// Copyright 2012 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // +build darwin dragonfly freebsd linux netbsd openbsd solaris package runtime import ( "runtime/internal/sys" "unsafe" ) //go:linkname os_sigpipe os.sigpipe func os_sigpipe() { systemstack(sigpipe) } func signame(sig uint32) string { if sig >= uint32(len(sigtable)) { return "" } return sigtable[sig].name } const ( _SIG_DFL uintptr = 0 _SIG_IGN uintptr = 1 ) // Stores the signal handlers registered before Go installed its own. // These signal handlers will be invoked in cases where Go doesn't want to // handle a particular signal (e.g., signal occurred on a non-Go thread). // See sigfwdgo() for more information on when the signals are forwarded. // // Signal forwarding is currently available only on Darwin and Linux. var fwdSig [_NSIG]uintptr // sigmask represents a general signal mask compatible with the GOOS // specific sigset types: the signal numbered x is represented by bit x-1 // to match the representation expected by sigprocmask. type sigmask [(_NSIG + 31) / 32]uint32 // channels for synchronizing signal mask updates with the signal mask // thread var ( disableSigChan chan uint32 enableSigChan chan uint32 maskUpdatedChan chan struct{} ) func init() { // _NSIG is the number of signals on this operating system. // sigtable should describe what to do for all the possible signals. if len(sigtable) != _NSIG { print("runtime: len(sigtable)=", len(sigtable), " _NSIG=", _NSIG, "\n") throw("bad sigtable len") } } var signalsOK bool // Initialize signals. // Called by libpreinit so runtime may not be initialized. //go:nosplit //go:nowritebarrierrec func initsig(preinit bool) { if !preinit { // It's now OK for signal handlers to run. signalsOK = true } // For c-archive/c-shared this is called by libpreinit with // preinit == true. if (isarchive || islibrary) && !preinit { return } for i := int32(0); i < _NSIG; i++ { t := &sigtable[i] if t.flags == 0 || t.flags&_SigDefault != 0 { continue } fwdSig[i] = getsig(i) if !sigInstallGoHandler(i) { // Even if we are not installing a signal handler, // set SA_ONSTACK if necessary. if fwdSig[i] != _SIG_DFL && fwdSig[i] != _SIG_IGN { setsigstack(i) } continue } t.flags |= _SigHandling setsig(i, funcPC(sighandler), true) } } //go:nosplit //go:nowritebarrierrec func sigInstallGoHandler(sig int32) bool { // For some signals, we respect an inherited SIG_IGN handler // rather than insist on installing our own default handler. // Even these signals can be fetched using the os/signal package. switch sig { case _SIGHUP, _SIGINT: if fwdSig[sig] == _SIG_IGN { return false } } t := &sigtable[sig] if t.flags&_SigSetStack != 0 { return false } // When built using c-archive or c-shared, only install signal // handlers for synchronous signals. if (isarchive || islibrary) && t.flags&_SigPanic == 0 { return false } return true } func sigenable(sig uint32) { if sig >= uint32(len(sigtable)) { return } t := &sigtable[sig] if t.flags&_SigNotify != 0 { ensureSigM() enableSigChan <- sig <-maskUpdatedChan if t.flags&_SigHandling == 0 { t.flags |= _SigHandling fwdSig[sig] = getsig(int32(sig)) setsig(int32(sig), funcPC(sighandler), true) } } } func sigdisable(sig uint32) { if sig >= uint32(len(sigtable)) { return } t := &sigtable[sig] if t.flags&_SigNotify != 0 { ensureSigM() disableSigChan <- sig <-maskUpdatedChan // If initsig does not install a signal handler for a // signal, then to go back to the state before Notify // we should remove the one we installed. if !sigInstallGoHandler(int32(sig)) { t.flags &^= _SigHandling setsig(int32(sig), fwdSig[sig], true) } } } func sigignore(sig uint32) { if sig >= uint32(len(sigtable)) { return } t := &sigtable[sig] if t.flags&_SigNotify != 0 { t.flags &^= _SigHandling setsig(int32(sig), _SIG_IGN, true) } } func resetcpuprofiler(hz int32) { var it itimerval if hz == 0 { setitimer(_ITIMER_PROF, &it, nil) } else { it.it_interval.tv_sec = 0 it.it_interval.set_usec(1000000 / hz) it.it_value = it.it_interval setitimer(_ITIMER_PROF, &it, nil) } _g_ := getg() _g_.m.profilehz = hz } func sigpipe() { if sigsend(_SIGPIPE) { return } dieFromSignal(_SIGPIPE) } // dieFromSignal kills the program with a signal. // This provides the expected exit status for the shell. // This is only called with