// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package gc import ( "cmd/compile/internal/types" "cmd/internal/src" "fmt" "strings" ) // Declaration stack & operations var externdcl []*Node func testdclstack() { if !types.IsDclstackValid() { if nerrors != 0 { errorexit() } Fatalf("mark left on the dclstack") } } // redeclare emits a diagnostic about symbol s being redeclared somewhere. func redeclare(s *types.Sym, where string) { if !s.Lastlineno.IsKnown() { var tmp string if s.Origpkg != nil { tmp = s.Origpkg.Path } else { tmp = s.Pkg.Path } pkgstr := tmp yyerror("%v redeclared %s\n"+ "\tprevious declaration during import %q", s, where, pkgstr) } else { line1 := lineno line2 := s.Lastlineno // When an import and a declaration collide in separate files, // present the import as the "redeclared", because the declaration // is visible where the import is, but not vice versa. // See issue 4510. if s.Def == nil { line2 = line1 line1 = s.Lastlineno } yyerrorl(line1, "%v redeclared %s\n"+ "\tprevious declaration at %v", s, where, linestr(line2)) } } var vargen int // declare individual names - var, typ, const var declare_typegen int // declare records that Node n declares symbol n.Sym in the specified // declaration context. func declare(n *Node, ctxt Class) { if ctxt == PDISCARD { return } if isblank(n) { return } if n.Name == nil { // named OLITERAL needs Name; most OLITERALs don't. n.Name = new(Name) } n.Pos = lineno s := n.Sym // kludgy: typecheckok means we're past parsing. Eg genwrapper may declare out of package names later. if !inimport && !typecheckok && s.Pkg != localpkg { yyerror("cannot declare name %v", s) } if ctxt == PEXTERN && s.Name == "init" { yyerror("cannot declare init - must be func") } gen := 0 if ctxt == PEXTERN { externdcl = append(externdcl, n) } else { if Curfn == nil && ctxt == PAUTO { Fatalf("automatic outside function") } if Curfn != nil { Curfn.Func.Dcl = append(Curfn.Func.Dcl, n) } if n.Op == OTYPE { declare_typegen++ gen = declare_typegen } else if n.Op == ONAME && ctxt == PAUTO && !strings.Contains(s.Name, "·") { vargen++ gen = vargen } types.Pushdcl(s) n.Name.Curfn = Curfn } if ctxt == PAUTO { n.Xoffset = 0 } if s.Block == types.Block { // functype will print errors about duplicate function arguments. // Don't repeat the error here. if ctxt != PPARAM && ctxt != PPARAMOUT { redeclare(s, "in this block") } } s.Block = types.Block s.Lastlineno = lineno s.Def = asTypesNode(n) n.Name.Vargen = int32(gen) n.Name.Funcdepth = funcdepth n.SetClass(ctxt) autoexport(n, ctxt) } func addvar(n *Node, t *types.Type, ctxt Class) { if n == nil || n.Sym == nil || (n.Op != ONAME && n.Op != ONONAME) || t == nil { Fatalf("addvar: n=%v t=%v nil", n, t) } n.Op = ONAME declare(n, ctxt) n.Type = t } // declare variables from grammar // new_name_list (type | [type] = expr_list) func variter(vl []*Node, t *Node, el []*Node) []*Node { var init []*Node doexpr := len(el) > 0 if len(el) == 1 && len(vl) > 1 { e := el[0] as2 := nod(OAS2, nil, nil) as2.List.Set(vl) as2.Rlist.Set1(e) for _, v := range vl { v.Op = ONAME declare(v, dclcontext) v.Name.Param.Ntype = t v.Name.Defn = as2 if funcdepth > 0 { init = append(init, nod(ODCL, v, nil)) } } return append(init, as2) } for _, v := range vl { var e *Node if doexpr { if len(el) == 0 { yyerror("missing expression in var declaration") break } e = el[0] el = el[1:] } v.Op = ONAME declare(v, dclcontext) v.Name.Param.Ntype = t if e != nil || funcdepth > 0 || isblank(v) { if funcdepth > 0 { init = append(init, nod(ODCL, v, nil)) } e = nod(OAS, v, e) init = append(init, e) if e.Right != nil { v.Name.Defn = e } } } if len(el) != 0 { yyerror("extra expression in var declaration") } return init } // newnoname returns a new ONONAME Node associated with symbol s. func newnoname(s *types.Sym) *Node { if s == nil { Fatalf("newnoname nil") } n := nod(ONONAME, nil, nil) n.Sym = s n.SetAddable(true) n.Xoffset = 0 return n } // newfuncname generates a new name node for a function or method. // TODO(rsc): Use an ODCLFUNC node instead. See comment in CL 7360. func newfuncname(s *types.Sym) *Node { return newfuncnamel(lineno, s) } // newfuncnamel generates a new name node for a function or method. // TODO(rsc): Use an ODCLFUNC node instead. See comment in CL 7360. func newfuncnamel(pos src.XPos, s *types.Sym) *Node { n := newnamel(pos, s) n.Func = new(Func) n.Func.SetIsHiddenClosure(Curfn != nil) return n } // this generates a new name node for a name // being declared. func dclname(s *types.Sym) *Node { n := newname(s) n.Op = ONONAME // caller will correct it return n } func typenod(t *types.Type) *Node { return typenodl(lineno, t) } func typenodl(pos src.XPos, t *types.Type) *Node { // if we copied another type with *t = *u // then t->nod might be out of date, so // check t->nod->type too if asNode(t.Nod) == nil || asNode(t.Nod).Type != t { t.Nod = asTypesNode(nodl(pos, OTYPE, nil, nil)) asNode(t.Nod).Type = t asNode(t.Nod).Sym = t.Sym } return asNode(t.Nod) } func anonfield(typ *types.Type) *Node { return nod(ODCLFIELD, nil, typenod(typ)) } func namedfield(s string, typ *types.Type) *Node { return symfield(lookup(s), typ) } func symfield(s *types.Sym, typ *types.Type) *Node { return nod(ODCLFIELD, newname(s), typenod(typ)) } // oldname returns the Node that declares symbol s in the current scope. // If no such Node currently exists, an ONONAME Node is returned instead. func oldname(s *types.Sym) *Node { n := asNode(s.Def) if n == nil { // Maybe a top-level declaration will come along later to // define s. resolve will check s.Def again once all input // source has been processed. return newnoname(s) } if Curfn != nil && n.Op == ONAME && n.Name.Funcdepth > 0 && n.Name.Funcdepth != funcdepth { // Inner func is referring to var in outer func. // // TODO(rsc): If there is an outer variable x and we // are parsing x := 5 inside the closure, until we get to // the := it looks like a reference to the outer x so we'll // make x a closure variable unnecessarily. c := n.Name.Param.Innermost if c == nil || c.Name.Funcdepth != funcdepth { // Do not have a closure var for the active closure yet; make one. c = newname(s) c.SetClass(PAUTOHEAP) c.SetIsClosureVar(true) c.SetIsddd(n.Isddd()) c.Name.Defn = n c.SetAddable(false) c.Name.Funcdepth = funcdepth // Link into list of active closure variables. // Popped from list in func closurebody. c.Name.Param.Outer = n.Name.Param.Innermost n.Name.Param.Innermost = c Curfn.Func.Cvars.Append(c) } // return ref to closure var, not original return c } return n } // := declarations func colasname(n *Node) bool { switch n.Op { case ONAME, ONONAME, OPACK, OTYPE, OLITERAL: return n.Sym != nil } return false } func colasdefn(left []*Node, defn *Node) { for _, n := range left { if n.Sym != nil { n.Sym.SetUniq(true) } } var nnew, nerr int for i, n := range left { if isblank(n) { continue } if !colasname(n) { yyerrorl(defn.Pos, "non-name %v on left side of :=", n) nerr++ continue } if !n.Sym.Uniq() { yyerrorl(defn.Pos, "%v repeated on left side of :=", n.Sym) n.SetDiag(true) nerr++ continue } n.Sym.SetUniq(false) if n.Sym.Block == types.Block { continue } nnew++ n = newname(n.Sym) declare(n, dclcontext) n.Name.Defn = defn defn.Ninit.Append(nod(ODCL, n, nil)) left[i] = n } if nnew == 0 && nerr == 0 { yyerrorl(defn.Pos, "no new variables on left side of :=") } } // declare the arguments in an // interface field declaration. func ifacedcl(n *Node) { if n.Op != ODCLFIELD || n.Right == nil { Fatalf("ifacedcl") } if isblank(n.Left) { yyerror("methods must have a unique non-blank