// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ssa import ( "fmt" "math" ) // A Func represents a Go func declaration (or function literal) and // its body. This package compiles each Func independently. type Func struct { Config *Config // architecture information pass *pass // current pass information (name, options, etc.) Name string // e.g. bytes·Compare Type Type // type signature of the function. StaticData interface{} // associated static data, untouched by the ssa package Blocks []*Block // unordered set of all basic blocks (note: not indexable by ID) Entry *Block // the entry basic block bid idAlloc // block ID allocator vid idAlloc // value ID allocator scheduled bool // Values in Blocks are in final order // when register allocation is done, maps value ids to locations RegAlloc []Location // map from LocalSlot to set of Values that we want to store in that slot. NamedValues map[LocalSlot][]*Value // Names is a copy of NamedValues.Keys. We keep a separate list // of keys to make iteration order deterministic. Names []LocalSlot freeValues *Value // free Values linked by argstorage[0]. All other fields except ID are 0/nil. freeBlocks *Block // free Blocks linked by succstorage[0]. All other fields except ID are 0/nil. constants map[int64][]*Value // constants cache, keyed by constant value; users must check value's Op and Type } // NumBlocks returns an integer larger than the id of any Block in the Func. func (f *Func) NumBlocks() int { return f.bid.num() } // NumValues returns an integer larger than the id of any Value in the Func. func (f *Func) NumValues() int { return f.vid.num() } // newSparseSet returns a sparse set that can store at least up to n integers. func (f *Func) newSparseSet(n int) *sparseSet { for i, scr := range f.Config.scrSparse { if scr != nil && scr.cap() >= n { f.Config.scrSparse[i] = nil scr.clear() return scr } } return newSparseSet(n) } // retSparseSet returns a sparse set to the config's cache of sparse sets to be reused by f.newSparseSet. func (f *Func) retSparseSet(ss *sparseSet) { for i, scr := range f.Config.scrSparse { if scr == nil { f.Config.scrSparse[i] = ss return } } f.Config.scrSparse = append(f.Config.scrSparse, ss) } // newValue allocates a new Value with the given fields and places it at the end of b.Values. func (f *Func) newValue(op Op, t Type, b *Block, line int32) *Value { var v *Value if f.freeValues != nil { v = f.freeValues f.freeValues = v.argstorage[0] v.argstorage[0] = nil } else { ID := f.vid.get() if int(ID) < len(f.Config.values) { v = &f.Config.values[ID] } else { v = &Value{ID: ID} } } v.Op = op v.Type = t v.Block = b v.Line = line b.Values = append(b.Values, v) return v } // logPassStat writes a string key and int value as a warning in a // tab-separated format easily handled by spreadsheets or awk. // file names, lines, and function names are included to provide enough (?) // context to allow item-by-item comparisons across runs. // For example: // awk 'BEGIN {FS="\t"} $3~/TIME/{sum+=$4} END{print "t(ns)=",sum}' t.log func (f *Func) logStat(key string, args ...interface{}) { value := "" for _, a := range args { value += fmt.Sprintf("\t%v", a) } f.Config.Warnl(f.Entry.Line, "\t%s\t%s%s\t%s", f.pass.name, key, value, f.Name) } // freeValue frees a value. It must no longer be referenced. func (f *Func) freeValue(v *Value) { if v.Block == nil { f.Fatalf("trying to free an already freed value") } if v.Uses != 0 { f.Fatalf("value %s still has %d uses", v, v.Uses) } // Clear everything but ID (which we reuse). id := v.ID // Zero argument values might be cached, so remove them there. nArgs := opcodeTable[v.Op].argLen if nArgs == 0 { vv := f.constants[v.AuxInt] for i, cv := range vv { if v == cv { vv[i] = vv[len(vv)-1] f.constants[v.AuxInt] = vv[0 : len(vv)-1] break } } } *v = Value{} v.ID = id v.argstorage[0] = f.freeValues f.freeValues = v } // newBlock allocates a new Block of the given kind and places it at the end