fatal signals expected to kill the process. //go:nosplit //go:nowritebarrierrec func dieFromSignal(sig int32) { setsig(sig, _SIG_DFL, false) updatesigmask(sigmask{}) raise(sig) // That should have killed us. On some systems, though, raise // sends the signal to the whole process rather than to just // the current thread, which means that the signal may not yet // have been delivered. Give other threads a chance to run and // pick up the signal. osyield() osyield() osyield() // If we are still somehow running, just exit with the wrong status. exit(2) } // raisebadsignal is called when a signal is received on a non-Go // thread, and the Go program does not want to handle it (that is, the // program has not called os/signal.Notify for the signal). func raisebadsignal(sig int32, c *sigctxt) { if sig == _SIGPROF { // Ignore profiling signals that arrive on non-Go threads. return } var handler uintptr if sig >= _NSIG { handler = _SIG_DFL } else { handler = fwdSig[sig] } // Reset the signal handler and raise the signal. // We are currently running inside a signal handler, so the // signal is blocked. We need to unblock it before raising the // signal, or the signal we raise will be ignored until we return // from the signal handler. We know that the signal was unblocked // before entering the handler, or else we would not have received // it. That means that we don't have to worry about blocking it // again. unblocksig(sig) setsig(sig, handler, false) // If we're linked into a non-Go program we want to try to // avoid modifying the original context in which the signal // was raised. If the handler is the default, we know it // is non-recoverable, so we don't have to worry about // re-installing sighandler. At this point we can just // return and the signal will be re-raised and caught by // the default handler with the correct context. if (isarchive || islibrary) && handler == _SIG_DFL && c.sigcode() != _SI_USER { return } raise(sig) // If the signal didn't cause the program to exit, restore the // Go signal handler and carry on. // // We may receive another instance of the signal before we // restore the Go handler, but that is not so bad: we know // that the Go program has been ignoring the signal. setsig(sig, funcPC(sighandler), true) } func crash() { if GOOS == "darwin" { // OS X core dumps are linear dumps of the mapped memory, // from the first virtual byte to the last, with zeros in the gaps. // Because of the way we arrange the address space on 64-bit systems, // this means the OS X core file will be >128 GB and even on a zippy // workstation can take OS X well over an hour to write (uninterruptible). // Save users from making that mistake. if sys.PtrSize == 8 { return } } dieFromSignal(_SIGABRT) } // ensureSigM starts one global, sleeping thread to make sure at least one thread // is available to catch signals enabled for os/signal. func ensureSigM() { if maskUpdatedChan != nil { return } maskUpdatedChan = make(chan struct{}) disableSigChan = make(chan uint32) enableSigChan = make(chan uint32) go func() { // Signal masks are per-thread, so make sure this goroutine stays on one // thread. LockOSThread() defer UnlockOSThread() // The sigBlocked mask contains the signals not active for os/signal, // initially all signals except the essential. When signal.Notify()/Stop is called, // sigenable/sigdisable in turn notify this thread to update its signal // mask accordingly. var sigBlocked sigmask for i := range sigBlocked { sigBlocked[i] = ^uint32(0) } for i := range sigtable { if sigtable[i].flags&_SigUnblock != 0 { sigBlocked[(i-1)/32] &^= 1 << ((uint32(i) - 1) & 31) } } updatesigmask(sigBlocked) for { select { case sig := <-enableSigChan: if b := sig - 1; sig > 0 { sigBlocked[b/32] &^= (1 << (b & 31)) } case sig := <-disableSigChan: if b := sig - 1; sig > 0 { sigBlocked[b/32] |= (1 << (b & 31)) } } updatesigmask(sigBlocked) maskUpdatedChan <- struct{}{} } }() } // This is called when we receive a signal when there is no signal stack. // This can only happen if non-Go code calls sigaltstack to disable the // signal stack. This is called via cgocallback to establish a stack. func noSignalStack(sig uint32) { println("signal", sig, "received on thread with no signal stack") throw("non-Go code disabled