name") } } // declare the function proper // and declare the arguments. // called in extern-declaration context // returns in auto-declaration context. func funchdr(n *Node) { // change the declaration context from extern to auto if funcdepth == 0 && dclcontext != PEXTERN { Fatalf("funchdr: dclcontext = %d", dclcontext) } dclcontext = PAUTO funcstart(n) if n.Func.Nname != nil { funcargs(n.Func.Nname.Name.Param.Ntype) } else if n.Func.Ntype != nil { funcargs(n.Func.Ntype) } else { funcargs2(n.Type) } } func funcargs(nt *Node) { if nt.Op != OTFUNC { Fatalf("funcargs %v", nt.Op) } // re-start the variable generation number // we want to use small numbers for the return variables, // so let them have the chunk starting at 1. vargen = nt.Rlist.Len() // declare the receiver and in arguments. // no n->defn because type checking of func header // will not fill in the types until later if nt.Left != nil { n := nt.Left if n.Op != ODCLFIELD { Fatalf("funcargs receiver %v", n.Op) } if n.Left != nil { n.Left.Op = ONAME n.Left.Name.Param.Ntype = n.Right declare(n.Left, PPARAM) if dclcontext == PAUTO { vargen++ n.Left.Name.Vargen = int32(vargen) } } } for _, n := range nt.List.Slice() { if n.Op != ODCLFIELD { Fatalf("funcargs in %v", n.Op) } if n.Left != nil { n.Left.Op = ONAME n.Left.Name.Param.Ntype = n.Right declare(n.Left, PPARAM) if dclcontext == PAUTO { vargen++ n.Left.Name.Vargen = int32(vargen) } } } // declare the out arguments. gen := nt.List.Len() var i int = 0 for _, n := range nt.Rlist.Slice() { if n.Op != ODCLFIELD { Fatalf("funcargs out %v", n.Op) } if n.Left == nil { // Name so that escape analysis can track it. ~r stands for 'result'. n.Left = newname(lookupN("~r", gen)) gen++ } // TODO: n->left->missing = 1; n.Left.Op = ONAME if isblank(n.Left) { // Give it a name so we can assign to it during return. ~b stands for 'blank'. // The name must be different from ~r above because if you have // func f() (_ int) // func g() int // f is allowed to use a plain 'return' with no arguments, while g is not. // So the two cases must be distinguished. // We do not record a pointer to the original node (n->orig). // Having multiple names causes too much confusion in later passes. nn := *n.Left nn.Orig = &nn nn.Sym = lookupN("~b", gen) gen++ n.Left = &nn } n.Left.Name.Param.Ntype = n.Right declare(n.Left, PPARAMOUT) if dclcontext == PAUTO { i++ n.Left.Name.Vargen = int32(i) } } } // Same as funcargs, except run over an already constructed TFUNC. // This happens during import, where the hidden_fndcl rule has // used functype directly to parse the function's type. func funcargs2(t *types.Type) { if t.Etype != TFUNC { Fatalf("funcargs2 %v", t) } for _, ft := range t.Recvs().Fields().Slice() { if asNode(ft.Nname) == nil || asNode(ft.Nname).Sym == nil { continue } n := asNode(ft.Nname) // no need for newname(ft->nname->sym) n.Type = ft.Type declare(n, PPARAM) } for _, ft := range t.Params().Fields().Slice() { if asNode(ft.Nname) == nil || asNode(ft.Nname).Sym == nil { continue } n := asNode(ft.Nname) n.Type = ft.Type declare(n, PPARAM) } for _, ft := range t.Results().Fields().Slice() { if asNode(ft.Nname) == nil || asNode(ft.Nname).Sym == nil { continue } n := asNode(ft.Nname) n.Type = ft.Type declare(n, PPARAMOUT) } } var funcstack []*Node // stack of previous values of Curfn var funcdepth int32 // len(funcstack) during parsing, but then forced to be the same later during compilation // start the function. // called before funcargs; undone at end of funcbody. func funcstart(n *Node) { types.Markdcl() funcstack = append(funcstack, Curfn) funcdepth++ Curfn = n } // finish the body. // called in auto-declaration context. // returns in extern-declaration context. func funcbody() { // change the declaration context from auto to extern if dclcontext != PAUTO { Fatalf("funcbody: unexpected dclcontext %d", dclcontext) } types.Popdcl() funcstack, Curfn = funcstack[:len(funcstack)-1], funcstack[len(funcstack)-1] funcdepth-- if funcdepth == 0 { dclcontext = PEXTERN } } // structs, functions, and methods. // they don't belong here, but where do they belong? func checkembeddedtype(t *types.Type) { if t == nil { return } if t.Sym == nil && t.IsPtr() { t = t.Elem() if t.IsInterface() { yyerror("embedded type cannot be a pointer to interface") } } if t.IsPtr() || t.IsUnsafePtr() { yyerror("embedded type cannot be a pointer") } else if t.Etype == TFORW && !t.ForwardType().Embedlineno.IsKnown() { t.ForwardType().Embedlineno = lineno } } func structfield(n *Node) *types.Field { lno := lineno lineno = n.Pos if n.Op != ODCLFIELD { Fatalf("structfield: oops %v\n", n) } f := types.NewField() f.SetIsddd(n.Isddd()) if n.Right != nil { n.Right = typecheck(n.Right, Etype) n.Type = n.Right.Type if n.Left != nil { n.Left.Type = n.Type } if n.Embedded() { checkembeddedtype(n.Type) } } n.Right = nil f.Type = n.Type if f.Type == nil { f.SetBroke(true) } switch u := n.Val().U.(type) { case string: f.Note = u default: yyerror("field tag must be a string") case nil: // no-op } if n.Left != nil && n.Left.Op == ONAME { f.Nname = asTypesNode(n.Left) if n.Embedded() { f.Embedded = 1 } else { f.Embedded = 0 } f.Sym = asNode(f.Nname).Sym } lineno = lno return f } // checkdupfields emits errors for duplicately named fields or methods in // a list of struct or interface types. func checkdupfields(what string, ts ...*types.Type) { seen := make(map[*types.Sym]bool) for _, t := range ts { for _, f := range t.Fields().Slice() { if f.Sym == nil || f.Sym.IsBlank() || asNode(f.Nname) == nil { continue } if seen[f.Sym] { yyerrorl(asNode(f.Nname).Pos, "duplicate %s %s", what, f.Sym.Name) continue } seen[f.Sym] = true } } } // convert a parsed id/type list into // a type for struct/interface/arglist func tostruct(l []*Node) *types.Type { t := types.New(TSTRUCT) tostruct0(t, l) return t } func tostruct0(t *types.Type, l []*Node) { if t == nil || !t.IsStruct() { Fatalf("struct expected") } fields := make([]*types.Field, len(l)) for i, n := range l { f := structfield(n) if f.Broke() { t.SetBroke(true) } fields[i] = f } t.SetFields(fields) checkdupfields("field", t) if !t.Broke() { checkwidth(t) } } func tofunargs(l []*Node, funarg types.Funarg) *types.Type { t := types.New(TSTRUCT) t.StructType().Funarg = funarg fields := make([]*types.Field, len(l)) for i, n := range l { f := structfield(n) f.Funarg = funarg // esc.go needs to find f given a PPARAM to add the tag. if n.Left != nil && n.Left.Class() == PPARAM { n.Left.Name.Param.Field = f } if f.Broke() { t.SetBroke(true) } fields[i] = f } t.SetFields(fields) return t } func tofunargsfield(fields []*types.Field, funarg types.Funarg) *types.Type { t := types.New(TSTRUCT) t.StructType().Funarg = funarg for _, f := range fields { f.Funarg = funarg // esc.go needs to find f given a PPARAM to add the tag. if asNode(f.Nname) != nil && asNode(f.Nname).Class() == PPARAM { asNode(f.Nname).Name.Param.Field = f } } t.SetFields(fields) return t } func interfacefield(n *Node) *types.Field { lno := lineno lineno = n.Pos if n.Op != ODCLFIELD { Fatalf("interfacefield: oops %v\n", n) } if n.Val().Ctype() != CTxxx { yyerror("interface method cannot have annotation") } // MethodSpec = MethodName Signature | InterfaceTypeName . // // If Left != nil, then Left is MethodName and Right is Signature. // Otherwise, Right is InterfaceTypeName. if n.Right != nil { n.Right = typecheck(n.Right, Etype) n.Type = n.Right.Type n.Right = nil } f := types.NewField() if n.Left != nil { f.Nname = asTypesNode(n.Left) f.Sym = asNode(f.Nname).Sym } else { // Placeholder ONAME just to hold