of f.Blocks. func (f *Func) NewBlock(kind BlockKind) *Block { var b *Block if f.freeBlocks != nil { b = f.freeBlocks f.freeBlocks = b.succstorage[0] b.succstorage[0] = nil } else { ID := f.bid.get() if int(ID) < len(f.Config.blocks) { b = &f.Config.blocks[ID] } else { b = &Block{ID: ID} } } b.Kind = kind b.Func = f b.Preds = b.predstorage[:0] b.Succs = b.succstorage[:0] b.Values = b.valstorage[:0] f.Blocks = append(f.Blocks, b) return b } func (f *Func) freeBlock(b *Block) { if b.Func == nil { f.Fatalf("trying to free an already freed block") } // Clear everything but ID (which we reuse). id := b.ID *b = Block{} b.ID = id b.succstorage[0] = f.freeBlocks f.freeBlocks = b } // NewValue0 returns a new value in the block with no arguments and zero aux values. func (b *Block) NewValue0(line int32, op Op, t Type) *Value { v := b.Func.newValue(op, t, b, line) v.AuxInt = 0 v.Args = v.argstorage[:0] return v } // NewValue returns a new value in the block with no arguments and an auxint value. func (b *Block) NewValue0I(line int32, op Op, t Type, auxint int64) *Value { v := b.Func.newValue(op, t, b, line) v.AuxInt = auxint v.Args = v.argstorage[:0] return v } // NewValue returns a new value in the block with no arguments and an aux value. func (b *Block) NewValue0A(line int32, op Op, t Type, aux interface{}) *Value { if _, ok := aux.(int64); ok { // Disallow int64 aux values. They should be in the auxint field instead. // Maybe we want to allow this at some point, but for now we disallow it // to prevent errors like using NewValue1A instead of NewValue1I. b.Fatalf("aux field has int64 type op=%s type=%s aux=%v", op, t, aux) } v := b.Func.newValue(op, t, b, line) v.AuxInt = 0 v.Aux = aux v.Args = v.argstorage[:0] return v } // NewValue returns a new value in the block with no arguments and both an auxint and aux values. func (b *Block) NewValue0IA(line int32, op Op, t Type, auxint int64, aux interface{}) *Value { v := b.Func.newValue(op, t, b, line) v.AuxInt = auxint v.Aux = aux v.Args = v.argstorage[:0] return v } // NewValue1 returns a new value in the block with one argument and zero aux values. func (b *Block) NewValue1(line int32, op Op, t Type, arg *Value) *Value { v := b.Func.newValue(op, t, b, line) v.AuxInt = 0 v.Args = v.argstorage[:1] v.argstorage[0] = arg arg.Uses++ return v } // NewValue1I returns a new value in the block with one argument and an auxint value. func (b *Block) NewValue1I(line int32, op Op, t Type, auxint int64, arg *Value) *Value { v := b.Func.newValue(op, t, b, line) v.AuxInt = auxint v.Args = v.argstorage[:1] v.argstorage[0] = arg arg.Uses++ return v } // NewValue1A returns a new value in the block with one argument and an aux value. func (b *Block) NewValue1A(line int32, op Op, t Type, aux interface{}, arg *Value) *Value { v := b.Func.newValue(op, t, b, line) v.AuxInt = 0 v.Aux = aux v.Args = v.argstorage[:1] v.argstorage[0] = arg arg.Uses++ return v } // NewValue1IA returns a new value in the block with one argument and both an auxint and aux values. func (b *Block) NewValue1IA(line int32, op Op, t Type, auxint int64, aux interface{}, arg *Value) *Value { v := b.Func.newValue(op, t, b, line) v.AuxInt = auxint v.Aux = aux v.Args = v.argstorage[:1] v.argstorage[0] = arg arg.Uses++ return v } // NewValue2 returns a new value in the block with two arguments and zero aux values. func (b *Block) NewValue2(line int32, op Op, t Type, arg0, arg1 *Value) *Value { v := b.Func.newValue(op, t, b, line) v.AuxInt = 0 v.Args = v.argstorage[:2] v.argstorage[0] = arg0 v.argstorage[1] = arg1 arg0.Uses++ arg1.Uses++ return v } // NewValue2I returns a new value in the block with two arguments and an auxint value. func (b *Block) NewValue2I(line int32, op Op, t Type, auxint int64, arg0, arg1 *Value) *Value { v := b.Func.newValue(op, t, b, line) v.AuxInt = auxint v.Args = v.argstorage[:2] v.argstorage[0] = arg0 v.argstorage[1] = arg1 arg0.Uses++ arg1.Uses++ return v } // NewValue3 