// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package main var genericOps = []opData{ // 2-input arithmetic // Types must be consistent with Go typing. Add, for example, must take two values // of the same type and produces that same type. {name: "Add8"}, // arg0 + arg1 {name: "Add16"}, {name: "Add32"}, {name: "Add64"}, {name: "AddPtr"}, {name: "Add32F"}, {name: "Add64F"}, // TODO: Add64C, Add128C {name: "Sub8"}, // arg0 - arg1 {name: "Sub16"}, {name: "Sub32"}, {name: "Sub64"}, {name: "SubPtr"}, {name: "Sub32F"}, {name: "Sub64F"}, {name: "Mul8"}, // arg0 * arg1 {name: "Mul16"}, {name: "Mul32"}, {name: "Mul64"}, {name: "MulPtr", typ: "Uintptr"}, // MulPtr is used for address calculations {name: "Mul32F"}, {name: "Mul64F"}, {name: "Div32F"}, // arg0 / arg1 {name: "Div64F"}, {name: "Hmul8"}, // (arg0 * arg1) >> width {name: "Hmul8u"}, {name: "Hmul16"}, {name: "Hmul16u"}, {name: "Hmul32"}, {name: "Hmul32u"}, // frontend currently doesn't generate a 64 bit hmul {name: "Div8"}, // arg0 / arg1 {name: "Div8u"}, {name: "Div16"}, {name: "Div16u"}, {name: "Div32"}, {name: "Div32u"}, {name: "Div64"}, {name: "Div64u"}, {name: "Mod8"}, // arg0 % arg1 {name: "Mod8u"}, {name: "Mod16"}, {name: "Mod16u"}, {name: "Mod32"}, {name: "Mod32u"}, {name: "Mod64"}, {name: "Mod64u"}, {name: "And8"}, // arg0 & arg1 {name: "And16"}, {name: "And32"}, {name: "And64"}, {name: "Or8"}, // arg0 | arg1 {name: "Or16"}, {name: "Or32"}, {name: "Or64"}, {name: "Xor8"}, // arg0 ^ arg1 {name: "Xor16"}, {name: "Xor32"}, {name: "Xor64"}, // For shifts, AxB means the shifted value has A bits and the shift amount has B bits. {name: "Lsh8x8"}, // arg0 << arg1 {name: "Lsh8x16"}, {name: "Lsh8x32"}, {name: "Lsh8x64"}, {name: "Lsh16x8"}, {name: "Lsh16x16"}, {name: "Lsh16x32"}, {name: "Lsh16x64"}, {name: "Lsh32x8"}, {name: "Lsh32x16"}, {name: "Lsh32x32"}, {name: "Lsh32x64"}, {name: "Lsh64x8"}, {name: "Lsh64x16"}, {name: "Lsh64x32"}, {name: "Lsh64x64"}, {name: "Rsh8x8"}, // arg0 >> arg1, signed {name: "Rsh8x16"}, {name: "Rsh8x32"}, {name: "Rsh8x64"}, {name: "Rsh16x8"}, {name: "Rsh16x16"}, {name: "Rsh16x32"}, {name: "Rsh16x64"}, {name: "Rsh32x8"}, {name: "Rsh32x16"}, {name: "Rsh32x32"}, {name: "Rsh32x64"}, {name: "Rsh64x8"}, {name: "Rsh64x16"}, {name: "Rsh64x32"}, {name: "Rsh64x64"}, {name: "Rsh8Ux8"}, // arg0 >> arg1, unsigned {name: "Rsh8Ux16"}, {name: "Rsh8Ux32"}, {name: "Rsh8Ux64"}, {name: "Rsh16Ux8"}, {name: "Rsh16Ux16"}, {name: "Rsh16Ux32"}, {name: "Rsh16Ux64"}, {name: "Rsh32Ux8"}, {name: "Rsh32Ux16"}, {name: "Rsh32Ux32"}, {name: "Rsh32Ux64"}, {name: "Rsh64Ux8"}, {name: "Rsh64Ux16"}, {name: "Rsh64Ux32"}, {name: "Rsh64Ux64"}, // (Left) rotates replace pattern matches in the front end // of (arg0 << arg1) ^ (arg0 >> (A-arg1)) // where A is the bit width of arg0 and result. // Note that because rotates are pattern-matched from // shifts, that a rotate of arg1=A+k (k > 0) bits originated from // (arg0 << A+k) ^ (arg0 >> -k) = // 0 ^ arg0>>huge_unsigned = // 0 ^ 0 = 0 // which is not the same as a rotation by A+k // // However, in the specific case of k = 0, the result of // the shift idiom is the same as the result for the // rotate idiom, i.e., result=arg0. // This is different from shifts, where // arg0 << A is defined to be zero. // // Because of this, and also because the primary use case // for rotates is hashing and crypto code with constant // distance, rotate instructions are only substituted // when arg1 is a constant between 1 and A-1, inclusive. {name: "Lrot8"}, {name: "Lrot16"}, {name: "Lrot32"}, {name: "Lrot64"}, // 2-input comparisons {name: "Eq8"}, // arg0 == arg1 {name: "Eq16"}, {name: "Eq32"}, {name: "Eq64"}, {name: "EqPtr"}, {name: "EqFat"}, // slice/interface; arg0 