// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package gc import "cmd/internal/obj" // range func typecheckrange(n *Node) { var toomany int var why string var t1 *Type var t2 *Type var v1 *Node var v2 *Node // Typechecking order is important here: // 0. first typecheck range expression (slice/map/chan), // it is evaluated only once and so logically it is not part of the loop. // 1. typcheck produced values, // this part can declare new vars and so it must be typechecked before body, // because body can contain a closure that captures the vars. // 2. decldepth++ to denote loop body. // 3. typecheck body. // 4. decldepth--. typecheck(&n.Right, Erv) t := n.Right.Type if t == nil { goto out } // delicate little dance. see typecheckas2 for it := nodeSeqIterate(n.List); !it.Done(); it.Next() { if it.N().Name == nil || it.N().Name.Defn != n { typecheck(it.P(), Erv|Easgn) } } if Isptr[t.Etype] && Isfixedarray(t.Type) { t = t.Type } n.Type = t toomany = 0 switch t.Etype { default: Yyerror("cannot range over %v", Nconv(n.Right, obj.FmtLong)) goto out case TARRAY: t1 = Types[TINT] t2 = t.Type case TMAP: t1 = t.Down t2 = t.Type case TCHAN: if t.Chan&Crecv == 0 { Yyerror("invalid operation: range %v (receive from send-only type %v)", n.Right, n.Right.Type) goto out } t1 = t.Type t2 = nil if nodeSeqLen(n.List) == 2 { toomany = 1 } case TSTRING: t1 = Types[TINT] t2 = runetype } if nodeSeqLen(n.List) > 2 || toomany != 0 { Yyerror("too many variables in range") } v1 = nil if nodeSeqLen(n.List) != 0 { v1 = nodeSeqFirst(n.List) } v2 = nil if nodeSeqLen(n.List) > 1 { v2 = nodeSeqSecond(n.List) } // this is not only a optimization but also a requirement in the spec. // "if the second iteration variable is the blank identifier, the range // clause is equivalent to the same clause with only the first variable // present." if isblank(v2) { if v1 != nil { setNodeSeq(&n.List, []*Node{v1}) } v2 = nil } if v1 != nil { if v1.Name != nil && v1.Name.Defn == n { v1.Type = t1 } else if v1.Type != nil && assignop(t1, v1.Type, &why) == 0 { Yyerror("cannot assign type %v to %v in range%s", t1, Nconv(v1, obj.FmtLong), why) } checkassign(n, v1) } if v2 != nil { if v2.Name != nil && v2.Name.Defn == n { v2.Type = t2 } else if v2.Type != nil && assignop(t2, v2.Type, &why) == 0 { Yyerror("cannot assign type %v to %v in range%s", t2, Nconv(v2, obj.FmtLong), why) } checkassign(n, v2) } // second half of dance out: n.Typecheck = 1 for it := nodeSeqIterate(n.List); !it.Done(); it.Next() { if it.N().Typecheck == 0 { typecheck(it.P(), Erv|Easgn) } } decldepth++ typechecklist(n.Nbody, Etop) decldepth-- } func walkrange(n *Node) { // variable name conventions: // ohv1, hv1, hv2: hidden (old) val 1, 2 // ha, hit: hidden aggregate, iterator // hn, hp: hidden len, pointer // hb: hidden bool // a, v1, v2: not hidden aggregate, val 1, 2 t := n.Type a := n.Right lno := setlineno(a) n.Right = nil var v1 *Node if nodeSeqLen(n.List) != 0 { v1 = nodeSeqFirst(n.List) } var v2 *Node if nodeSeqLen(n.List) > 1 && !isblank(nodeSeqSecond(n.List)) { v2 = nodeSeqSecond(n.List) } // n->list has no meaning anymore, clear it // to avoid erroneous processing by racewalk. setNodeSeq(&n.List, nil) var body []*Node var init *NodeList switch t.Etype { default: Fatalf("walkrange") case TARRAY: if memclrrange(n, v1, v2, a) { lineno = lno return } // orderstmt arranged for a copy of the array/slice variable if needed. ha := a hv1 := temp(Types[TINT]) hn := temp(Types[TINT]) var hp *Node init = list(init, Nod(OAS, hv1, nil)) init = list(init, Nod(OAS, hn, Nod(OLEN, ha, nil))) if v2 != nil { hp = temp(Ptrto(n.Type.Type)) tmp := Nod(OINDEX, ha, Nodintconst(0)) tmp.Bounded = true init = list(init, Nod(OAS, hp, Nod(OADDR, tmp, nil))) } n.Left = Nod(OLT, hv1, hn) n.Right = Nod(OAS, hv1, Nod(OADD, hv1, Nodintconst(1))) if v1 == nil { body = nil } else if v2 == nil { body = []*Node{Nod(OAS, v1, hv1)} } else { a := Nod(OAS2, nil, nil) setNodeSeq(&a.List, []*Node{v1, v2}) setNodeSeq(&a.Rlist, []*Node{hv1, Nod(OIND, hp, nil)}) body = []*Node{a} // Advance pointer as part of increment. // We used to advance the pointer before executing the loop body, // but doing so would make the pointer point past the end of the // array during the final iteration, possibly causing another unrelated // piece of memory not to be garbage collected until the loop finished. // Advancing during the increment ensures that the pointer p only points // pass the end of the array during the final "p++; i++; if(i >= len(x)) break;", // after which p is dead, so it cannot confuse the collector. tmp := Nod(OADD, hp, Nodintconst(t.Type.Width)) tmp.Type = hp.Type tmp.Typecheck = 1 tmp.Right.Type = Types[Tptr] tmp.Right.Typecheck = 1 a = Nod(OAS, hp, tmp) typecheck(&a, Etop) setNodeSeq(&n.Right.Ninit, []*Node{a}) } // orderstmt allocated the iterator for us. // we only use a once, so no copy needed. case TMAP: ha := a th := hiter(t) hit := prealloc[n] hit.Type = th n.Left = nil keyname := newname(th.Type.Sym) // depends on layout of iterator struct. See reflect.go:hiter valname := newname(th.Type.Down.Sym) // ditto fn := syslook("mapiterinit") substArgTypes(&fn, t.Down, t.Type, th) init = list(init, mkcall1(fn, nil, nil, typename(t), ha, Nod(OADDR, hit, nil))) n.Left = Nod(ONE, Nod(ODOT, hit, keyname), nodnil()) fn = syslook("mapiternext") substArgTypes(&fn, th) n.Right = mkcall1(fn, nil, nil, Nod(OADDR, hit, nil)) key := Nod(ODOT, hit, keyname) key = Nod(OIND, key, nil) if v1 == nil { body = nil } else if v2 == nil { body = []*Node{Nod(OAS, v1, key)} } else { val := Nod(ODOT, hit, valname) val = Nod(OIND, val, nil) a := Nod(OAS2, nil, nil) setNodeSeq(&a.List, []*Node{v1, v2}) setNodeSeq(&a.Rlist, []*Node{key, val}) body = []*Node{a} } // orderstmt arranged for a copy of the channel variable. case TCHAN: ha := a n.Left = nil hv1 := temp(t.Type) hv1.Typecheck = 1 if haspointers(t.Type) { init = list(init, Nod(OAS, hv1, nil)) } hb := temp(Types[TBOOL]) n.Left = Nod(ONE, hb, Nodbool(false)) a := Nod(OAS2RECV, nil, nil) a.Typecheck = 1 setNodeSeq(&a.List, []*Node{hv1, hb}) setNodeSeq(&a.Rlist, []*Node{Nod(ORECV, ha, nil)}) setNodeSeq(&n.Left.Ninit, []*Node{a}) if v1 == nil { body = nil } else { body = []*Node{Nod(OAS, v1, hv1)} } // orderstmt arranged for a copy of the string variable. case TSTRING: ha := a ohv1 := temp(Types[TINT]) hv1 := temp(Types[TINT]) init = list(init, Nod(OAS, hv1, nil)) var a *Node var hv2 *Node if v2 == nil { a = Nod(OAS, hv1, mkcall("stringiter", Types[TINT], nil, ha, hv1)) } else { hv2 = temp(runetype) a = Nod(OAS2, nil, nil) setNodeSeq(&a.List, []*Node{hv1, hv2}) fn := syslook("stringiter2") setNodeSeq(&a.Rlist, []*Node{mkcall1(fn, getoutargx(fn.Type), nil, ha, hv1)}) } n.Left = Nod(ONE, hv1, Nodintconst(0)) setNodeSeq(&n.Left.Ninit, []*Node{Nod(OAS, ohv1, hv1), a}) body = nil if v1 != nil { body = []*Node{Nod(OAS, v1, ohv1)} } if v2 != nil { body = append(body, Nod(OAS, v2, hv2)) } } n.Op = OFOR typechecklist(init, Etop) appendNodeSeq(&n.Ninit, init) typechecklist(n.Left.Ninit, Etop) typecheck(&n.Left, Erv) typecheck(&n.Right, Etop) typecheckslice(body, Etop) n.Nbody.Set(append(body, n.Nbody.Slice()...)) walkstmt(&n) lineno = lno } // Lower n into runtime·memclr if possible, for // fast zeroing of slices and arrays (issue 5373). // Look for instances of // // for i := range a { // a[i] = zero // } // // in which the evaluation of a is side-effect-free. // // Parameters are as in walkrange: "for v1, v2 = range a". func memclrrange(n, v1, v2, a *Node) bool { if Debug['N'] != 0 || instrumenting { return false } if v1 == nil || v2 != nil { return false } if len(n.Nbody.Slice()) == 0 || n.Nbody.Slice()[0] == nil || len(n.Nbody.Slice()) > 1 { return false } stmt := n.Nbody.Slice()[0] // only stmt in body if stmt.Op != OAS || stmt.Left.Op != OINDEX { return false } if !samesafeexpr(stmt.Left.Left, a) || !samesafeexpr(stmt.Left.Right, v1) { return false } elemsize := n.Type.Type.Width if elemsize <= 0 || !iszero(stmt.Right) { return false } // Convert to // if len(a) != 0 { // hp = &a[0] // hn = len(a)*sizeof(elem(a)) // memclr(hp, hn) // i = len(a) - 1 // } n.Op = OIF n.Nbody.Set(nil) n.Left = Nod(ONE, Nod(OLEN, a, nil), Nodintconst(0)) // hp = &a[0] hp := temp(Ptrto(Types[TUINT8])) tmp := Nod(OINDEX, a, Nodintconst(0)) tmp.Bounded = true tmp = Nod(OADDR, tmp, nil) tmp = Nod(OCONVNOP, tmp, nil) tmp.Type = Ptrto(Types[TUINT8]) n.Nbody.Append(Nod(OAS, hp, tmp)) // hn = len(a) * sizeof(elem(a)) hn := temp(Types[TUINTPTR]) tmp = Nod(OLEN, a, nil) tmp = Nod(OMUL, tmp, Nodintconst(elemsize)) tmp = conv(tmp, Types[TUINTPTR]) n.Nbody.Append(Nod(OAS, hn, tmp)) // memclr(hp, hn) fn := mkcall("memclr", nil, nil, hp, hn) n.Nbody.Append(fn) // i = len(a) - 1 v1 = Nod(OAS, v1, Nod(OSUB, Nod(OLEN, a, nil), Nodintconst(1))) n.Nbody.Append(v1) typecheck(&n.Left, Erv) typechecklist(n.Nbody, Etop) walkstmt(&n) return true }