Pos. // TODO(mdempsky): Add Pos directly to Field instead. f.Nname = asTypesNode(newname(nblank.Sym)) } f.Type = n.Type if f.Type == nil { f.SetBroke(true) } lineno = lno return f } func tointerface(l []*Node) *types.Type { if len(l) == 0 { return types.Types[TINTER] } t := types.New(TINTER) tointerface0(t, l) return t } func tointerface0(t *types.Type, l []*Node) { if t == nil || !t.IsInterface() { Fatalf("interface expected") } var fields []*types.Field for _, n := range l { f := interfacefield(n) if f.Broke() { t.SetBroke(true) } fields = append(fields, f) } t.SetInterface(fields) } func fakeRecv() *Node { return anonfield(types.FakeRecvType()) } func fakeRecvField() *types.Field { f := types.NewField() f.Type = types.FakeRecvType() return f } // isifacemethod reports whether (field) m is // an interface method. Such methods have the // special receiver type types.FakeRecvType(). func isifacemethod(f *types.Type) bool { return f.Recv().Type == types.FakeRecvType() } // turn a parsed function declaration into a type func functype(this *Node, in, out []*Node) *types.Type { t := types.New(TFUNC) functype0(t, this, in, out) return t } func functype0(t *types.Type, this *Node, in, out []*Node) { if t == nil || t.Etype != TFUNC { Fatalf("function type expected") } var rcvr []*Node if this != nil { rcvr = []*Node{this} } t.FuncType().Receiver = tofunargs(rcvr, types.FunargRcvr) t.FuncType().Results = tofunargs(out, types.FunargResults) t.FuncType().Params = tofunargs(in, types.FunargParams) checkdupfields("argument", t.Recvs(), t.Results(), t.Params()) if t.Recvs().Broke() || t.Results().Broke() || t.Params().Broke() { t.SetBroke(true) } t.FuncType().Outnamed = false if len(out) > 0 && out[0].Left != nil && out[0].Left.Orig != nil { s := out[0].Left.Orig.Sym if s != nil && (s.Name[0] != '~' || s.Name[1] != 'r') { // ~r%d is the name invented for an unnamed result t.FuncType().Outnamed = true } } } func functypefield(this *types.Field, in, out []*types.Field) *types.Type { t := types.New(TFUNC) functypefield0(t, this, in, out) return t } func functypefield0(t *types.Type, this *types.Field, in, out []*types.Field) { var rcvr []*types.Field if this != nil { rcvr = []*types.Field{this} } t.FuncType().Receiver = tofunargsfield(rcvr, types.FunargRcvr) t.FuncType().Results = tofunargsfield(out, types.FunargRcvr) t.FuncType().Params = tofunargsfield(in, types.FunargRcvr) t.FuncType().Outnamed = false if len(out) > 0 && asNode(out[0].Nname) != nil && asNode(out[0].Nname).Orig != nil { s := asNode(out[0].Nname).Orig.Sym if s != nil && (s.Name[0] != '~' || s.Name[1] != 'r') { // ~r%d is the name invented for an unnamed result t.FuncType().Outnamed = true } } } var methodsym_toppkg *types.Pkg func methodsym(nsym *types.Sym, t0 *types.Type, iface bool) *types.Sym { if t0 == nil { Fatalf("methodsym: nil receiver type") } t := t0 s := t.Sym if s == nil && t.IsPtr() { t = t.Elem() if t == nil { Fatalf("methodsym: ptrto nil") } s = t.Sym } // if t0 == *t and t0 has a sym, // we want to see *t, not t0, in the method name. if t != t0 && t0.Sym != nil { t0 = types.NewPtr(t) } suffix := "" if iface { dowidth(t0) if t0.Width < int64(Widthptr) { suffix = "·i" } } var spkg *types.Pkg if s != nil { spkg = s.Pkg } pkgprefix := "" if (spkg == nil || nsym.Pkg != spkg) && !exportname(nsym.Name) && nsym.Pkg.Prefix != `""` { pkgprefix = "." + nsym.Pkg.Prefix } var p string if t0.Sym == nil && t0.IsPtr() { p = fmt.Sprintf("(%-S)%s.%s%s", t0, pkgprefix, nsym.Name, suffix) } else { p = fmt.Sprintf("%-S%s.