or arg1 is nil; other cases handled by frontend {name: "Eq32F"}, {name: "Eq64F"}, {name: "Neq8"}, // arg0 != arg1 {name: "Neq16"}, {name: "Neq32"}, {name: "Neq64"}, {name: "NeqPtr"}, {name: "NeqFat"}, // slice/interface; arg0 or arg1 is nil; other cases handled by frontend {name: "Neq32F"}, {name: "Neq64F"}, {name: "Less8"}, // arg0 < arg1 {name: "Less8U"}, {name: "Less16"}, {name: "Less16U"}, {name: "Less32"}, {name: "Less32U"}, {name: "Less64"}, {name: "Less64U"}, {name: "Less32F"}, {name: "Less64F"}, {name: "Leq8"}, // arg0 <= arg1 {name: "Leq8U"}, {name: "Leq16"}, {name: "Leq16U"}, {name: "Leq32"}, {name: "Leq32U"}, {name: "Leq64"}, {name: "Leq64U"}, {name: "Leq32F"}, {name: "Leq64F"}, {name: "Greater8"}, // arg0 > arg1 {name: "Greater8U"}, {name: "Greater16"}, {name: "Greater16U"}, {name: "Greater32"}, {name: "Greater32U"}, {name: "Greater64"}, {name: "Greater64U"}, {name: "Greater32F"}, {name: "Greater64F"}, {name: "Geq8"}, // arg0 <= arg1 {name: "Geq8U"}, {name: "Geq16"}, {name: "Geq16U"}, {name: "Geq32"}, {name: "Geq32U"}, {name: "Geq64"}, {name: "Geq64U"}, {name: "Geq32F"}, {name: "Geq64F"}, // 1-input ops {name: "Not"}, // !arg0 {name: "Neg8"}, // -arg0 {name: "Neg16"}, {name: "Neg32"}, {name: "Neg64"}, {name: "Neg32F"}, {name: "Neg64F"}, {name: "Com8"}, // ^arg0 {name: "Com16"}, {name: "Com32"}, {name: "Com64"}, // Data movement {name: "Phi"}, // select an argument based on which predecessor block we came from {name: "Copy"}, // output = arg0 // constants. Constant values are stored in the aux field. // booleans have a bool aux field, strings have a string aux // field, and so on. All integer types store their value // in the AuxInt field as an int64 (including int, uint64, etc.). // For integer types smaller than 64 bits, only the low-order // bits of the AuxInt field matter. {name: "ConstBool"}, {name: "ConstString"}, {name: "ConstNil"}, {name: "Const8"}, {name: "Const16"}, {name: "Const32"}, {name: "Const64"}, {name: "Const32F"}, {name: "Const64F"}, {name: "ConstPtr", typ: "Uintptr"}, // pointer-sized integer constant {name: "ConstInterface"}, // nil interface {name: "ConstSlice"}, // nil slice // TODO: Const32F, ... // Constant-like things {name: "Arg"}, // memory input to the function. // The address of a variable. arg0 is the base pointer (SB or SP, depending // on whether it is a global or stack variable). The Aux field identifies the // variable. It will be either an *ExternSymbol (with arg0=SB), *ArgSymbol (arg0=SP), // or *AutoSymbol (arg0=SP). {name: "Addr"}, // Address of a variable. Arg0=SP or SB. Aux identifies the variable. {name: "SP"}, // stack pointer {name: "SB", typ: "Uintptr"}, // static base pointer (a.k.a. globals pointer) {name: "Func"}, // entry address of a function // Memory operations {name: "Load"}, // Load from arg0. arg1=memory {name: "Store", typ: "Mem"}, // Store arg1 to arg0. arg2=memory, auxint=size. Returns memory. {name: "Move"}, // arg0=destptr, arg1=srcptr, arg2=mem, auxint=size. Returns memory. {name: "Zero"}, // arg0=destptr, arg1=mem, auxint=size. Returns memory. // Function calls. Arguments to the call have already been written to the stack. // Return values appear on the stack. The method receiver, if any, is treated // as a phantom first argument. {name: "ClosureCall"}, // arg0=code pointer, arg1=context ptr, arg2=memory. auxint=arg size. Returns memory. {name: "StaticCall"}, // call function aux.