// Derived from Inferno utils/6l/obj.c and utils/6l/span.c // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/6l/obj.c // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/6l/span.c // // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) // Portions Copyright © 1997-1999 Vita Nuova Limited // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) // Portions Copyright © 2004,2006 Bruce Ellis // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others // Portions Copyright © 2009 The Go Authors. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. package ld import ( "bytes" "cmd/internal/gcprog" "cmd/internal/objabi" "cmd/internal/sys" "cmd/link/internal/loader" "cmd/link/internal/sym" "compress/zlib" "encoding/binary" "fmt" "log" "os" "sort" "strconv" "strings" "sync" ) // isRuntimeDepPkg reports whether pkg is the runtime package or its dependency func isRuntimeDepPkg(pkg string) bool { switch pkg { case "runtime", "sync/atomic", // runtime may call to sync/atomic, due to go:linkname "internal/bytealg", // for IndexByte "internal/cpu": // for cpu features return true } return strings.HasPrefix(pkg, "runtime/internal/") && !strings.HasSuffix(pkg, "_test") } // Estimate the max size needed to hold any new trampolines created for this function. This // is used to determine when the section can be split if it becomes too large, to ensure that // the trampolines are in the same section as the function that uses them. func maxSizeTrampolinesPPC64(ldr *loader.Loader, s loader.Sym, isTramp bool) uint64 { // If thearch.Trampoline is nil, then trampoline support is not available on this arch. // A trampoline does not need any dependent trampolines. if thearch.Trampoline == nil || isTramp { return 0 } n := uint64(0) relocs := ldr.Relocs(s) for ri := 0; ri < relocs.Count(); ri++ { r := relocs.At2(ri) if r.Type().IsDirectCallOrJump() { n++ } } // Trampolines in ppc64 are 4 instructions. return n * 16 } // detect too-far jumps in function s, and add trampolines if necessary // ARM, PPC64 & PPC64LE support trampoline insertion for internal and external linking // On PPC64 & PPC64LE the text sections might be split but will still insert trampolines // where necessary. func trampoline(ctxt *Link, s loader.Sym) { if thearch.Trampoline == nil { return // no need or no support of trampolines on this arch } ldr := ctxt.loader relocs := ldr.Relocs(s) for ri := 0; ri < relocs.Count(); ri++ { r := relocs.At2(ri) if !r.Type().IsDirectCallOrJump() { continue } rs := r.Sym() if !ldr.AttrReachable(rs) || ldr.SymType(rs) == sym.Sxxx { continue // something is wrong. skip it here and we'll emit a better error later } rs = ldr.ResolveABIAlias(rs) if ldr.SymValue(rs) == 0 && (ldr.SymType(rs) != sym.SDYNIMPORT && ldr.SymType(rs) != sym.SUNDEFEXT) { if ldr.SymPkg(rs) != ldr.SymPkg(s) { if !isRuntimeDepPkg(ldr.SymPkg(s)) || !isRuntimeDepPkg(ldr.SymPkg(rs)) { ctxt.Errorf(s, "unresolved inter-package jump to %s(%s) from %s", ldr.SymName(rs), ldr.SymPkg(rs), ldr.SymPkg(s)) } // runtime and its dependent packages may call to each other. // they are fine, as they will be laid down together. } continue } thearch.Trampoline(ctxt, ldr, ri, rs, s) } } // relocsym resolve relocations in "s". The main loop walks through // the list of relocations attached to "s" and resolves them where // applicable. Relocations are often architecture-specific, requiring // calls into the 'archreloc' and/or 'archrelocvariant' functions for // the architecture. When external linking is in effect, it may not be // possible to completely resolve the address/offset for a symbol, in // which case the goal is to lay the groundwork for turning a given // relocation into an external reloc (to be applied by the external // linker). For more on how relocations work in general, see // // "Linkers and Loaders", by John R. Levine (Morgan Kaufmann, 1999), ch. 7 // // This is a performance-critical function for the linker; be careful // to avoid introducing unnecessary allocations in the main loop. // TODO: This function is called in parallel. When the Loader wavefront // reaches here, calls into the loader need to be parallel as well. func relocsym(target *Target, ldr *loader.Loader, err *ErrorReporter, syms *ArchSyms, s *sym.Symbol) { if len(s.R) == 0 { return } if s.Attr.ReadOnly() { // The symbol's content is backed by read-only memory. // Copy it to writable memory to apply relocations. s.P = append([]byte(nil), s.P...) s.Attr.Set(sym.AttrReadOnly, false) } for ri := int32(0); ri < int32(len(s.R)); ri++ { r := &s.R[ri] if r.Done { // Relocation already processed by an earlier phase. continue } r.Done = true off := r.Off siz := int32(r.Siz) if off < 0 || off+siz > int32(len(s.P)) { rname := "" if r.Sym != nil { rname = r.Sym.Name } Errorf(s, "invalid relocation %s: %d+%d not in [%d,%d)", rname, off, siz, 0, len(s.P)) continue } if r.Sym != nil && ((r.Sym.Type == sym.Sxxx && !r.Sym.Attr.VisibilityHidden()) || r.Sym.Type == sym.SXREF) { // When putting the runtime but not main into a shared library // these symbols are undefined and that's OK. if target.IsShared() || target.IsPlugin() { if r.Sym.Name == "main.main" || (!target.IsPlugin() && r.Sym.Name == "main..inittask") { r.Sym.Type = sym.SDYNIMPORT } else if strings.HasPrefix(r.Sym.Name, "go.info.") { // Skip go.info symbols. They are only needed to communicate // DWARF info between the compiler and linker. continue } } else { err.errorUnresolved(s, r) continue } } if r.Type >= objabi.ElfRelocOffset { continue } if r.Siz == 0 { // informational relocation - no work to do continue } // We need to be able to reference dynimport symbols when linking against // shared libraries, and Solaris, Darwin and AIX need it always if !target.IsSolaris() && !target.IsDarwin() && !target.IsAIX() && r.Sym != nil && r.Sym.Type == sym.SDYNIMPORT && !target.IsDynlinkingGo() && !r.Sym.Attr.SubSymbol() { if !(target.IsPPC64() && target.IsExternal() && r.Sym.Name == ".TOC.") { Errorf(s, "unhandled relocation for %s (type %d (%s) rtype %d (%s))", r.Sym.Name, r.Sym.Type, r.Sym.Type, r.Type, sym.RelocName(target.Arch, r.Type)) } } if r.Sym != nil && r.Sym.Type != sym.STLSBSS && r.Type != objabi.R_WEAKADDROFF && !r.Sym.Attr.Reachable() { Errorf(s, "unreachable sym in relocation: %s", r.Sym.Name) } if target.IsExternal() { r.InitExt() } // TODO(mundaym): remove this special case - see issue 14218. if target.IsS390X() { switch r.Type { case objabi.R_PCRELDBL: r.InitExt() r.Type = objabi.R_PCREL r.Variant = sym.RV_390_DBL case objabi.R_CALL: r.InitExt() r.Variant = sym.RV_390_DBL } } var o int64 switch r.Type { default: switch siz { default: Errorf(s, "bad reloc size %#x for %s", uint32(siz), r.Sym.Name) case 1: o = int64(s.P[off]) case 2: o = int64(target.Arch.ByteOrder.Uint16(s.P[off:])) case 4: o = int64(target.Arch.ByteOrder.Uint32(s.P[off:])) case 8: o = int64(target.Arch.ByteOrder.Uint64(s.P[off:])) } if offset, ok := thearch.Archreloc(target, syms, r, s, o); ok { o = offset } else { Errorf(s, "unknown reloc to %v: %d (%s)", r.Sym.Name, r.Type, sym.RelocName(target.Arch, r.Type)) } case objabi.R_TLS_LE: if target.IsExternal() && target.IsElf() { r.Done = false if r.Sym == nil { r.Sym = syms.Tlsg } r.Xsym = r.Sym r.Xadd = r.Add o = 0 if !target.IsAMD64() { o = r.Add } break } if target.IsElf() && target.IsARM() { // On ELF ARM, the thread pointer is 8 bytes before // the start of the thread-local data block, so add 8 // to the actual TLS offset (r->sym->value). // This 8 seems to be a fundamental constant of // ELF on ARM (or maybe Glibc on ARM); it is not // related to the fact that our own TLS storage happens // to take up 8 bytes. o = 8 + r.Sym.Value } else if target.IsElf() || target.IsPlan9() || target.IsDarwin() { o = int64(syms.Tlsoffset) + r.Add } else if target.IsWindows() { o = r.Add } else { log.Fatalf("unexpected R_TLS_LE relocation for %v", target.HeadType) } case objabi.R_TLS_IE: if target.IsExternal() && target.IsElf() { r.Done = false if r.Sym == nil { r.Sym = syms.Tlsg } r.Xsym = r.Sym r.Xadd = r.Add o = 0 if !target.IsAMD64() { o = r.Add } break } if target.IsPIE() && target.IsElf() { // We are linking the final executable, so we // can optimize any TLS IE relocation to LE. if thearch.TLSIEtoLE == nil { log.Fatalf("internal linking of TLS IE not supported on %v", target.Arch.Family) } thearch.TLSIEtoLE(s, int(off), int(r.Siz)) o = int64(syms.Tlsoffset) // TODO: o += r.Add when !target.IsAmd64()? // Why do we treat r.Add differently on AMD64? // Is the external linker using Xadd at all? } else { log.Fatalf("cannot handle R_TLS_IE (sym %s) when linking internally", s.Name) } case objabi.R_ADDR: if target.IsExternal() && r.Sym.Type != sym.SCONST { r.Done = false // set up addend for eventual relocation via outer symbol. rs := r.Sym r.Xadd = r.Add for rs.Outer != nil { r.Xadd += Symaddr(rs) - Symaddr(rs.Outer) rs = rs.Outer } if rs.Type != sym.SHOSTOBJ && rs.Type != sym.SDYNIMPORT && rs.Type != sym.SUNDEFEXT && rs.Sect == nil { Errorf(s, "missing section for relocation target %s", rs.Name) } r.Xsym = rs o = r.Xadd if target.IsElf() { if target.IsAMD64() { o = 0 } } else if target.IsDarwin() { if rs.Type != sym.SHOSTOBJ { o += Symaddr(rs) } } else if target.IsWindows() { // nothing to do } else if target.IsAIX() { o = Symaddr(r.Sym) + r.Add } else { Errorf(s, "unhandled pcrel relocation to %s on %v", rs.Name, target.HeadType) } break } // On AIX, a second relocation must be done by the loader, // as section addresses can change once loaded. // The "default" symbol address is still needed by the loader so // the current relocation can't be skipped. if target.IsAIX() && r.Sym.Type != sym.SDYNIMPORT { // It's not possible to make a loader relocation in a // symbol which is not inside .data section. // FIXME: It should be forbidden to have R_ADDR from a // symbol which isn't in .data. However, as .text has the // same address once loaded, this is possible. if s.Sect.Seg == &Segdata { Xcoffadddynrel(target, ldr, s, r) } } o = Symaddr(r.Sym) + r.Add // On amd64, 4-byte offsets will be sign-extended, so it is impossible to // access more than 2GB of static data; fail at link time is better than // fail at runtime. See https://golang.org/issue/7980. // Instead of special casing only amd64, we treat this as an error on all // 64-bit architectures so as to be future-proof. if int32(o) < 0 && target.Arch.PtrSize > 4 && siz == 4 { Errorf(s, "non-pc-relative relocation address for %s is too big: %#x (%#x + %#x)", r.Sym.Name, uint64(o), Symaddr(r.Sym), r.Add) errorexit() } case objabi.R_DWARFSECREF: if r.Sym.Sect == nil { Errorf(s, "missing DWARF section for relocation target %s", r.Sym.Name) } if target.IsExternal() { r.Done = false // On most platforms, the external linker needs to adjust DWARF references // as it combines DWARF sections. However, on Darwin, dsymutil does the // DWARF linking, and it understands how to follow section offsets. // Leaving in the relocation records confuses it (see // https://golang.org/issue/22068) so drop them for Darwin. if target.IsDarwin() { r.Done = true } // PE code emits IMAGE_REL_I386_SECREL and IMAGE_REL_AMD64_SECREL // for R_DWARFSECREF relocations, while R_ADDR is replaced with // IMAGE_REL_I386_DIR32, IMAGE_REL_AMD64_ADDR64 and IMAGE_REL_AMD64_ADDR32. // Do not replace R_DWARFSECREF with R_ADDR for windows - // let PE code emit correct relocations. if !target.IsWindows() { r.Type = objabi.R_ADDR } r.Xsym = r.Sym.Sect.Sym r.Xadd = r.Add + Symaddr(r.Sym) - int64(r.Sym.Sect.Vaddr) o = r.Xadd if target.IsElf() && target.IsAMD64() { o = 0 } break } o = Symaddr(r.Sym) + r.Add - int64(r.Sym.Sect.Vaddr) case objabi.R_WEAKADDROFF: if !r.Sym.Attr.Reachable() { continue } fallthrough case objabi.R_ADDROFF: // The method offset tables using this relocation expect the offset to be relative // to the start of the first text section, even if there are multiple. if r.Sym.Sect.Name == ".text" { o = Symaddr(r.Sym) - int64(Segtext.Sections[0].Vaddr) + r.Add } else { o = Symaddr(r.Sym) - int64(r.Sym.Sect.Vaddr) + r.Add } case objabi.R_ADDRCUOFF: // debug_range and debug_loc elements use this relocation type to get an // offset from the start of the compile unit. o = Symaddr(r.Sym) + r.Add - Symaddr(ldr.Syms[r.Sym.Unit.Textp2[0]]) // r->sym can be null when CALL $(constant) is transformed from absolute PC to relative PC call. case objabi.R_GOTPCREL: if target.IsDynlinkingGo() && target.IsDarwin() && r.Sym != nil && r.Sym.Type != sym.SCONST { r.Done = false r.Xadd = r.Add r.Xadd -= int64(r.Siz) // relative to address after the relocated chunk r.Xsym = r.Sym o = r.Xadd o += int64(r.Siz) break } fallthrough case objabi.R_CALL, objabi.R_PCREL: if target.IsExternal() && r.Sym != nil && r.Sym.Type == sym.SUNDEFEXT { // pass through to the external linker. r.Done = false r.Xadd = 0 if target.IsElf() { r.Xadd -= int64(r.Siz) } r.Xsym = r.Sym o = 0 break } if target.IsExternal() && r.Sym != nil && r.Sym.Type != sym.SCONST && (r.Sym.Sect != s.Sect || r.Type == objabi.R_GOTPCREL) { r.Done = false // set up addend for eventual relocation via outer symbol. rs := r.Sym r.Xadd = r.Add for rs.Outer != nil { r.Xadd += Symaddr(rs) - Symaddr(rs.Outer) rs = rs.Outer } r.Xadd -= int64(r.Siz) // relative to address after the relocated chunk if rs.Type != sym.SHOSTOBJ && rs.Type != sym.SDYNIMPORT && rs.Sect == nil { Errorf(s, "missing section for relocation target %s", rs.Name) } r.Xsym = rs o = r.Xadd if target.IsElf() { if target.IsAMD64() { o = 0 } } else if target.IsDarwin() { if r.Type == objabi.R_CALL { if target.IsExternal() && rs.Type == sym.SDYNIMPORT { switch target.Arch.Family { case sys.AMD64: // AMD64 dynamic relocations are relative to the end of the relocation. o += int64(r.Siz) case sys.I386: // I386 dynamic relocations are relative to the start of the section. o -= int64(r.Off) // offset in symbol o -= int64(s.Value - int64(s.Sect.Vaddr)) // offset of symbol in section } } else { if rs.Type != sym.SHOSTOBJ { o += int64(uint64(Symaddr(rs)) - rs.Sect.Vaddr) } o -= int64(r.Off) // relative to section offset, not symbol } } else if target.IsARM() { // see ../arm/asm.go:/machoreloc1 o += Symaddr(rs) - s.Value - int64(r.Off) } else { o += int64(r.Siz) } } else if target.IsWindows() && target.IsAMD64() { // only amd64 needs PCREL // PE/COFF's PC32 relocation uses the address after the relocated // bytes as the base. Compensate by skewing the addend. o += int64(r.Siz) } else { Errorf(s, "unhandled pcrel relocation to %s on %v", rs.Name, target.HeadType) } break } o = 0 if r.Sym != nil { o += Symaddr(r.Sym) } o += r.Add - (s.Value + int64(r.Off) + int64(r.Siz)) case objabi.R_SIZE: o = r.Sym.Size + r.Add case objabi.R_XCOFFREF: if !target.IsAIX() { Errorf(s, "find XCOFF R_REF on non-XCOFF files") } if !target.IsExternal() { Errorf(s, "find XCOFF R_REF with internal linking") } r.Xsym = r.Sym r.Xadd = r.Add r.Done = false // This isn't a real relocation so it must not update // its offset value. continue case objabi.R_DWARFFILEREF: // The final file index is saved in r.Add in dwarf.go:writelines. o = r.Add } if target.IsPPC64() || target.IsS390X() { r.InitExt() if r.Variant != sym.RV_NONE { o = thearch.Archrelocvariant(target, syms, r, s, o) } } if false { nam := "" var addr int64 if r.Sym != nil { nam = r.Sym.Name addr = Symaddr(r.Sym) } xnam := "" if r.Xsym != nil { xnam = r.Xsym.Name } fmt.Printf("relocate %s %#x (%#x+%#x, size %d) => %s %#x +%#x (xsym: %s +%#x) [type %d (%s)/%d, %x]\n", s.Name, s.Value+int64(off), s.Value, r.Off, r.Siz, nam, addr, r.Add, xnam, r.Xadd, r.Type, sym.RelocName(target.Arch, r.Type), r.Variant, o) } switch siz { default: Errorf(s, "bad reloc size %#x for %s", uint32(siz), r.Sym.Name) fallthrough // TODO(rsc): Remove. case 1: s.P[off] = byte(int8(o)) case 2: if o != int64(int16(o)) { Errorf(s, "relocation address for %s is too big: %#x", r.Sym.Name, o) } i16 := int16(o) target.Arch.ByteOrder.PutUint16(s.P[off:], uint16(i16)) case 4: if r.Type == objabi.R_PCREL || r.Type == objabi.R_CALL { if o != int64(int32(o)) { Errorf(s, "pc-relative relocation address for %s is too big: %#x", r.Sym.Name, o) } } else { if o != int64(int32(o)) && o != int64(uint32(o)) { Errorf(s, "non-pc-relative relocation address for %s is too big: %#x", r.Sym.Name, uint64(o)) } } fl := int32(o) target.Arch.ByteOrder.PutUint32(s.P[off:], uint32(fl)) case 8: target.Arch.ByteOrder.PutUint64(s.P[off:], uint64(o)) } } } func (ctxt *Link) reloc() { var wg sync.WaitGroup target := &ctxt.Target ldr := ctxt.loader reporter := &ctxt.ErrorReporter syms := &ctxt.ArchSyms wg.Add(3) go func() { for _, s := range ctxt.Textp { relocsym(target, ldr, reporter, syms, s) } wg.Done() }() go func() { for _, s := range ctxt.datap { relocsym(target, ldr, reporter, syms, s) } wg.Done() }() go func() { for _, s := range dwarfp { relocsym(target, ldr, reporter, syms, s) } wg.Done() }() wg.Wait() } func windynrelocsym(ctxt *Link, rel *loader.SymbolBuilder, s loader.Sym) { var su *loader.SymbolBuilder relocs := ctxt.loader.Relocs(s) for ri := 0; ri < relocs.Count(); ri++ { r := relocs.At2(ri) targ := r.Sym() if targ == 0 { continue } rt := r.Type() if !ctxt.loader.AttrReachable(targ) { if rt == objabi.R_WEAKADDROFF { continue } ctxt.Errorf(s, "dynamic relocation to unreachable symbol %s", ctxt.loader.SymName(targ)) } tplt := ctxt.loader.SymPlt(targ) tgot := ctxt.loader.SymGot(targ) if tplt == -2 && tgot != -2 { // make dynimport JMP table for PE object files. tplt := int32(rel.Size()) ctxt.loader.SetPlt(targ, tplt) if su == nil { su = ctxt.loader.MakeSymbolUpdater(s) } r.SetSym(rel.Sym()) r.SetAdd(int64(tplt)) // jmp *addr switch ctxt.Arch.Family { default: ctxt.Errorf(s, "unsupported arch %v", ctxt.Arch.Family) return case sys.I386: rel.AddUint8(0xff) rel.AddUint8(0x25) rel.AddAddrPlus(ctxt.Arch, targ, 0) rel.AddUint8(0x90) rel.AddUint8(0x90) case sys.AMD64: rel.AddUint8(0xff) rel.AddUint8(0x24) rel.AddUint8(0x25) rel.AddAddrPlus4(ctxt.Arch, targ, 0) rel.AddUint8(0x90) } } else if tplt >= 0 { if su == nil { su = ctxt.loader.MakeSymbolUpdater(s) } r.SetSym(rel.Sym()) r.SetAdd(int64(tplt)) } } } // windynrelocsyms generates jump table to C library functions that will be // added later. windynrelocsyms writes the table into .rel symbol. func (ctxt *Link) windynrelocsyms() { if !