sigaltstack") } // This is called if we receive a signal when there is a signal stack // but we are not on it. This can only happen if non-Go code called // sigaction without setting the SS_ONSTACK flag. func sigNotOnStack(sig uint32) { println("signal", sig, "received but handler not on signal stack") throw("non-Go code set up signal handler without SA_ONSTACK flag") } // This runs on a foreign stack, without an m or a g. No stack split. //go:nosplit //go:norace //go:nowritebarrierrec func badsignal(sig uintptr, c *sigctxt) { cgocallback(unsafe.Pointer(funcPC(badsignalgo)), noescape(unsafe.Pointer(&sig)), unsafe.Sizeof(sig)+unsafe.Sizeof(c), 0) } func badsignalgo(sig uintptr, c *sigctxt) { if !sigsend(uint32(sig)) { // A foreign thread received the signal sig, and the // Go code does not want to handle it. raisebadsignal(int32(sig), c) } } //go:noescape func sigfwd(fn uintptr, sig uint32, info *siginfo, ctx unsafe.Pointer) // Determines if the signal should be handled by Go and if not, forwards the // signal to the handler that was installed before Go's. Returns whether the // signal was forwarded. // This is called by the signal handler, and the world may be stopped. //go:nosplit //go:nowritebarrierrec func sigfwdgo(sig uint32, info *siginfo, ctx unsafe.Pointer) bool { if sig >= uint32(len(sigtable)) { return false } fwdFn := fwdSig[sig] if !signalsOK { // The only way we can get here is if we are in a // library or archive, we installed a signal handler // at program startup, but the Go runtime has not yet // been initialized. if fwdFn == _SIG_DFL { dieFromSignal(int32(sig)) } else { sigfwd(fwdFn, sig, info, ctx) } return true } flags := sigtable[sig].flags // If there is no handler to forward to, no need to forward. if fwdFn == _SIG_DFL { return false } // If we aren't handling the signal, forward it. if flags&_SigHandling == 0 { sigfwd(fwdFn, sig, info, ctx) return true } // Only forward synchronous signals. c := &sigctxt{info, ctx} if c.sigcode() == _SI_USER || flags&_SigPanic == 0 { return false } // Determine if the signal occurred inside Go code. We test that: // (1) we were in a goroutine (i.e., m.curg != nil), and // (2) we weren't in CGO (i.e., m.curg.syscallsp == 0). g := getg() if g != nil && g.m != nil && g.m.curg != nil && g.m.curg.syscallsp == 0 { return false } // Signal not handled by Go, forward it. if fwdFn != _SIG_IGN { sigfwd(fwdFn, sig, info, ctx) } return true } // msigsave saves the current thread's signal mask into mp.sigmask. // This is used to preserve the non-Go signal mask when a non-Go // thread calls a Go function. // This is nosplit and nowritebarrierrec because it is called by needm // which may be called on a non-Go thread with no g available. //go:nosplit //go:nowritebarrierrec func msigsave(mp *m) { sigprocmask(_SIG_SETMASK, nil, &mp.sigmask) } // msigrestore sets the current thread's signal mask to sigmask. // This is used to restore the non-Go signal mask when a non-Go thread // calls a Go function. // This is nosplit and nowritebarrierrec because it is called by dropm // after g has been cleared. //go:nosplit //go:nowritebarrierrec func msigrestore(sigmask sigset) { sigprocmask(_SIG_SETMASK, &sigmask, nil) } // sigblock blocks all signals in the current thread's signal mask. // This is used to block signals while setting up and tearing down g // when a non-Go thread calls a Go function. // The OS-specific code is expected to define sigset_all. // This is nosplit and nowritebarrierrec because it is called by needm // which may be called on a non-Go thread with no g available. //go:nosplit //go:nowritebarrierrec func sigblock() { sigprocmask(_SIG_SETMASK, &sigset_all, nil) } // updatesigmask sets the current thread's signal mask to m. // This is nosplit and nowritebarrierrec because it is called from // dieFromSignal, which can be called by sigfwdgo while running in the // signal handler, on the signal stack, with no g available. //go:nosplit //go:nowritebarrierrec func updatesigmask(m sigmask) { set := sigmaskToSigset(m) sigprocmask(_SIG_SETMASK, &set, nil) } // unblocksig removes sig from the current thread's signal mask. func unblocksig(sig int32) { var m sigmask m[(sig-1)/32] |= 1 << ((uint32(sig) - 1) & 31) set := sigmaskToSigset(m) sigprocmask(_SIG_UNBLOCK, &set, nil) }