(*gc.Sym), arg0=memory. auxint=arg size. Returns memory. {name: "DeferCall"}, // defer call. arg0=memory, auxint=arg size. Returns memory. {name: "GoCall"}, // go call. arg0=memory, auxint=arg size. Returns memory. // Conversions: signed extensions, zero (unsigned) extensions, truncations {name: "SignExt8to16", typ: "Int16"}, {name: "SignExt8to32"}, {name: "SignExt8to64"}, {name: "SignExt16to32"}, {name: "SignExt16to64"}, {name: "SignExt32to64"}, {name: "ZeroExt8to16", typ: "UInt16"}, {name: "ZeroExt8to32"}, {name: "ZeroExt8to64"}, {name: "ZeroExt16to32"}, {name: "ZeroExt16to64"}, {name: "ZeroExt32to64"}, {name: "Trunc16to8"}, {name: "Trunc32to8"}, {name: "Trunc32to16"}, {name: "Trunc64to8"}, {name: "Trunc64to16"}, {name: "Trunc64to32"}, {name: "Cvt32to32F"}, {name: "Cvt32to64F"}, {name: "Cvt64to32F"}, {name: "Cvt64to64F"}, {name: "Cvt32Fto32"}, {name: "Cvt32Fto64"}, {name: "Cvt64Fto32"}, {name: "Cvt64Fto64"}, {name: "Cvt32Fto64F"}, {name: "Cvt64Fto32F"}, // Automatically inserted safety checks {name: "IsNonNil", typ: "Bool"}, // arg0 != nil {name: "IsInBounds", typ: "Bool"}, // 0 <= arg0 < arg1 {name: "IsSliceInBounds", typ: "Bool"}, // 0 <= arg0 <= arg1 // Pseudo-ops {name: "PanicNilCheck"}, // trigger a dereference fault; arg0=nil ptr, arg1=mem, returns mem {name: "PanicIndexCheck"}, // trigger a bounds check failure, arg0=mem, returns mem {name: "PanicSliceCheck"}, // trigger a slice bounds check failure, arg0=mem, returns mem {name: "GetG"}, // runtime.getg() (read g pointer) // Indexing operations {name: "ArrayIndex"}, // arg0=array, arg1=index. Returns a[i] {name: "PtrIndex"}, // arg0=ptr, arg1=index. Computes ptr+sizeof(*v.type)*index, where index is extended to ptrwidth type {name: "OffPtr"}, // arg0 + auxint (arg0 and result are pointers) {name: "StructSelect"}, // arg0=struct, auxint=field offset. Returns field at that offset (size=size of result type) // Slices {name: "SliceMake"}, // arg0=ptr, arg1=len, arg2=cap {name: "SlicePtr"}, // ptr(arg0) {name: "SliceLen"}, // len(arg0) {name: "SliceCap"}, // cap(arg0) // Complex (part/whole) {name: "ComplexMake"}, // arg0=real, arg1=imag {name: "ComplexReal"}, // real(arg0) {name: "ComplexImag"}, // imag(arg0) // Strings {name: "StringMake"}, // arg0=ptr, arg1=len {name: "StringPtr"}, // ptr(arg0) {name: "StringLen"}, // len(arg0) // Interfaces {name: "IMake"}, // arg0=itab, arg1=data {name: "ITab"}, // arg0=interface, returns itable field {name: "IData"}, // arg0=interface, returns data field // Spill&restore ops for the register allocator. These are // semantically identical to OpCopy; they do not take/return // stores like regular memory ops do. We can get away without memory // args because we know there is no aliasing of spill slots on the stack. {name: "StoreReg"}, {name: "LoadReg"}, // Used during ssa construction. Like Copy, but the arg has not been specified yet. {name: "FwdRef"}, {name: "VarDef", typ: "Mem"}, // aux is a *gc.Node of a variable that is about to be initialized. arg0=mem, returns mem {name: "VarKill"}, // aux is a *gc.Node of a variable that is known to be dead. arg0=mem, returns mem } // kind control successors // ------------------------------------------ // Exit return mem [] // Ret return mem [exit] // Plain nil [next] // If a boolean Value [then, else] // Call mem [nopanic, exit] (control opcode should be OpCall or OpStaticCall) // First nil [always,never] var genericBlocks = []blockData{ {name: "Exit"}, // no successors. There should only be 1 of these. {name: "Dead"}, // no successors; determined to be dead but not yet removed {name: "Plain"}, // a single successor {name: "If"}, // 2 successors, if control goto Succs[0] else goto Succs[1] {name: "Call"}, // 2 successors, normal return and panic {name: "First"}, // 2 successors, always takes the first one (second is dead) {name: "Ret"}, // 1 successor, branches to exit } func init() { archs = append(archs, arch{"generic", genericOps, genericBlocks, nil}) }