(ctxt.IsWindows() && iscgo && ctxt.IsInternal()) { return } rel := ctxt.loader.LookupOrCreateSym(".rel", 0) relu := ctxt.loader.MakeSymbolUpdater(rel) relu.SetType(sym.STEXT) for _, s := range ctxt.Textp2 { windynrelocsym(ctxt, relu, s) } ctxt.Textp2 = append(ctxt.Textp2, rel) } func dynrelocsym(ctxt *Link, s *sym.Symbol) { target := &ctxt.Target ldr := ctxt.loader syms := &ctxt.ArchSyms for ri := range s.R { r := &s.R[ri] if ctxt.BuildMode == BuildModePIE && ctxt.LinkMode == LinkInternal { // It's expected that some relocations will be done // later by relocsym (R_TLS_LE, R_ADDROFF), so // don't worry if Adddynrel returns false. thearch.Adddynrel(target, ldr, syms, s, r) continue } if r.Sym != nil && r.Sym.Type == sym.SDYNIMPORT || r.Type >= objabi.ElfRelocOffset { if r.Sym != nil && !r.Sym.Attr.Reachable() { Errorf(s, "dynamic relocation to unreachable symbol %s", r.Sym.Name) } if !thearch.Adddynrel(target, ldr, syms, s, r) { Errorf(s, "unsupported dynamic relocation for symbol %s (type=%d (%s) stype=%d (%s))", r.Sym.Name, r.Type, sym.RelocName(ctxt.Arch, r.Type), r.Sym.Type, r.Sym.Type) } } } } func (state *dodataState) dynreloc(ctxt *Link) { if ctxt.HeadType == objabi.Hwindows { return } // -d suppresses dynamic loader format, so we may as well not // compute these sections or mark their symbols as reachable. if *FlagD { return } for _, s := range ctxt.Textp { dynrelocsym(ctxt, s) } for _, syms := range state.data { for _, s := range syms { dynrelocsym(ctxt, s) } } if ctxt.IsELF { elfdynhash(ctxt) } } func Codeblk(ctxt *Link, out *OutBuf, addr int64, size int64) { CodeblkPad(ctxt, out, addr, size, zeros[:]) } func CodeblkPad(ctxt *Link, out *OutBuf, addr int64, size int64, pad []byte) { if *flagA { ctxt.Logf("codeblk [%#x,%#x) at offset %#x\n", addr, addr+size, ctxt.Out.Offset()) } writeBlocks(out, ctxt.outSem, ctxt.Textp, addr, size, pad) /* again for printing */ if !*flagA { return } syms := ctxt.Textp for i, s := range syms { if !s.Attr.Reachable() { continue } if s.Value >= addr { syms = syms[i:] break } } eaddr := addr + size for _, s := range syms { if !s.Attr.Reachable() { continue } if s.Value >= eaddr { break } if addr < s.Value { ctxt.Logf("%-20s %.8x|", "_", uint64(addr)) for ; addr < s.Value; addr++ { ctxt.Logf(" %.2x", 0) } ctxt.Logf("\n") } ctxt.Logf("%.6x\t%-20s\n", uint64(addr), s.Name) q := s.P for len(q) >= 16 { ctxt.Logf("%.6x\t% x\n", uint64(addr), q[:16]) addr += 16 q = q[16:] } if len(q) > 0 { ctxt.Logf("%.6x\t% x\n", uint64(addr), q) addr += int64(len(q)) } } if addr < eaddr { ctxt.Logf("%-20s %.8x|", "_", uint64(addr)) for ; addr < eaddr; addr++ { ctxt.Logf(" %.2x", 0) } } } const blockSize = 1 << 20 // 1MB chunks written at a time. // writeBlocks writes a specified chunk of symbols to the output buffer. It // breaks the write up into ≥blockSize chunks to write them out, and schedules // as many goroutines as necessary to accomplish this task. This call then // blocks, waiting on the writes to complete. Note that we use the sem parameter // to limit the number of concurrent writes taking place. func writeBlocks(out *OutBuf, sem chan int, syms []*sym.Symbol, addr, size int64, pad []byte) { for i, s := range syms { if s.Value >= addr && !s.Attr.SubSymbol() { syms = syms[i:] break } } var wg sync.WaitGroup max, lastAddr, written := int64(blockSize), addr+size, int64(0) for addr < lastAddr { // Find the last symbol we'd write. idx := -1 for i, s := range syms { if s.Attr.SubSymbol() { continue } // If the next symbol's size would put us out of bounds on the total length, // stop looking. if s.Value+s.Size > lastAddr { break } // We're gonna write this symbol. idx = i // If we cross over the max size, we've got enough symbols. if s.Value+s.Size > addr+max { break } } // If we didn't find any symbols to write, we're done here. if idx < 0 { break } // Compute the length to write, including padding. // We need to write to the end address (lastAddr), or the next symbol's // start address, whichever comes first. If there is no more symbols, // just write to lastAddr. This ensures we don't leave holes between the // blocks or at the end. length := int64(0) if idx+1 < len(syms) { // Find the next top-level symbol. // Skip over sub symbols so we won't split a containter symbol // into two blocks. next := syms[idx+1] for next.Attr.SubSymbol() { idx++ next = syms[idx+1] } length = next.Value - addr } if length == 0 || length > lastAddr-addr { length = lastAddr - addr } // Start the block output operator. if o, err := out.View(uint64(out.Offset() + written)); err == nil { sem <- 1 wg.Add(1) go func(o *OutBuf, syms []*sym.Symbol, addr, size int64, pad []byte) { writeBlock(o, syms, addr, size, pad) wg.Done() <-sem }(o, syms, addr, length, pad) } else { // output not mmaped, don't parallelize. writeBlock(out, syms, addr, length, pad) } // Prepare for the next loop. if idx != -1 { syms = syms[idx+1:] } written += length addr += length } wg.Wait() } func writeBlock(out *OutBuf, syms []*sym.Symbol, addr, size int64, pad []byte) { for i, s := range syms { if s.Value >= addr && !s.Attr.SubSymbol() { syms = syms[i:] break } } // This doesn't distinguish the memory size from the file // size, and it lays out the file based on Symbol.Value, which // is the virtual address. DWARF compression changes file sizes, // so dwarfcompress will fix this up later if necessary. eaddr := addr + size for _, s := range syms { if s.Attr.SubSymbol() { continue } if s.Value >= eaddr { break } if s.Value < addr { Errorf(s, "phase error: addr=%#x but sym=%#x type=%d", addr, s.Value, s.Type) errorexit() } if addr < s.Value { out.WriteStringPad("", int(s.Value-addr), pad) addr = s.Value } out.WriteSym(s) addr += int64(len(s.P)) if addr < s.Value+s.Size { out.WriteStringPad("", int(s.Value+s.Size-addr), pad) addr = s.Value + s.Size } if addr != s.Value+s.Size { Errorf(s, "phase error: addr=%#x value+size=%#x", addr, s.Value+s.Size) errorexit() } if s.Value+s.Size >= eaddr { break } } if addr < eaddr { out.WriteStringPad("", int(eaddr-addr), pad) } } type writeFn func(*Link, *OutBuf, int64, int64) // WriteParallel handles scheduling parallel execution of data write functions. func WriteParallel(wg *sync.WaitGroup, fn writeFn, ctxt *Link, seek, vaddr, length uint64) { if out, err := ctxt.Out.View(seek); err != nil { ctxt.Out.SeekSet(int64(seek)) fn(ctxt, ctxt.Out, int64(vaddr), int64(length)) } else { wg.Add(1) go func() { defer wg.Done() fn(ctxt, out, int64(vaddr), int64(length)) }() } } func Datblk(ctxt *Link, out *OutBuf, addr, size int64) { writeDatblkToOutBuf(ctxt, out, addr, size) } // Used only on Wasm for now. func DatblkBytes(ctxt *Link, addr int64, size int64) []byte { buf := make([]byte, size) out := &OutBuf{heap: buf} writeDatblkToOutBuf(ctxt, out, addr, size) return buf } func writeDatblkToOutBuf(ctxt *Link, out *OutBuf, addr int64, size int64) { if *flagA { ctxt.Logf("datblk [%#x,%#x) at offset %#x\n", addr, addr+size, ctxt.Out.Offset()) } writeBlocks(out, ctxt.outSem, ctxt.datap, addr, size, zeros[:]) /* again for printing */ if !*flagA { return } syms := ctxt.datap for i, sym := range syms { if sym.Value >= addr { syms = syms[i:] break } } eaddr := addr + size for _, sym := range syms { if sym.Value >= eaddr { break } if addr < sym.Value { ctxt.Logf("\t%.8x| 00 ...\n", uint64(addr)) addr = sym.Value } ctxt.Logf("%s\n\t%.8x|", sym.Name, uint64(addr)) for i, b := range sym.P { if i > 0 && i%16 == 0 { ctxt.Logf("\n\t%.8x|", uint64(addr)+uint64(i)) } ctxt.Logf(" %.2x", b) } addr += int64(len(sym.P)) for ; addr < sym.Value+sym.Size; addr++ { ctxt.Logf(" %.2x", 0) } ctxt.Logf("\n") if ctxt.LinkMode != LinkExternal { continue } for i := range sym.R { r := &sym.R[i] // Copying sym.Reloc has measurable impact on performance rsname := "" rsval := int64(0) if r.Sym != nil { rsname = r.Sym.Name rsval = r.Sym.Value } typ := "?" switch r.Type { case objabi.R_ADDR: typ = "addr" case objabi.R_PCREL: typ = "pcrel" case objabi.R_CALL: typ = "call" } ctxt.Logf("\treloc %.8x/%d %s %s+%#x [%#x]\n", uint(sym.Value+int64(r.Off)), r.Siz, typ, rsname, r.Add, rsval+r.Add) } } if addr < eaddr { ctxt.Logf("\t%.8x| 00 ...\n", uint(addr)) } ctxt.Logf("\t%.8x|\n", uint(eaddr)) } func Dwarfblk(ctxt *Link, out *OutBuf, addr int64, size int64) { if *flagA { ctxt.Logf("dwarfblk [%#x,%#x) at offset %#x\n", addr, addr+size, ctxt.Out.Offset()) } writeBlocks(out, ctxt.outSem, dwarfp, addr, size, zeros[:]) } var zeros [512]byte var ( strdata = make(map[string]string) strnames []string ) func addstrdata1(ctxt *Link, arg string) { eq := strings.Index(arg, "=") dot := strings.LastIndex(arg[:eq+1], ".") if eq < 0 || dot < 0 { Exitf("-X flag requires argument of the form importpath.name=value") } pkg := arg[:dot] if ctxt.BuildMode == BuildModePlugin && pkg == "main" { pkg = *flagPluginPath } pkg = objabi.PathToPrefix(pkg) name := pkg + arg[dot:eq] value := arg[eq+1:] if _, ok := strdata[name]; !ok { strnames = append(strnames, name) } strdata[name] = value } // addstrdata sets the initial value of the string variable name to value. func addstrdata(arch *sys.Arch, l *loader.Loader, name, value string) { s := l.Lookup(name, 0) if s == 0 { return } if goType := l.SymGoType(s); goType == 0 { return } else if typeName := l.SymName(goType); typeName != "type.string" { Errorf(nil, "%s: cannot set with -X: not a var of type string (%s)", name, typeName) return } if !l.AttrReachable(s) { return // don't bother setting unreachable variable } bld := l.MakeSymbolUpdater(s) if bld.Type() == sym.SBSS { bld.SetType(sym.SDATA) } p := fmt.Sprintf("%s.str", name) sp := l.LookupOrCreateSym(p, 0) sbld := l.MakeSymbolUpdater(sp) sbld.Addstring(value) sbld.SetType(sym.SRODATA) bld.SetSize(0) bld.SetData(make([]byte, 0, arch.PtrSize*2)) bld.SetReadOnly(false) bld.SetRelocs(nil) bld.AddAddrPlus(arch, sp, 