returns a new value in the block with three arguments and zero aux values. func (b *Block) NewValue3(line int32, op Op, t Type, arg0, arg1, arg2 *Value) *Value { v := b.Func.newValue(op, t, b, line) v.AuxInt = 0 v.Args = []*Value{arg0, arg1, arg2} arg0.Uses++ arg1.Uses++ arg2.Uses++ return v } // NewValue3I returns a new value in the block with three arguments and an auxint value. func (b *Block) NewValue3I(line int32, op Op, t Type, auxint int64, arg0, arg1, arg2 *Value) *Value { v := b.Func.newValue(op, t, b, line) v.AuxInt = auxint v.Args = []*Value{arg0, arg1, arg2} arg0.Uses++ arg1.Uses++ arg2.Uses++ return v } // constVal returns a constant value for c. func (f *Func) constVal(line int32, op Op, t Type, c int64, setAux bool) *Value { if f.constants == nil { f.constants = make(map[int64][]*Value) } vv := f.constants[c] for _, v := range vv { if v.Op == op && v.Type.Equal(t) { if setAux && v.AuxInt != c { panic(fmt.Sprintf("cached const %s should have AuxInt of %d", v.LongString(), c)) } return v } } var v *Value if setAux { v = f.Entry.NewValue0I(line, op, t, c) } else { v = f.Entry.NewValue0(line, op, t) } f.constants[c] = append(vv, v) return v } // These magic auxint values let us easily cache non-numeric constants // using the same constants map while making collisions unlikely. // These values are unlikely to occur in regular code and // are easy to grep for in case of bugs. const ( constSliceMagic = 1122334455 constInterfaceMagic = 2233445566 constNilMagic = 3344556677 constEmptyStringMagic = 4455667788 ) // ConstInt returns an int constant representing its argument. func (f *Func) ConstBool(line int32, t Type, c bool) *Value { i := int64(0) if c { i = 1 } return f.constVal(line, OpConstBool, t, i, true) } func (f *Func) ConstInt8(line int32, t Type, c int8) *Value { return f.constVal(line, OpConst8, t, int64(c), true) } func (f *Func) ConstInt16(line int32, t Type, c int16) *Value { return f.constVal(line, OpConst16, t, int64(c), true) } func (f *Func) ConstInt32(line int32, t Type, c int32) *Value { return f.constVal(line, OpConst32, t, int64(c), true) } func (f *Func) ConstInt64(line int32, t Type, c int64) *Value { return f.constVal(line, OpConst64, t, c, true) } func (f *Func) ConstFloat32(line int32, t Type, c float64) *Value { return f.constVal(line, OpConst32F, t, int64(math.Float64bits(float64(float32(c)))), true) } func (f *Func) ConstFloat64(line int32, t Type, c float64) *Value { return f.constVal(line, OpConst64F, t, int64(math.Float64bits(c)), true) } func (f *Func) ConstSlice(line int32, t Type) *Value { return f.constVal(line, OpConstSlice, t, constSliceMagic, false) } func (f *Func) ConstInterface(line int32, t Type) *Value { return f.constVal(line, OpConstInterface, t, constInterfaceMagic, false) } func (f *Func) ConstNil(line int32, t Type) *Value { return f.constVal(line, OpConstNil, t, constNilMagic, false) } func (f *Func) ConstEmptyString(line int32, t Type) *Value { v := f.constVal(line, OpConstString, t, constEmptyStringMagic, false) v.Aux = "" return v } func (f *Func) Logf(msg string, args ...interface{}) { f.Config.Logf(msg, args...) } func (f *Func) Log() bool { return f.Config.Log() } func (f *Func) Fatalf(msg string, args ...interface{}) { f.Config.Fatalf(f.Entry.Line, msg, args...) } func (f *Func) Unimplementedf(msg string, args ...interface{}) { f.Config.Unimplementedf(f.Entry.Line, msg, args...) } func (f *Func) Free() { // Clear values. n := f.vid.num() if n > len(f.Config.values) { n = len(f.Config.values) } for i := 1; i < n; i++ { f.Config.values[i] = Value{} f.Config.values[i].ID = ID(i) } // Clear blocks. n = f.bid.num() if n > len(f.Config.blocks) { n = len(f.Config.blocks) } for i := 1; i < n; i++ { f.Config.blocks[i] = Block{} f.Config.blocks[i].ID = ID(i) } // Unregister from config. if f.Config.curFunc != f { f.Fatalf("free of function which isn't the last one allocated") } f.Config.curFunc = nil *f = Func{} // just in case }