%s%s", t0, pkgprefix, nsym.Name, suffix) } if spkg == nil { if methodsym_toppkg == nil { methodsym_toppkg = types.NewPkg("go", "") } spkg = methodsym_toppkg } return spkg.Lookup(p) } // methodname is a misnomer because this now returns a Sym, rather // than an ONAME. // TODO(mdempsky): Reconcile with methodsym. func methodname(s *types.Sym, recv *types.Type) *types.Sym { star := false if recv.IsPtr() { star = true recv = recv.Elem() } tsym := recv.Sym if tsym == nil || s.IsBlank() { return s } var p string if star { p = fmt.Sprintf("(*%v).%v", tsym.Name, s) } else { p = fmt.Sprintf("%v.%v", tsym, s) } s = tsym.Pkg.Lookup(p) return s } // Add a method, declared as a function. // - msym is the method symbol // - t is function type (with receiver) func addmethod(msym *types.Sym, t *types.Type, local, nointerface bool) { if msym == nil { Fatalf("no method symbol") } // get parent type sym rf := t.Recv() // ptr to this structure if rf == nil { yyerror("missing receiver") return } mt := methtype(rf.Type) if mt == nil || mt.Sym == nil { pa := rf.Type t := pa if t != nil && t.IsPtr() { if t.Sym != nil { yyerror("invalid receiver type %v (%v is a pointer type)", pa, t) return } t = t.Elem() } switch { case t == nil || t.Broke(): // rely on typecheck having complained before case t.Sym == nil: yyerror("invalid receiver type %v (%v is an unnamed type)", pa, t) case t.IsPtr(): yyerror("invalid receiver type %v (%v is a pointer type)", pa, t) case t.IsInterface(): yyerror("invalid receiver type %v (%v is an interface type)", pa, t) default: // Should have picked off all the reasons above, // but just in case, fall back to generic error. yyerror("invalid receiver type %v (%L / %L)", pa, pa, t) } return } if local && mt.Sym.Pkg != localpkg { yyerror("cannot define new methods on non-local type %v", mt) return } if msym.IsBlank() { return } if mt.IsStruct() { for _, f := range mt.Fields().Slice() { if f.Sym == msym { yyerror("type %v has both field and method named %v", mt, msym) return } } } for _, f := range mt.Methods().Slice() { if msym.Name != f.Sym.Name { continue } // eqtype only checks that incoming and result parameters match, // so explicitly check that the receiver parameters match too. if !eqtype(t, f.Type) || !eqtype(t.Recv().Type, f.Type.Recv().Type) { yyerror("method redeclared: %v.%v\n\t%v\n\t%v", mt, msym, f.Type, t) } return } f := types.NewField() f.Sym = msym f.Nname = asTypesNode(newname(msym)) f.Type = t f.SetNointerface(nointerface) mt.Methods().Append(f) } func funccompile(n *Node) { if n.Type == nil { if nerrors == 0 { Fatalf("funccompile missing type") } return } // assign parameter offsets checkwidth(n.Type) if Curfn != nil { Fatalf("funccompile %v inside %v", n.Func.Nname.Sym, Curfn.Func.Nname.Sym) } dclcontext = PAUTO funcdepth = n.Func.Depth + 1 compile(n) Curfn = nil funcdepth = 0 dclcontext = PEXTERN } func funcsymname(s *types.Sym) string { return s.Name + "·f" } // funcsym returns s·f. func funcsym(s *types.Sym) *types.Sym { // funcsymsmu here serves to protect not just mutations of funcsyms (below), // but also the package lookup of the func sym name, // since this function gets called concurrently from the backend. // There are no other concurrent package lookups in the backend, // except for the types package, which is protected separately. // Reusing funcsymsmu to also cover this package lookup // avoids a general, broader, expensive package lookup mutex. // Note makefuncsym also does package look-up of func sym names, // but that it is only called serially, from the front end. funcsymsmu.Lock() sf, existed := s.Pkg.LookupOK(funcsymname(s)) // Don't export s·f when compiling for dynamic linking. // When dynamically linking, the necessary function // symbols will be created explicitly with makefuncsym. // See the makefuncsym comment for details. if !Ctxt.Flag_dynlink && !existed { funcsyms = append(funcsyms, s) } funcsymsmu.Unlock() return sf } // makefuncsym ensures that s·f is exported. // It is only used with -dynlink. // When not compiling for dynamic