0) bld.AddUint(arch, uint64(len(value))) } func (ctxt *Link) dostrdata() { for _, name := range strnames { addstrdata(ctxt.Arch, ctxt.loader, name, strdata[name]) } } func Addstring(s *sym.Symbol, str string) int64 { if s.Type == 0 { s.Type = sym.SNOPTRDATA } s.Attr |= sym.AttrReachable r := s.Size if s.Name == ".shstrtab" { elfsetstring(s, str, int(r)) } s.P = append(s.P, str...) s.P = append(s.P, 0) s.Size = int64(len(s.P)) return r } // addgostring adds str, as a Go string value, to s. symname is the name of the // symbol used to define the string data and must be unique per linked object. func addgostring(ctxt *Link, s *sym.Symbol, symname, str string) { sdata := ctxt.Syms.Lookup(symname, 0) if sdata.Type != sym.Sxxx { Errorf(s, "duplicate symname in addgostring: %s", symname) } sdata.Attr |= sym.AttrReachable sdata.Attr |= sym.AttrLocal sdata.Type = sym.SRODATA sdata.Size = int64(len(str)) sdata.P = []byte(str) s.AddAddr(ctxt.Arch, sdata) s.AddUint(ctxt.Arch, uint64(len(str))) } func addinitarrdata(ctxt *Link, s *sym.Symbol) { p := s.Name + ".ptr" sp := ctxt.Syms.Lookup(p, 0) sp.Type = sym.SINITARR sp.Size = 0 sp.Attr |= sym.AttrDuplicateOK sp.AddAddr(ctxt.Arch, s) } // symalign returns the required alignment for the given symbol s. func symalign(s *sym.Symbol) int32 { min := int32(thearch.Minalign) if s.Align >= min { return s.Align } else if s.Align != 0 { return min } if strings.HasPrefix(s.Name, "go.string.") || strings.HasPrefix(s.Name, "type..namedata.") { // String data is just bytes. // If we align it, we waste a lot of space to padding. return min } align := int32(thearch.Maxalign) for int64(align) > s.Size && align > min { align >>= 1 } s.Align = align return align } func aligndatsize(datsize int64, s *sym.Symbol) int64 { return Rnd(datsize, int64(symalign(s))) } const debugGCProg = false type GCProg struct { ctxt *Link sym *sym.Symbol w gcprog.Writer } func (p *GCProg) Init(ctxt *Link, name string) { p.ctxt = ctxt p.sym = ctxt.Syms.Lookup(name, 0) p.w.Init(p.writeByte(ctxt)) if debugGCProg { fmt.Fprintf(os.Stderr, "ld: start GCProg %s\n", name) p.w.Debug(os.Stderr) } } func (p *GCProg) writeByte(ctxt *Link) func(x byte) { return func(x byte) { p.sym.AddUint8(x) } } func (p *GCProg) End(size int64) { p.w.ZeroUntil(size / int64(p.ctxt.Arch.PtrSize)) p.w.End() if debugGCProg { fmt.Fprintf(os.Stderr, "ld: end GCProg\n") } } func (p *GCProg) AddSym(s *sym.Symbol) { typ := s.Gotype // Things without pointers should be in sym.SNOPTRDATA or sym.SNOPTRBSS; // everything we see should have pointers and should therefore have a type. if typ == nil { switch s.Name { case "runtime.data", "runtime.edata", "runtime.bss", "runtime.ebss": // Ignore special symbols that are sometimes laid out // as real symbols. See comment about dyld on darwin in // the address function. return } Errorf(s, "missing Go type information for global symbol: size %d", s.Size) return } ptrsize := int64(p.ctxt.Arch.PtrSize) nptr := decodetypePtrdata(p.ctxt.Arch, typ.P) / ptrsize if debugGCProg { fmt.Fprintf(os.Stderr, "gcprog sym: %s at %d (ptr=%d+%d)\n", s.Name, s.Value, s.Value/ptrsize, nptr) } if decodetypeUsegcprog(p.ctxt.Arch, typ.P) == 0 { // Copy pointers from mask into program. mask := decodetypeGcmask(p.ctxt, typ) for i := int64(0); i < nptr; i++ { if (mask[i/8]>>uint(i%8))&1 != 0 { p.w.Ptr(s.Value/ptrsize + i) } } return } // Copy program. prog := decodetypeGcprog(p.ctxt, typ) p.w.ZeroUntil(s.Value / ptrsize) p.w.Append(prog[4:], nptr) } // dataSortKey is used to sort a slice of data symbol *sym.Symbol pointers. // The sort keys are kept inline to improve cache behavior while sorting. type dataSortKey struct { size int64 name string sym *sym.Symbol } type bySizeAndName []dataSortKey func (d bySizeAndName) Len() int { return len(d) } func (d bySizeAndName) Swap(i, j int) { d[i], d[j] = d[j], d[i] } func (d bySizeAndName) Less(i, j int) bool { s1, s2 := d[i], d[j] if s1.size != s2.size { return s1.size < s2.size } return s1.name < s2.name } // cutoff is the maximum data section size permitted by the linker // (see issue #9862). const cutoff = 2e9 // 2 GB (or so; looks better in errors than 2^31) func (state *dodataState) checkdatsize(symn sym.SymKind) { if state.datsize > cutoff { Errorf(nil, "too much data in section %v (over %v bytes)", symn, cutoff) } } // fixZeroSizedSymbols gives a few special symbols with zero size some space. func fixZeroSizedSymbols(ctxt *Link) { // The values in moduledata are filled out by relocations // pointing to the addresses of these special symbols. // Typically these symbols have no size and are not laid // out with their matching section. // // However on darwin, dyld will find the special symbol // in the first loaded module, even though it is local. // // (An hypothesis, formed without looking in the dyld sources: // these special symbols have no size, so their address // matches a real symbol. The dynamic linker assumes we // want the normal symbol with the same address and finds // it in the other module.) // // To work around this we lay out the symbls whose // addresses are vital for multi-module programs to work // as normal symbols, and give them a little size. // // On AIX, as all DATA sections are merged together, ld might not put // these symbols at the beginning of their respective section if there // aren't real symbols, their alignment might not match the // first symbol alignment. Therefore, there are explicitly put at the // beginning of their section with the same alignment. if !(ctxt.DynlinkingGo() && ctxt.HeadType == objabi.Hdarwin) && !(ctxt.HeadType == objabi.Haix && ctxt.LinkMode == LinkExternal) { return } bss := ctxt.Syms.Lookup("runtime.bss", 0) bss.Size = 8 bss.Attr.Set(sym.AttrSpecial, false) ctxt.Syms.Lookup("runtime.ebss", 0).Attr.Set(sym.AttrSpecial, false) data := ctxt.Syms.Lookup("runtime.data", 0) data.Size = 8 data.Attr.Set(sym.AttrSpecial, false) edata := ctxt.Syms.Lookup("runtime.edata", 0) edata.Attr.Set(sym.AttrSpecial, false) if ctxt.HeadType == objabi.Haix { // XCOFFTOC symbols are part of .data section. edata.Type = sym.SXCOFFTOC } types := ctxt.Syms.Lookup("runtime.types", 0) types.Type = sym.STYPE types.Size = 8 types.Attr.Set(sym.AttrSpecial, false) etypes := ctxt.Syms.Lookup("runtime.etypes", 0) etypes.Type = sym.SFUNCTAB etypes.Attr.Set(sym.AttrSpecial, false) if ctxt.HeadType == objabi.Haix { rodata := ctxt.Syms.Lookup("runtime.rodata", 0) rodata.Type = sym.SSTRING rodata.Size = 8 rodata.Attr.Set(sym.AttrSpecial, false) ctxt.Syms.Lookup("runtime.erodata", 0).Attr.Set(sym.AttrSpecial, false) } } // makeRelroForSharedLib creates a section of readonly data if necessary. func (state *dodataState) makeRelroForSharedLib(target *Link) { if !target.UseRelro() { return } // "read only" data with relocations needs to go in its own section // when building a shared library. We do this by boosting objects of // type SXXX with relocations to type SXXXRELRO. for _, symnro := range sym.ReadOnly { symnrelro := sym.RelROMap[symnro] ro := []*sym.Symbol{} relro := state.data[symnrelro] for _, s := range state.data[symnro] { isRelro := len(s.R) > 0 switch s.Type { case sym.STYPE, sym.STYPERELRO, sym.SGOFUNCRELRO: // Symbols are not sorted yet, so it is possible // that an Outer symbol has been changed to a // relro Type before it reaches here. isRelro = true case sym.SFUNCTAB: if target.IsAIX() && s.Name == "runtime.etypes" { // runtime.etypes must be at the end of // the relro datas. isRelro = true } } if isRelro { s.Type = symnrelro if s.Outer != nil { s.Outer.Type = s.Type } relro = append(relro, s) } else { ro = append(ro, s) } } // Check that we haven't made two symbols with the same .Outer into // different types (because references two symbols with non-nil Outer // become references to the outer symbol + offset it's vital that the // symbol and the outer end up in the same section). for _, s := range relro { if s.Outer != nil && s.Outer.Type != s.Type { Errorf(s, "inconsistent types for symbol and its Outer %s (%v != %v)", s.Outer.Name, s.Type, s.Outer.Type) } } state.data[symnro] = ro state.data[symnrelro] = relro } } // dodataState holds bits of state information needed by dodata() and the // various helpers it calls. The lifetime of these items should not extend // past the end of dodata(). type dodataState struct { // Link context ctxt *Link // Data symbols bucketed by type. data [sym.SXREF][]*sym.Symbol // Max alignment for each flavor of data symbol. dataMaxAlign [sym.SXREF]int32 // Current data size so far. datsize int64 } func (ctxt *Link) dodata() { // Give zeros sized symbols space if necessary. fixZeroSizedSymbols(ctxt) // Collect data symbols by type into data. state := dodataState{} for _, s := range ctxt.Syms.Allsym { if !s.Attr.Reachable() || s.Attr.Special() || s.Attr.SubSymbol() { continue } if s.Type <= sym.STEXT || s.Type >= sym.SXREF { continue } state.data[s.Type] = append(state.data[s.Type], s) } // Now that we have the data symbols, but before we start // to assign addresses, record all the necessary // dynamic relocations. These will grow the relocation // symbol, which is itself data. // // On darwin, we need the symbol table numbers for dynreloc. if ctxt.HeadType == objabi.Hdarwin { machosymorder(ctxt) } state.dynreloc(ctxt) // Move any RO data with relocations to a separate section. state.makeRelroForSharedLib(ctxt) // Sort