) symPtrBatch := make([]*sym.Symbol, funcAllocCounts.symPtr) pcDataBatch := make([]sym.Pcdata, funcAllocCounts.pcData) fdOffBatch := make([]int64, funcAllocCounts.fdOff) // Populate FuncInfo contents for func symbols. for fi := 0; fi < len(funcs); fi++ { s := funcs[fi].s isym := funcs[fi].isym osym := funcs[fi].osym s.FuncInfo = &fiBatch[0] fiBatch = fiBatch[1:] b := r.Data(isym) info := goobj2.FuncInfo{} info.Read(b) if info.NoSplit != 0 { s.Attr |= sym.AttrNoSplit } if osym.ReflectMethod() { s.Attr |= sym.AttrReflectMethod } if r.Flags()&goobj2.ObjFlagShared != 0 { s.Attr |= sym.AttrShared } if osym.TopFrame() { s.Attr |= sym.AttrTopFrame } pc := s.FuncInfo if len(info.Funcdataoff) != 0 { nfd := len(info.Funcdataoff) pc.Funcdata = fdsyms[:nfd:nfd] fdsyms = fdsyms[nfd:] } info.Pcdata = append(info.Pcdata, info.PcdataEnd) // for the ease of knowing where it ends pc.Args = int32(info.Args) pc.Locals = int32(info.Locals) npc := len(info.Pcdata) - 1 // -1 as we appended one above pc.Pcdata = pcDataBatch[:npc:npc] pcDataBatch = pcDataBatch[npc:] nfd := len(info.Funcdataoff) pc.Funcdataoff = fdOffBatch[:nfd:nfd] fdOffBatch = fdOffBatch[nfd:] nsp := len(info.File) pc.File = symPtrBatch[:nsp:nsp] symPtrBatch = symPtrBatch[nsp:] nic := len(info.InlTree) pc.InlTree = inlCallBatch[:nic:nic] inlCallBatch = inlCallBatch[nic:] pc.Pcsp.P = r.BytesAt(pcdataBase+info.Pcsp, int(info.Pcfile-info.Pcsp)) pc.Pcfile.P = r.BytesAt(pcdataBase+info.Pcfile, int(info.Pcline-info.Pcfile)) pc.Pcline.P = r.BytesAt(pcdataBase+info.Pcline, int(info.Pcinline-info.Pcline)) pc.Pcinline.P = r.BytesAt(pcdataBase+info.Pcinline, int(info.Pcdata[0]-info.Pcinline)) for k := range pc.Pcdata { pc.Pcdata[k].P = r.BytesAt(pcdataBase+info.Pcdata[k], int(info.Pcdata[k+1]-info.Pcdata[k])) } for k := range pc.Funcdataoff { pc.Funcdataoff[k] = int64(info.Funcdataoff[k]) } for k := range pc.File { pc.File[k] = resolveSymRef(info.File[k]) } for k := range pc.InlTree { inl := &info.InlTree[k] pc.InlTree[k] = sym.InlinedCall{ Parent: inl.Parent, File: resolveSymRef(inl.File), Line: inl.Line, Func: l.SymName(l.resolve(r, inl.Func)), ParentPC: inl.ParentPC, } } dupok := osym.Dupok() if !dupok { if s.Attr.OnList() { log.Fatalf("symbol %s listed multiple times", s.Name) } s.Attr.Set(sym.AttrOnList, true) lib.Textp = append(lib.Textp, s) lib.Textp2 = append(lib.Textp2, sym.LoaderSym(isym)) } else { // there may be a dup in another package // put into a temp list and add to text later lib.DupTextSyms = append(lib.DupTextSyms, s) lib.DupTextSyms2 = append(lib.DupTextSyms2, sym.LoaderSym(isym)) } } } // convertRelocations takes a vector of loader.Reloc relocations and // translates them into an equivalent set of sym.Reloc relocations on // the symbol "dst", performing fixups along the way for ABI aliases, // etc. It is assumed that the called has pre-allocated the dst symbol // relocations slice. func (l *Loader) convertRelocations(src []Reloc, dst *sym.Symbol) { for j := range dst.R { r := src[j] rs := r.Sym sz := r.Size rt := r.Type if rt == objabi.R_METHODOFF { if l.attrReachable.has(rs) { rt = objabi.R_ADDROFF } else { sz = 0 rs = 0 } } if rt == objabi.R_WEAKADDROFF && !l.attrReachable.has(rs) { rs = 0 sz = 0 } if rs != 0 && l.Syms[rs] != nil && l.Syms[rs].Type == sym.SABIALIAS { rsrelocs := l.Relocs(rs) rs = rsrelocs.At(0).Sym } dst.R[j] = sym.Reloc{ Off: r.Off, Siz: sz, Type: rt, Add: r.Add, Sym: l.Syms[rs], } } } var emptyPkg = []byte(`"".`) func patchDWARFName1(p []byte, r *oReader) ([]byte, int) { // This is kind of ugly. Really the package name should not // even be included here. if len(p) < 1 || p[0] != dwarf.DW_ABRV_FUNCTION { return p, -1 } e := bytes.IndexByte(p, 0) if e == -1 { return p, -1 } if !bytes.Contains(p[:e], emptyPkg) { return p, -1 } pkgprefix := []byte(r.pkgprefix) patched := bytes.Replace(p[:e], emptyPkg, pkgprefix, -1) return append(patched, p[e:]...), e } func patchDWARFName(s *sym.Symbol, r *oReader) { patched, e := patchDWARFName1(s.P, r) if e == -1 { return } s.P = patched s.Attr.Set(sym.AttrReadOnly, false) delta := int64(len(s.P)) - s.Size s.Size = int64(len(s.P)) for i := range s.R { r := &s.R[i] if r.Off > int32(e) { r.Off += int32(delta) } } } // UndefinedRelocTargets iterates through the global symbol index // space, looking for symbols with relocations targeting undefined // references. The linker's loadlib method uses this to determine if // there are unresolved references to functions in system libraries // (for example, libgcc.a), presumably due to CGO code. Return // value is a list of loader.Sym's corresponding to the undefined // cross-refs. The "limit" param controls the maximum number of // results returned; if "limit" is -1, then all undefs are returned. func (l *Loader) UndefinedRelocTargets(limit int) []Sym { result := []Sym{} rslice := []Reloc{} for si := Sym(1); si <= l.max; si++ { if _, ok := l.overwrite[si]; ok { continue } relocs := l.Relocs(si) rslice = relocs.ReadAll(rslice) for ri := 0; ri < relocs.Count; ri++ { r := &rslice[ri] if r.Sym != 0 && l.SymType(r.Sym) == sym.SXREF && l.RawSymName(r.Sym) != ".got" { result = append(result, r.Sym) if limit != -1 && len(result) >= limit { break } } } } return result } // For debugging. func (l *Loader) Dump() { fmt.Println("objs") for _, obj := range l.objs { if obj.r != nil { fmt.Println(obj.i, obj.r.unit.Lib) } } fmt.Println("extStart:", l.extStart) fmt.Println("max:", l.max) fmt.Println("syms") for i, s := range l.Syms { if i == 0 { continue } if s != nil { fmt.Println(i, s, s.Type) } else { otag := "" si := Sym(i) if _, ok := l.overwrite[si]; ok { si = l.getOverwrite(si) otag = fmt.Sprintf(" ", si) } fmt.Println(i, l.SymName(si), "", otag) } } fmt.Println("overwrite:", l.overwrite) fmt.Println("symsByName") for name, i := range l.symsByName[0] { fmt.Println(i, name, 0) } for name, i := range l.symsByName[1] { fmt.Println(i, name, 1) } }