linking, // the funcsyms are created as needed by // the packages that use them. // Normally we emit the s·f stubs as DUPOK syms, // but DUPOK doesn't work across shared library boundaries. // So instead, when dynamic linking, we only create // the s·f stubs in s's package. func makefuncsym(s *types.Sym) { if !Ctxt.Flag_dynlink { Fatalf("makefuncsym dynlink") } if s.IsBlank() { return } if compiling_runtime && (s.Name == "getg" || s.Name == "getclosureptr" || s.Name == "getcallerpc" || s.Name == "getcallersp") { // runtime.getg(), getclosureptr(), getcallerpc(), and // getcallersp() are not real functions and so do not // get funcsyms. return } if _, existed := s.Pkg.LookupOK(funcsymname(s)); !existed { funcsyms = append(funcsyms, s) } } func dclfunc(sym *types.Sym, tfn *Node) *Node { if tfn.Op != OTFUNC { Fatalf("expected OTFUNC node, got %v", tfn) } fn := nod(ODCLFUNC, nil, nil) fn.Func.Nname = newname(sym) fn.Func.Nname.Name.Defn = fn fn.Func.Nname.Name.Param.Ntype = tfn declare(fn.Func.Nname, PFUNC) funchdr(fn) fn.Func.Nname.Name.Param.Ntype = typecheck(fn.Func.Nname.Name.Param.Ntype, Etype) return fn } type nowritebarrierrecChecker struct { curfn *Node stable bool // best maps from the ODCLFUNC of each visited function that // recursively invokes a write barrier to the called function // on the shortest path to a write barrier. best map[*Node]nowritebarrierrecCall } type nowritebarrierrecCall struct { target *Node depth int lineno src.XPos } func checknowritebarrierrec() { c := nowritebarrierrecChecker{ best: make(map[*Node]nowritebarrierrecCall), } visitBottomUp(xtop, func(list []*Node, recursive bool) { // Functions with write barriers have depth 0. for _, n := range list { if n.Func.WBPos.IsKnown() && n.Func.Pragma&Nowritebarrier != 0 { yyerrorl(n.Func.WBPos, "write barrier prohibited") } if n.Func.WBPos.IsKnown() && n.Func.Pragma&Yeswritebarrierrec == 0 { c.best[n] = nowritebarrierrecCall{target: nil, depth: 0, lineno: n.Func.WBPos} } } // Propagate write barrier depth up from callees. In // the recursive case, we have to update this at most // len(list) times and can stop when we an iteration // that doesn't change anything. for range list { c.stable = false for _, n := range list { if n.Func.Pragma&Yeswritebarrierrec != 0 { // Don't propagate write // barrier up to a // yeswritebarrierrec function. continue } if !n.Func.WBPos.IsKnown() { c.curfn = n c.visitcodelist(n.Nbody) } } if c.stable { break } } // Check nowritebarrierrec functions. for _, n := range list { if n.Func.Pragma&Nowritebarrierrec == 0 { continue } call, hasWB := c.best[n] if !hasWB { continue } // Build the error message in reverse. err := "" for call.target != nil { err = fmt.Sprintf("\n\t%v: called by %v%s", linestr(call.lineno), n.Func.Nname, err) n = call.target call = c.best[n] } err = fmt.Sprintf("write barrier prohibited by caller; %v%s", n.Func.Nname, err) yyerrorl(n.Func.WBPos, err) } }) } func (c *nowritebarrierrecChecker) visitcodelist(l Nodes) { for _, n := range l.Slice() { c.visitcode(n) } } func (c *nowritebarrierrecChecker) visitcode(n *Node) { if n == nil { return } if n.Op == OCALLFUNC || n.Op == OCALLMETH { c.visitcall(n) } c.visitcodelist(n.Ninit) c.visitcode(n.Left) c.visitcode(n.Right) c.visitcodelist(n.List) c.visitcodelist(n.Nbody) c.visitcodelist(n.Rlist) } func (c *nowritebarrierrecChecker) visitcall(n *Node) { fn := n.Left if n.Op == OCALLMETH { fn = asNode(n.Left.Sym.Def) } if fn == nil || fn.Op != ONAME || fn.Class() != PFUNC || fn.Name.Defn == nil { return } defn := fn.Name.Defn fnbest, ok := c.best[defn] if !ok { return } best, ok := c.best[c.curfn] if ok && fnbest.depth+1 >= best.depth { return } c.best[c.curfn] = nowritebarrierrecCall{target: defn, depth: fnbest.depth + 1, lineno: n.Pos} c.stable = false }