symbols. var wg sync.WaitGroup for symn := range state.data { symn := sym.SymKind(symn) wg.Add(1) go func() { state.data[symn], state.dataMaxAlign[symn] = dodataSect(ctxt, symn, state.data[symn]) wg.Done() }() } wg.Wait() if ctxt.HeadType == objabi.Haix && ctxt.LinkMode == LinkExternal { // These symbols must have the same alignment as their section. // Otherwize, ld might change the layout of Go sections. ctxt.Syms.ROLookup("runtime.data", 0).Align = state.dataMaxAlign[sym.SDATA] ctxt.Syms.ROLookup("runtime.bss", 0).Align = state.dataMaxAlign[sym.SBSS] } state.allocateSections(ctxt) /* number the sections */ n := int16(1) for _, sect := range Segtext.Sections { sect.Extnum = n n++ } for _, sect := range Segrodata.Sections { sect.Extnum = n n++ } for _, sect := range Segrelrodata.Sections { sect.Extnum = n n++ } for _, sect := range Segdata.Sections { sect.Extnum = n n++ } for _, sect := range Segdwarf.Sections { sect.Extnum = n n++ } } // allocateSections allocates sym.Section objects for data sections // of interest and assigns symbols into the sections. func (state *dodataState) allocateSections(ctxt *Link) { // Allocate sections. // Data is processed before segtext, because we need // to see all symbols in the .data and .bss sections in order // to generate garbage collection information. // Writable data sections that do not need any specialized handling. writable := []sym.SymKind{ sym.SBUILDINFO, sym.SELFSECT, sym.SMACHO, sym.SMACHOGOT, sym.SWINDOWS, } for _, symn := range writable { for _, s := range state.data[symn] { sect := addsection(ctxt.Arch, &Segdata, s.Name, 06) sect.Align = symalign(s) state.datsize = Rnd(state.datsize, int64(sect.Align)) sect.Vaddr = uint64(state.datsize) s.Sect = sect s.Type = sym.SDATA s.Value = int64(uint64(state.datsize) - sect.Vaddr) state.datsize += s.Size sect.Length = uint64(state.datsize) - sect.Vaddr } state.checkdatsize(symn) } // .got (and .toc on ppc64) if len(state.data[sym.SELFGOT]) > 0 { sect := addsection(ctxt.Arch, &Segdata, ".got", 06) sect.Align = state.dataMaxAlign[sym.SELFGOT] state.datsize = Rnd(state.datsize, int64(sect.Align)) sect.Vaddr = uint64(state.datsize) for _, s := range state.data[sym.SELFGOT] { state.datsize = aligndatsize(state.datsize, s) s.Sect = sect s.Type = sym.SDATA s.Value = int64(uint64(state.datsize) - sect.Vaddr) // Resolve .TOC. symbol for this object file (ppc64) toc := ctxt.Syms.ROLookup(".TOC.", int(s.Version)) if toc != nil { toc.Sect = sect toc.Outer = s toc.Sub = s.Sub s.Sub = toc toc.Value = 0x8000 } state.datsize += s.Size } state.checkdatsize(sym.SELFGOT) sect.Length = uint64(state.datsize) - sect.Vaddr } /* pointer-free data */ sect := addsection(ctxt.Arch, &Segdata, ".noptrdata", 06) sect.Align = state.dataMaxAlign[sym.SNOPTRDATA] state.datsize = Rnd(state.datsize, int64(sect.Align)) sect.Vaddr = uint64(state.datsize) ctxt.Syms.Lookup("runtime.noptrdata", 0).Sect = sect ctxt.Syms.Lookup("runtime.enoptrdata", 0).Sect = sect for _, s := range state.data[sym.SNOPTRDATA] { state.datsize = aligndatsize(state.datsize, s) s.Sect = sect s.Type = sym.SDATA s.Value = int64(uint64(state.datsize) - sect.Vaddr) state.datsize += s.Size } state.checkdatsize(sym.SNOPTRDATA) sect.Length = uint64(state.datsize) - sect.Vaddr hasinitarr := ctxt.linkShared /* shared library initializer */ switch ctxt.BuildMode { case BuildModeCArchive, BuildModeCShared, BuildModeShared, BuildModePlugin: hasinitarr = true } if ctxt.HeadType == objabi.Haix { if len(state.data[sym.SINITARR]) > 0 { Errorf(nil, "XCOFF format doesn't allow .init_array section") } } if hasinitarr && len(state.data[sym.SINITARR]) > 0 { sect := addsection(ctxt.Arch, &Segdata, ".init_array", 06) sect.Align = state.dataMaxAlign[sym.SINITARR] state.datsize = Rnd(state.datsize, int64(sect.Align)) sect.Vaddr = uint64(state.datsize) for _, s := range state.data[sym.SINITARR] { state.datsize = aligndatsize(state.datsize, s) s.Sect = sect s.Value = int64(uint64(state.datsize) - sect.Vaddr) state.datsize += s.Size } sect.Length = uint64(state.datsize) - sect.Vaddr state.checkdatsize(sym.SINITARR) } /* data */ sect = addsection(ctxt.Arch, &Segdata, ".data", 06) sect.Align = state.dataMaxAlign[sym.SDATA] state.datsize = Rnd(state.datsize, int64(sect.Align)) sect.Vaddr = uint64(state.datsize) ctxt.Syms.Lookup("runtime.data", 0).Sect = sect ctxt.Syms.Lookup("runtime.edata", 0).Sect = sect var gc GCProg gc.Init(ctxt, "runtime.gcdata") for _, s := range state.data[sym.SDATA] { s.Sect = sect s.Type = sym.SDATA state.datsize = aligndatsize(state.datsize, s) s.Value = int64(uint64(state.datsize) - sect.Vaddr) gc.AddSym(s) state.datsize += s.Size } gc.End(state.datsize - int64(sect.Vaddr)) // On AIX, TOC entries must be the last of .data // These aren't part of gc as they won't change during the runtime. for _, s := range state.data[sym.SXCOFFTOC] { s.Sect = sect s.Type = sym.SDATA state.datsize = aligndatsize(state.datsize, s) s.Value = int64(uint64(state.datsize) - sect.Vaddr) state.datsize += s.Size } state.checkdatsize(sym.SDATA) sect.Length = uint64(state.datsize) - sect.Vaddr /* bss */ sect = addsection(ctxt.Arch, &Segdata, ".bss", 06) sect.Align = state.dataMaxAlign[sym.SBSS] state.datsize = Rnd(state.datsize, int64(sect.Align)) sect.Vaddr = uint64(state.datsize) ctxt.Syms.Lookup("runtime.bss", 0).Sect = sect ctxt.Syms.Lookup("runtime.ebss", 0).Sect = sect gc = GCProg{} gc.Init(ctxt, "runtime.gcbss") for _, s := range state.data[sym.SBSS] { s.Sect = sect state.datsize = aligndatsize(state.datsize, s) s.Value = int64(uint64(state.datsize) - sect.Vaddr) gc.AddSym(s) state.datsize += s.Size } state.checkdatsize(sym.SBSS) sect.Length = uint64(state.datsize) - sect.Vaddr gc.End(int64(sect.Length)) /* pointer-free bss */ sect = addsection(ctxt.Arch, &Segdata, ".noptrbss", 06) sect.Align = state.dataMaxAlign[sym.SNOPTRBSS] state.datsize = Rnd(state.datsize, int64(sect.Align)) sect.Vaddr = uint64(state.datsize) ctxt.Syms.Lookup("runtime.noptrbss", 0).Sect = sect ctxt.Syms.Lookup("runtime.enoptrbss", 0).Sect = sect for _, s := range state.data[sym.SNOPTRBSS] { state.datsize = aligndatsize(state.datsize, s) s.Sect = sect s.Value = int64(uint64(state.datsize) - sect.Vaddr) state.datsize += s.Size } sect.Length = uint64(state.datsize) - sect.Vaddr ctxt.Syms.Lookup("runtime.end", 0).Sect = sect state.checkdatsize(sym.SNOPTRBSS) // Coverage instrumentation counters for libfuzzer. if len(state.data[sym.SLIBFUZZER_EXTRA_COUNTER]) > 0 { sect := addsection(ctxt.Arch, &Segdata, "__libfuzzer_extra_counters", 06) sect.Align = state.dataMaxAlign[sym.SLIBFUZZER_EXTRA_COUNTER] state.datsize = Rnd(state.datsize, int64(sect.Align)) sect.Vaddr = uint64(state.datsize) for _, s := range state.data[sym.SLIBFUZZER_EXTRA_COUNTER] { state.datsize = aligndatsize(state.datsize, s) s.Sect = sect s.Value = int64(uint64(state.datsize) - sect.Vaddr) state.datsize += s.Size } sect.Length = uint64(state.datsize) - sect.Vaddr state.checkdatsize(sym.SLIBFUZZER_EXTRA_COUNTER) } if len(state.data[sym.STLSBSS]) > 0 { var sect *sym.Section if (ctxt.IsELF || ctxt.HeadType == objabi.Haix) && (ctxt.LinkMode == LinkExternal || !*FlagD) { sect = addsection(ctxt.Arch, &Segdata, ".tbss", 06) sect.Align = int32(ctxt.Arch.PtrSize) sect.Vaddr = 0 } state.datsize = 0 for _, s := range state.data[sym.STLSBSS] { state.datsize = aligndatsize(state.datsize, s) s.Sect = sect s.Value = state.datsize state.datsize += s.Size } state.checkdatsize(sym.STLSBSS) if sect != nil { sect.Length = uint64(state.datsize) } } /* * We finished data, begin read-only data. * Not all systems support a separate read-only non-executable data section. * ELF and Windows PE systems do. * OS X and Plan 9 do not. * And if we're using external linking mode, the point is moot, * since it's not our decision; that code expects the sections in * segtext. */ var segro *sym.Segment if ctxt.IsELF && ctxt.LinkMode == LinkInternal { segro = &Segrodata } else if ctxt.HeadType == objabi.Hwindows { segro = &Segrodata } else { segro = &Segtext } state.datsize = 0 /* read-only executable ELF, Mach-O sections */ if len(state.data[sym.STEXT]) != 0 { Errorf(nil, "dodata found an sym.STEXT symbol: %s", state.data[sym.STEXT][0].Name) } for _, s := range state.data[sym.SELFRXSECT] { sect := addsection(ctxt.Arch, &Segtext, s.Name, 04) sect.Align = symalign(s) state.datsize = Rnd(state.datsize, int64(sect.Align)) sect.Vaddr = uint64(state.datsize) s.Sect = sect s.Type = sym.SRODATA s.Value = int64(uint64(state.datsize) - sect.Vaddr) state.datsize += s.Size sect.Length = uint64(state.datsize) - sect.Vaddr state.checkdatsize(sym.SELFRXSECT) } /* read-only data */ sect = addsection(ctxt.Arch, segro, ".rodata", 04) sect.Vaddr = 0 ctxt.Syms.Lookup("runtime.rodata", 0).Sect = sect ctxt.Syms.Lookup("runtime.erodata", 0).Sect = sect if !ctxt.UseRelro() { ctxt.Syms.Lookup("runtime.types", 0).Sect = sect ctxt.Syms.Lookup("runtime.etypes", 0).Sect = sect } for _, symn := range sym.ReadOnly { align := state.dataMaxAlign[symn] if sect.Align < align { sect.Align = align } } state.datsize = Rnd(state.datsize, int64(sect.Align)) for _, symn := range sym.ReadOnly { symnStartValue := state.datsize for _, s := range state.data[symn] { state.datsize = aligndatsize(state.datsize, s) s.Sect = sect s.Type = sym.SRODATA s.Value = int64(uint64(state.datsize) - sect.Vaddr) state.datsize += s.Size } state.checkdatsize(symn) if ctxt.HeadType == objabi.Haix { // Read-only symbols might be wrapped inside their outer // symbol. // XCOFF symbol table needs to know the size of // these outer symbols. xcoffUpdateOuterSize(ctxt, state.datsize-symnStartValue, symn) } } sect.Length = uint64(state.datsize) - sect.Vaddr /* read-only ELF, Mach-O sections */ for _, s := range state.data[sym.SELFROSECT] { sect = addsection(ctxt.Arch, segro, s.Name, 04) sect.Align = symalign(s) state.datsize = Rnd(state.datsize, int64(sect.Align)) sect.Vaddr = uint64(state.datsize) s.Sect = sect s.Type = sym.SRODATA s.Value = int64(uint64(state.datsize) - sect.Vaddr) state.datsize += s.Size sect.Length = uint64(state.datsize) - sect.Vaddr } state.checkdatsize(sym.SELFROSECT) for _, s := range state.data[sym.SMACHOPLT] { sect = addsection(ctxt.Arch, segro, s.Name, 04) sect.Align = symalign(s) state.datsize = Rnd(state.datsize, int64(sect.Align)) sect.Vaddr = uint64(state.datsize) s.Sect = sect s.Type = sym.SRODATA s.Value = int64(uint64(state.datsize) - sect.Vaddr) state.datsize += s.Size sect.Length = uint64(state.datsize) - sect.Vaddr } state.checkdatsize(sym.SMACHOPLT) // There is some data that are conceptually read-only but are written to by // relocations. On GNU systems, we can arrange for the dynamic linker to // mprotect sections after relocations are applied by giving them write // permissions in the object file and calling them ".data.rel.ro.FOO". We // divide the .rodata section between actual .rodata and .data.rel.ro.rodata, // but for the other sections that this applies to, we just write a read-only // .FOO section or a read-write .data.rel.ro.FOO section depending on the // situation. // TODO(mwhudson): It would make sense to do this more widely, but it makes // the system linker segfault on darwin. addrelrosection := func(suffix string) *sym.Section { return addsection(ctxt.Arch, segro, suffix, 04) } if ctxt.UseRelro() { segrelro := &Segrelrodata if ctxt.LinkMode == LinkExternal && ctxt.HeadType != objabi.Haix { // Using a separate segment with an external // linker results in some programs moving // their data sections unexpectedly, which // corrupts the moduledata. So we use the // rodata segment and let the external linker // sort out a rel.ro segment. segrelro = segro } else { // Reset datsize for new segment. state.datsize = 0 } addrelrosection = func(suffix string) *sym.Section { return addsection(ctxt.Arch, segrelro, ".data.rel.ro"+suffix, 06) } /* data only written by relocations */ sect = addrelrosection("") ctxt.Syms.Lookup("runtime.types", 0).Sect = sect ctxt.Syms.Lookup("runtime.etypes", 0).Sect = sect for _, symnro := range sym.ReadOnly { symn := sym.RelROMap[symnro] align := state.dataMaxAlign[symn] if sect.Align < align { sect.Align = align } } state.datsize = Rnd(state.datsize, int64(sect.Align)) sect.Vaddr = uint64(state.datsize) for i, symnro := range sym.ReadOnly { if i == 0 && symnro == sym.STYPE && ctxt.HeadType != objabi.Haix { // Skip forward so that no type // reference uses a zero offset. // This is unlikely but possible in small // programs with no other read-only data. state.datsize++ } symn := sym.RelROMap[symnro] symnStartValue := state.datsize for _, s := range state.data[symn] { state.datsize = aligndatsize(state.datsize, s) if s.Outer != nil && s.Outer.Sect != nil && s.Outer.Sect != sect { Errorf(s, "s.Outer (%s) in different section from s, %s != %s", s.Outer.Name, s.Outer.Sect.Name, sect.Name) } s.Sect = sect s.Type = sym.SRODATA s.Value = int64(uint64(state.datsize) - sect.Vaddr) state.datsize += s.Size } state.checkdatsize(symn) if ctxt.HeadType == objabi.Haix { // Read-only symbols might be wrapped inside their outer // symbol. // XCOFF symbol table needs to know the size of // these outer symbols. xcoffUpdateOuterSize(ctxt, state.datsize-symnStartValue, symn) } } sect.Length = uint64(state.datsize) - sect.Vaddr } /* typelink */ sect = addrelrosection(".typelink") sect.Align = state.dataMaxAlign[sym.STYPELINK] state.datsize = Rnd(state.datsize, int64(sect.Align)) sect.Vaddr = uint64(state.datsize) typelink := ctxt.Syms.Lookup("runtime.typelink", 0) typelink.Sect = sect typelink.Type = sym.SRODATA state.datsize += typelink.Size state.checkdatsize(sym.STYPELINK) sect.Length = uint64(state.datsize) - sect.Vaddr /* itablink */ sect = addrelrosection(".itablink") sect.Align = state.dataMaxAlign[sym.SITABLINK] state.datsize = Rnd(state.datsize, int64(sect.Align)) sect.Vaddr = uint64(state.datsize) ctxt.Syms.Lookup("runtime.itablink", 0).Sect = sect ctxt.Syms.Lookup("runtime.eitablink", 0).Sect = sect for _, s := range state.data[sym.SITABLINK] { state.datsize = aligndatsize(state.datsize, s) s.Sect = sect s.Type = sym.SRODATA s.Value = int64(uint64(state.datsize) - sect.Vaddr) state.datsize += s.Size } state.checkdatsize(sym.SITABLINK) sect.Length = uint64(state.datsize) - sect.Vaddr if ctxt.HeadType == objabi.Haix { // Store .itablink size because its symbols are wrapped // under an outer symbol: runtime.itablink. xcoffUpdateOuterSize(ctxt, int64(sect.Length), sym.SITABLINK) } /* gosymtab */ sect = addrelrosection(".gosymtab") sect.Align = state.dataMaxAlign[sym.SSYMTAB] state.datsize = Rnd(state.datsize, int64(sect.Align)) sect.Vaddr = uint64(state.datsize) ctxt.Syms.Lookup("runtime.symtab", 0).Sect = sect ctxt.Syms.Lookup("runtime.esymtab", 0).Sect = sect for _, s := range state.data[sym.SSYMTAB] { state.datsize = aligndatsize(state.datsize, s) s.Sect = sect s.Type = sym.SRODATA s.Value = int64(uint64(state.datsize) - sect.Vaddr) state.datsize += s.Size } state.checkdatsize(sym.SSYMTAB) sect.Length = uint64(state.datsize) - sect.Vaddr /* gopclntab */ sect = addrelrosection(".gopclntab") sect.Align = state.dataMaxAlign[sym.SPCLNTAB] state.datsize = Rnd(state.datsize, int64(sect.Align)) sect.Vaddr = uint64(state.datsize) ctxt.Syms.Lookup("runtime.pclntab", 0).Sect = sect ctxt.Syms.Lookup("runtime.epclntab", 0).Sect = sect for _, s := range state.data[sym.SPCLNTAB] { state.datsize = aligndatsize(state.datsize, s) s.Sect = sect s.Type = sym.SRODATA s.Value = int64(uint64(state.datsize) - sect.Vaddr) state.datsize += s.Size } state.checkdatsize(sym.SRODATA) sect.Length = uint64(state.datsize) - sect.Vaddr // 6g uses 4-byte relocation offsets, so the entire segment must fit in 32 bits. if state.datsize != int64(uint32(state.datsize)) { Errorf(nil, "read-only data segment too large: %d", state.datsize) } for symn := sym.SELFRXSECT; symn < sym.SXREF; symn++ { ctxt.datap = append(ctxt.datap, state.data[symn]...) } var i int for ; i < len(dwarfp); i++ { s := dwarfp[i] if s.Type != sym.SDWARFSECT { break } sect = addsection(ctxt.Arch, &Segdwarf, s.Name, 04) sect.Sym = s sect.Align = 1 state.datsize = Rnd(state.datsize, int64(sect.Align)) sect.Vaddr = uint64(state.datsize) s.Sect = sect s.Type = sym.SRODATA s.Value = int64(uint64(state.datsize) - sect.Vaddr) state.datsize += s.Size sect.Length = uint64(state.datsize) - sect.Vaddr } state.checkdatsize(sym.SDWARFSECT) for i < len(dwarfp) { curType := dwarfp[i].Type var sect *sym.Section var sectname string switch curType { case sym.SDWARFINFO: sectname = ".debug_info" case sym.SDWARFRANGE: sectname = ".debug_ranges" case sym.SDWARFLOC: sectname = ".debug_loc" default: // Error is unrecoverable, so panic. panic(fmt.Sprintf("unknown DWARF section %v", curType)) } sect = addsection(ctxt.Arch, &Segdwarf, sectname, 04) sect.Sym = ctxt.Syms.ROLookup(sectname, 0) sect.Align = 1 state.datsize = Rnd(state.datsize, int64(sect.Align)) sect.Vaddr = uint64(state.datsize) for ; i < len(dwarfp); i++ { s := dwarfp[i] if s.Type != curType { break } s.Sect = sect s.Type = sym.SRODATA s.Value = int64(uint64(state.datsize) - sect.Vaddr) s.Attr |= sym.AttrLocal state.datsize += s.Size if ctxt.HeadType == objabi.Haix && curType == sym.SDWARFLOC { // Update the size of .debug_loc for this symbol's // package. addDwsectCUSize(".debug_loc", s.File, uint64(s.Size)) } } sect.Length = uint64(state.datsize) - sect.Vaddr state.checkdatsize(curType) } } func dodataSect(ctxt *Link, symn sym.SymKind, syms []*sym.Symbol) (result []*sym.Symbol, maxAlign int32) { if ctxt.HeadType == objabi.Hdarwin { // Some symbols may no longer belong in syms // due to movement in machosymorder. newSyms := make([]*sym.Symbol, 0, len(syms)) for _, s := range syms { if s.Type == symn { newSyms = append(newSyms, s) } } syms = newSyms } var head, tail *sym.Symbol symsSort := make([]dataSortKey, 0, len(syms)) for _, s := range syms { if s.Attr.OnList() { log.Fatalf("symbol %s listed multiple times", s.Name) } s.Attr |= sym.AttrOnList switch { case s.Size < int64(len(s.P)): Errorf(s, "initialize bounds (%d < %d)", s.Size, len(s.P)) case s.Size < 0: Errorf(s, "negative size (%d bytes)", s.Size) case s.Size > cutoff: Errorf(s, "symbol too large (%d bytes)", s.Size) } // If the usually-special section-marker symbols are being laid // out as regular symbols, put them either at the beginning or // end of their section. if (ctxt.DynlinkingGo() && ctxt.HeadType == objabi.Hdarwin) || (ctxt.HeadType == objabi.Haix && ctxt.LinkMode == LinkExternal) { switch s.Name { case "runtime.text", "runtime.bss", "runtime.data", "runtime.types", "runtime.rodata": head = s continue case "runtime.etext", "runtime.ebss", "runtime.edata", "runtime.etypes", "runtime.erodata": tail = s continue } } key := dataSortKey{ size: s.Size, name: s.Name, sym: s, } switch s.Type { case sym.SELFGOT: // For ppc64, we want to interleave the .got and .toc sections // from input files. Both are type sym.SELFGOT, so in that case // we skip size comparison and fall through to the name // comparison (conveniently, .got sorts before .toc). key.size = 0 } symsSort = append(symsSort, key) } sort.Sort(bySizeAndName(symsSort)) off := 0 if head != nil { syms[0] = head off++ } for i, symSort := range symsSort { syms[i+off] = symSort.sym align := symalign(symSort.sym) if maxAlign < align { maxAlign = align } } if tail != nil { syms[len(syms)-1] = tail } if ctxt.IsELF && symn == sym.SELFROSECT { // Make .rela and .rela.plt contiguous, the ELF ABI requires this // and Solaris actually cares. reli, plti := -1, -1 for i, s := range syms { switch s.Name { case ".rel.plt", ".rela.plt": plti = i case ".rel", ".rela": reli = i } } if reli >= 0 && plti >= 0 && plti != reli+1 { var first, second int if plti > reli { first, second = reli, plti } else { first, second = plti, reli } rel, plt := syms[reli], syms[plti] copy(syms[first+2:], syms[first+1:second]) syms[first+0] = rel syms[first+1] = plt // Make sure alignment doesn't introduce a gap. // Setting the alignment explicitly prevents // symalign from basing it on the size and // getting it wrong. rel.Align = int32(ctxt.Arch.RegSize) plt.Align = int32(ctxt.Arch.RegSize) } } return syms, maxAlign } // Add buildid to beginning of text segment, on non-ELF systems. // Non-ELF binary formats are not always flexible enough to // give us a place to put the Go build ID. On those systems, we put it // at the very beginning of the text segment. // This ``header'' is read by cmd/go. func (ctxt *Link) textbuildid() { if ctxt.IsELF || ctxt.BuildMode == BuildModePlugin || *flagBuildid == "" { return } ldr := ctxt.loader s := ldr.CreateSymForUpdate("go.buildid", 0) s.SetReachable(true) // The \xff is invalid UTF-8, meant to make it less likely // to find one of these accidentally. data := "\xff Go build ID: " + strconv.Quote(*flagBuildid) + "\n \xff" s.SetType(sym.STEXT) s.SetData([]byte(data)) s.SetSize(int64(len(data))) ctxt.Textp2 = append(ctxt.Textp2, 0) copy(ctxt.Textp2[1:], ctxt.Textp2) ctxt.Textp2[0] = s.Sym() } func (ctxt *Link) buildinfo() { if ctxt.linkShared || ctxt.BuildMode == BuildModePlugin { // -linkshared and -buildmode=plugin get confused // about the relocations in go.buildinfo // pointing at the other data sections. // The version information is only available in executables. return } ldr := ctxt.loader s := ldr.CreateSymForUpdate(".go.buildinfo", 0) s.SetReachable(true) s.SetType(sym.SBUILDINFO) s.SetAlign(16) // The \xff is invalid UTF-8, meant to make it less likely // to find one of these accidentally. const prefix = "\xff Go buildinf:" // 14 bytes, plus 2 data bytes filled in below data := make([]byte, 32) copy(data, prefix) data[len(prefix)] = byte(ctxt.Arch.PtrSize) data[len(prefix)+1] = 0 if ctxt.Arch.ByteOrder == binary.BigEndian { data[len(prefix)+1] = 1 } s.SetData(data) s.SetSize(int64(len(data))) r, _ := s.AddRel(objabi.R_ADDR) r.SetOff(16) r.SetSiz(uint8(ctxt.Arch.PtrSize)) r.SetSym(ldr.LookupOrCreateSym("runtime.buildVersion", 0)) r, _ = s.AddRel(objabi.R_ADDR) r.SetOff(16 + int32(ctxt.Arch.PtrSize)) r.SetSiz(uint8(ctxt.Arch.PtrSize)) r.SetSym(ldr.LookupOrCreateSym("runtime.modinfo", 0)) } // assign addresses to text func (ctxt *Link) textaddress() { addsection(ctxt.Arch, &Segtext, ".text", 05) // Assign PCs in text segment. // Could parallelize, by assigning to text // and then letting threads copy down, but probably not worth it. sect := Segtext.Sections[0] sect.Align = int32(Funcalign) ldr := ctxt.loader text := ldr.LookupOrCreateSym("runtime.text", 0) ldr.SetAttrReachable(text, true) ldr.SetSymSect(text, sect) if ctxt.IsAIX() && ctxt.IsExternal() { // Setting runtime.text has a real symbol prevents ld to // change its base address resulting in wrong offsets for // reflect methods. u := ldr.MakeSymbolUpdater(text) u.SetAlign(sect.Align) u.SetSize(8) } if (ctxt.DynlinkingGo() && ctxt.IsDarwin()) || (ctxt.IsAIX() && ctxt.IsExternal()) { etext := ldr.LookupOrCreateSym("runtime.etext", 0) ldr.SetSymSect(etext, sect) ctxt.Textp2 = append(ctxt.Textp2, etext, 0) copy(ctxt.Textp2[1:], ctxt.Textp2) ctxt.Textp2[0] = text } va := uint64(*FlagTextAddr) n := 1 sect.Vaddr = va ntramps := 0 for _, s := range ctxt.Textp2 { sect, n, va = assignAddress(ctxt, sect, n, s, va, false) trampoline(ctxt, s) // resolve jumps, may add trampolines if jump too far // lay down trampolines after each function for ; ntramps < len(ctxt.tramps); ntramps++ { tramp := ctxt.tramps[ntramps] if ctxt.IsAIX() && strings.HasPrefix(ldr.SymName(tramp), "runtime.text.") { // Already set in assignAddress continue } sect, n, va = assignAddress(ctxt, sect, n, tramp, va, true) } } sect.Length = va - sect.Vaddr etext := ldr.LookupOrCreateSym("runtime.etext", 0) ldr.SetAttrReachable(etext, true) ldr.SetSymSect(etext, sect) // merge tramps into Textp, keeping Textp in address order if ntramps != 0 { newtextp := make([]loader.Sym, 0, len(ctxt.Textp)+ntramps) i := 0 for _, s := range ctxt.Textp2 { for ; i < ntramps && ldr.SymValue(ctxt.tramps[i]) < ldr.SymValue(s); i++ { newtextp = append(newtextp, ctxt.tramps[i]) } newtextp = append(newtextp, s) } newtextp = append(newtextp, ctxt.tramps[i:ntramps]...) ctxt.Textp2 = newtextp } } // assigns address for a text symbol, returns (possibly new) section, its number, and the address func assignAddress(ctxt *Link, sect *sym.Section, n int, s loader.Sym, va uint64, isTramp bool) (*sym.Section, int, uint64) { ldr := ctxt.loader if thearch.AssignAddress != nil { return thearch.AssignAddress(ldr, sect, n, s, va, isTramp) } ldr.SetSymSect(s, sect) if ldr.AttrSubSymbol(s) { return sect, n, va } align := ldr.SymAlign(s) if align == 0 { align = int32(Funcalign) } va = uint64(Rnd(int64(va), int64(align))) if sect.Align < align { sect.Align = align } funcsize := uint64(MINFUNC) // spacing required for findfunctab if ldr.SymSize(s) > MINFUNC { funcsize = uint64(ldr.SymSize(s)) } // On ppc64x a text section should not be larger than 2^26 bytes due to the size of // call target offset field in the bl instruction. Splitting into smaller text // sections smaller than this limit allows the GNU linker to modify the long calls // appropriately. The limit allows for the space needed for tables inserted by the linker. // If this function doesn't fit in the current text section, then create a new one. // Only break at outermost syms. if ctxt.Arch.InFamily(sys.PPC64) && ldr.OuterSym(s) == 0 && ctxt.IsExternal() && va-sect.Vaddr+funcsize+maxSizeTrampolinesPPC64(ldr, s, isTramp) > 0x1c00000 { // Set the length for the previous text section sect.Length = va - sect.Vaddr // Create new section, set the starting Vaddr sect = addsection(ctxt.Arch, &Segtext, ".text", 05) sect.Vaddr = va ldr.SetSymSect(s, sect) // Create a symbol for the start of the secondary text sections ntext := ldr.CreateSymForUpdate(fmt.Sprintf("runtime.text.%d", n), 0) ntext.SetReachable(true) ntext.SetSect(sect) if ctxt.IsAIX() { // runtime.text.X must be a real symbol on AIX. // Assign its address directly in order to be the // first symbol of this new section. ntext.SetType(sym.STEXT) ntext.SetSize(int64(MINFUNC)) ntext.SetOnList(true) ctxt.tramps = append(ctxt.tramps, ntext.Sym()) ntext.SetValue(int64(va)) va += uint64(ntext.Size()) if align := ldr.SymAlign(s); align != 0 { va = uint64(Rnd(int64(va), int64(align))) } else { va = uint64(Rnd(int64(va), int64(Funcalign))) } } n++ } ldr.SetSymValue(s, 0) for sub := s; sub != 0; sub = ldr.SubSym(sub) { ldr.SetSymValue(sub, ldr.SymValue(sub)+int64(va)) } va += funcsize return sect, n, va } // address assigns virtual addresses to all segments and sections and // returns all segments in file order. func (ctxt *Link) address() []*sym.Segment { var order []*sym.Segment // Layout order va := uint64(*FlagTextAddr) order = append(order, &Segtext) Segtext.Rwx = 05 Segtext.Vaddr = va for _, s := range Segtext.Sections { va = uint64(Rnd(int64(va), int64(s.Align))) s.Vaddr = va va += s.Length } Segtext.Length = va - uint64(*FlagTextAddr) if len(Segrodata.Sections) > 0 { // align to page boundary so as not to mix // rodata and executable text. // // Note: gold or GNU ld will reduce the size of the executable // file by arranging for the relro segment to end at a page // boundary, and overlap the end of the text segment with the // start of the relro segment in the file. The PT_LOAD segments // will be such that the last page of the text segment will be // mapped twice, once r-x and once starting out rw- and, after // relocation processing, changed to r--. // // Ideally the last page of the text segment would not be // writable even for this short period. va = uint64(Rnd(int64(va), int64(*FlagRound))) order = append(order, &Segrodata) Segrodata.Rwx = 04 Segrodata.Vaddr = va for _, s := range Segrodata.Sections { va = uint64(Rnd(int64(va), int64(s.Align))) s.Vaddr = va va += s.Length } Segrodata.Length = va - Segrodata.Vaddr } if len(Segrelrodata.Sections) > 0 { // align to page boundary so as not to mix // rodata, rel-ro data, and executable text. va = uint64(Rnd(int64(va), int64(*FlagRound))) if ctxt.HeadType == objabi.Haix { // Relro data are inside data segment on AIX. va += uint64(XCOFFDATABASE) - uint64(XCOFFTEXTBASE) } order = append(order, &Segrelrodata) Segrelrodata.Rwx = 06 Segrelrodata.Vaddr = va for _, s := range Segrelrodata.Sections { va = uint64(Rnd(int64(va), int64(s.Align))) s.Vaddr = va va += s.Length } Segrelrodata.Length = va - Segrelrodata.Vaddr } va = uint64(Rnd(int64(va), int64(*FlagRound))) if ctxt.HeadType == objabi.Haix && len(Segrelrodata.Sections) == 0 { // Data sections are moved to an unreachable segment // to ensure that they are position-independent. // Already done if relro sections exist. va += uint64(XCOFFDATABASE) - uint64(XCOFFTEXTBASE) } order = append(order, &Segdata) Segdata.Rwx = 06 Segdata.Vaddr = va var data *sym.Section var noptr *sym.Section var bss *sym.Section var noptrbss *sym.Section for i, s := range Segdata.Sections { if (ctxt.IsELF || ctxt.HeadType == objabi.Haix) && s.Name == ".tbss" { continue } vlen := int64(s.Length) if i+1 < len(Segdata.Sections) && !((ctxt.IsELF || ctxt.HeadType == objabi.Haix) && Segdata.Sections[i+1].Name == ".tbss") { vlen = int64(Segdata.Sections[i+1].Vaddr - s.Vaddr) } s.Vaddr = va va += uint64(vlen) Segdata.Length = va - Segdata.Vaddr if s.Name == ".data" { data = s } if s.Name == ".noptrdata" { noptr = s } if s.Name == ".bss" { bss = s } if s.Name == ".noptrbss" { noptrbss = s } } // Assign Segdata's Filelen omitting the BSS. We do this here // simply because right now we know where the BSS starts. Segdata.Filelen = bss.Vaddr - Segdata.Vaddr va = uint64(Rnd(int64(va), int64(*FlagRound))) order = append(order, &Segdwarf) Segdwarf.Rwx = 06 Segdwarf.Vaddr = va for i, s := range Segdwarf.Sections { vlen := int64(s.Length) if i+1 < len(Segdwarf.Sections) { vlen = int64(Segdwarf.Sections[i+1].Vaddr - s.Vaddr) } s.Vaddr = va va += uint64(vlen) if ctxt.HeadType == objabi.Hwindows { va = uint64(Rnd(int64(va), PEFILEALIGN)) } Segdwarf.Length = va - Segdwarf.Vaddr } var ( text = Segtext.Sections[0] rodata = ctxt.Syms.Lookup("runtime.rodata", 0).Sect itablink = ctxt.Syms.Lookup("runtime.itablink", 0).Sect symtab = ctxt.Syms.Lookup("runtime.symtab", 0).Sect pclntab = ctxt.Syms.Lookup("runtime.pclntab", 0).Sect types = ctxt.Syms.Lookup("runtime.types", 0).Sect ) lasttext := text // Could be multiple .text sections for _, sect := range Segtext.Sections { if sect.Name == ".text" { lasttext = sect } } for _, s := range ctxt.datap { if s.Sect != nil { s.Value += int64(s.Sect.Vaddr) } for sub := s.Sub; sub != nil; sub = sub.Sub { sub.Value += s.Value } } for _, s := range dwarfp { if s.Sect != nil { s.Value += int64(s.Sect.Vaddr) } for sub := s.Sub; sub != nil; sub = sub.Sub { sub.Value += s.Value } } if ctxt.BuildMode == BuildModeShared { s := ctxt.Syms.Lookup("go.link.abihashbytes", 0) sectSym := ctxt.Syms.Lookup(".note.go.abihash", 0) s.Sect = sectSym.Sect s.Value = int64(sectSym.Sect.Vaddr + 16) } ctxt.xdefine("runtime.text", sym.STEXT, int64(text.Vaddr)) ctxt.xdefine("runtime.etext", sym.STEXT, int64(lasttext.Vaddr+lasttext.Length)) // If there are multiple text sections, create runtime.text.n for // their section Vaddr, using n for index n := 1 for _, sect := range Segtext.Sections[1:] { if sect.Name != ".text" { break } symname := fmt.Sprintf("runtime.text.%d", n) if ctxt.HeadType != objabi.Haix || ctxt.LinkMode != LinkExternal { // Addresses are already set on AIX with external linker // because these symbols are part of their sections. ctxt.xdefine(symname, sym.STEXT, int64(sect.Vaddr)) } n++ } ctxt.xdefine("runtime.rodata", sym.SRODATA, int64(rodata.Vaddr)) ctxt.xdefine("runtime.erodata", sym.SRODATA, int64(rodata.Vaddr+rodata.Length)) ctxt.xdefine("runtime.types", sym.SRODATA, int64(types.Vaddr)) ctxt.xdefine("runtime.etypes", sym.SRODATA, int64(types.Vaddr+types.Length)) ctxt.xdefine("runtime.itablink", sym.SRODATA, int64(itablink.Vaddr)) ctxt.xdefine("runtime.eitablink", sym.SRODATA, int64(itablink.Vaddr+itablink.Length)) s := ctxt.Syms.Lookup("runtime.gcdata", 0) s.Attr |= sym.AttrLocal ctxt.xdefine("runtime.egcdata", sym.SRODATA, Symaddr(s)+s.Size) ctxt.Syms.Lookup("runtime.egcdata", 0).Sect = s.Sect s = ctxt.Syms.Lookup("runtime.gcbss", 0) s.Attr |= sym.AttrLocal ctxt.xdefine("runtime.egcbss", sym.SRODATA, Symaddr(s)+s.Size) ctxt.Syms.Lookup("runtime.egcbss", 0).Sect = s.Sect ctxt.xdefine("runtime.symtab", sym.SRODATA, int64(symtab.Vaddr)) ctxt.xdefine("runtime.esymtab", sym.SRODATA, int64(symtab.Vaddr+symtab.Length)) ctxt.xdefine("runtime.pclntab", sym.SRODATA, int64(pclntab.Vaddr)) ctxt.xdefine("runtime.epclntab", sym.SRODATA, int64(pclntab.Vaddr+pclntab.Length)) ctxt.xdefine("runtime.noptrdata", sym.SNOPTRDATA, int64(noptr.Vaddr)) ctxt.xdefine("runtime.enoptrdata", sym.SNOPTRDATA, int64(noptr.Vaddr+noptr.Length)) ctxt.xdefine("runtime.bss", sym.SBSS, int64(bss.Vaddr)) ctxt.xdefine("runtime.ebss", sym.SBSS, int64(bss.Vaddr+bss.Length)) ctxt.xdefine("runtime.data", sym.SDATA, int64(data.Vaddr)) ctxt.xdefine("runtime.edata", sym.SDATA, int64(data.Vaddr+data.Length)) ctxt.xdefine("runtime.noptrbss", sym.SNOPTRBSS, int64(noptrbss.Vaddr)) ctxt.xdefine("runtime.enoptrbss", sym.SNOPTRBSS, int64(noptrbss.Vaddr+noptrbss.Length)) ctxt.xdefine("runtime.end", sym.SBSS, int64(Segdata.Vaddr+Segdata.Length)) if ctxt.IsSolaris() { // On Solaris, in the runtime it sets the external names of the // end symbols. Unset them and define separate symbols, so we // keep both. etext := ctxt.Syms.ROLookup("runtime.etext", 0) edata := ctxt.Syms.ROLookup("runtime.edata", 0) end := ctxt.Syms.ROLookup("runtime.end", 0) etext.SetExtname("runtime.etext") edata.SetExtname("runtime.edata") end.SetExtname("runtime.end") ctxt.xdefine("_etext", etext.Type, etext.Value) ctxt.xdefine("_edata", edata.Type, edata.Value) ctxt.xdefine("_end", end.Type, end.Value) ctxt.Syms.ROLookup("_etext", 0).Sect = etext.Sect ctxt.Syms.ROLookup("_edata", 0).Sect = edata.Sect ctxt.Syms.ROLookup("_end", 0).Sect = end.Sect } return order } // layout assigns file offsets and lengths to the segments in order. // Returns the file size containing all the segments. func (ctxt *Link) layout(order []*sym.Segment) uint64 { var prev *sym.Segment for _, seg := range order { if prev == nil { seg.Fileoff = uint64(HEADR) } else { switch ctxt.HeadType { default: // Assuming the previous segment was // aligned, the following rounding // should ensure that this segment's // VA ≡ Fileoff mod FlagRound. seg.Fileoff = uint64(Rnd(int64(prev.Fileoff+prev.Filelen), int64(*FlagRound))) if seg.Vaddr%uint64(*FlagRound) != seg.Fileoff%uint64(*FlagRound) { Exitf("bad segment rounding (Vaddr=%#x Fileoff=%#x FlagRound=%#x)", seg.Vaddr, seg.Fileoff, *FlagRound) } case objabi.Hwindows: seg.Fileoff = prev.Fileoff + uint64(Rnd(int64(prev.Filelen), PEFILEALIGN)) case objabi.Hplan9: seg.Fileoff = prev.Fileoff + prev.Filelen } } if seg != &Segdata { // Link.address already set Segdata.Filelen to // account for BSS. seg.Filelen = seg.Length } prev = seg } return prev.Fileoff + prev.Filelen } // add a trampoline with symbol s (to be laid down after the current function) func (ctxt *Link) AddTramp(s *loader.SymbolBuilder) { s.SetType(sym.STEXT) s.SetReachable(true) s.SetOnList(true) ctxt.tramps = append(ctxt.tramps, s.Sym()) if *FlagDebugTramp > 0 && ctxt.Debugvlog > 0 { ctxt.Logf("trampoline %s inserted\n", s.Name()) } } // compressSyms compresses syms and returns the contents of the // compressed section. If the section would get larger, it returns nil. func compressSyms(ctxt *Link, syms []*sym.Symbol) []byte { var total int64 for _, sym := range syms { total += sym.Size } var buf bytes.Buffer buf.Write([]byte("ZLIB")) var sizeBytes [8]byte binary.BigEndian.PutUint64(sizeBytes[:], uint64(total)) buf.Write(sizeBytes[:]) var relocbuf []byte // temporary buffer for applying relocations // Using zlib.BestSpeed achieves very nearly the same // compression levels of zlib.DefaultCompression, but takes // substantially less time. This is important because DWARF // compression can be a significant fraction of link time. z, err := zlib.NewWriterLevel(&buf, zlib.BestSpeed) if err != nil { log.Fatalf("NewWriterLevel failed: %s", err) } target := &ctxt.Target ldr := ctxt.loader reporter := &ctxt.ErrorReporter archSyms := &ctxt.ArchSyms for _, s := range syms { // s.P may be read-only. Apply relocations in a // temporary buffer, and immediately write it out. oldP := s.P wasReadOnly := s.Attr.ReadOnly() if len(s.R) != 0 && wasReadOnly { relocbuf = append(relocbuf[:0], s.P...) s.P = relocbuf // TODO: This function call needs to be parallelized when the loader wavefront gets here. s.Attr.Set(sym.AttrReadOnly, false) } relocsym(target, ldr, reporter, archSyms, s) if _, err := z.Write(s.P); err != nil { log.Fatalf("compression failed: %s", err) } for i := s.Size - int64(len(s.P)); i > 0; { b := zeros[:] if i < int64(len(b)) { b = b[:i] } n, err := z.Write(b) if err != nil { log.Fatalf("compression failed: %s", err) } i -= int64(n) } // Restore s.P if a temporary buffer was used. If compression // is not beneficial, we'll go back to use the uncompressed // contents, in which case we still need s.P. if len(s.R) != 0 && wasReadOnly { s.P = oldP s.Attr.Set(sym.AttrReadOnly, wasReadOnly) for i := range s.R { s.R[i].Done = false } } } if err := z.Close(); err != nil { log.Fatalf("compression failed: %s", err) } if int64(buf.Len()) >= total { // Compression didn't save any space. return nil } return buf.Bytes() }