// Derived from Inferno utils/6c/txt.c // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/6c/txt.c // // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) // Portions Copyright © 1997-1999 Vita Nuova Limited // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) // Portions Copyright © 2004,2006 Bruce Ellis // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others // Portions Copyright © 2009 The Go Authors. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. package gc import ( "cmd/internal/obj" "cmd/internal/sys" "fmt" ) var ( ddumped bool dfirst *obj.Prog dpc *obj.Prog ) func Prog(as obj.As) *obj.Prog { var p *obj.Prog if as == obj.AGLOBL { if ddumped { Fatalf("already dumped data") } if dpc == nil { dpc = Ctxt.NewProg() dfirst = dpc } p = dpc dpc = Ctxt.NewProg() p.Link = dpc } else { p = Pc Pc = Ctxt.NewProg() Clearp(Pc) p.Link = Pc } if lineno == 0 && Debug['K'] != 0 { Warn("prog: line 0") } p.As = as p.Lineno = lineno return p } func Afunclit(a *obj.Addr, n *Node) { if a.Type == obj.TYPE_ADDR && a.Name == obj.NAME_EXTERN { a.Type = obj.TYPE_MEM a.Sym = Linksym(n.Sym) } } func Clearp(p *obj.Prog) { obj.Nopout(p) p.As = obj.AEND p.Pc = int64(pcloc) pcloc++ } func Appendpp(p *obj.Prog, as obj.As, ftype obj.AddrType, freg int16, foffset int64, ttype obj.AddrType, treg int16, toffset int64) *obj.Prog { q := Ctxt.NewProg() Clearp(q) q.As = as q.Lineno = p.Lineno q.From.Type = ftype q.From.Reg = freg q.From.Offset = foffset q.To.Type = ttype q.To.Reg = treg q.To.Offset = toffset q.Link = p.Link p.Link = q return q } func dumpdata() { ddumped = true if dfirst == nil { return } newplist() *Pc = *dfirst Pc = dpc Clearp(Pc) } func flushdata() { if dfirst == nil { return } newplist() *Pc = *dfirst Pc = dpc Clearp(Pc) dfirst = nil dpc = nil } // Fixup instructions after allocauto (formerly compactframe) has moved all autos around. func fixautoused(p *obj.Prog) { for lp := &p; ; { p = *lp if p == nil { break } if p.As == obj.ATYPE && p.From.Node != nil && p.From.Name == obj.NAME_AUTO && !((p.From.Node).(*Node)).Used { *lp = p.Link continue } if (p.As == obj.AVARDEF || p.As == obj.AVARKILL || p.As == obj.AVARLIVE) && p.To.Node != nil && !((p.To.Node).(*Node)).Used { // Cannot remove VARDEF instruction, because - unlike TYPE handled above - // VARDEFs are interspersed with other code, and a jump might be using the // VARDEF as a target. Replace with a no-op instead. A later pass will remove // the no-ops. obj.Nopout(p) continue } if p.From.Name == obj.NAME_AUTO && p.From.Node != nil { p.From.Offset += stkdelta[p.From.Node.(*Node)] } if p.To.Name == obj.NAME_AUTO && p.To.Node != nil { p.To.Offset += stkdelta[p.To.Node.(*Node)] } lp = &p.Link } } func ggloblnod(nam *Node) { p := Gins(obj.AGLOBL, nam, nil) p.Lineno = nam.Lineno p.From.Sym.Gotype = Linksym(ngotype(nam)) p.To.Sym = nil p.To.Type = obj.TYPE_CONST p.To.Offset = nam.Type.Width p.From3 = new(obj.Addr) if nam.Name.Readonly { p.From3.Offset = obj.RODATA } if nam.Type != nil && !haspointers(nam.Type) { p.From3.Offset |= obj.NOPTR } } func ggloblsym(s *Sym, width int32, flags int16) { ggloblLSym(Linksym(s), width, flags) } func ggloblLSym(s *obj.LSym, width int32, flags int16) { p := Gins(obj.AGLOBL, nil, nil) p.From.Type = obj.TYPE_MEM p.From.Name = obj.NAME_EXTERN p.From.Sym = s if flags&obj.LOCAL != 0 { p.From.Sym.Local = true flags &^= obj.LOCAL } p.To.Type = obj.TYPE_CONST p.To.Offset = int64(width) p.From3 = new(obj.Addr) p.From3.Offset = int64(flags) } func gtrack(s *Sym) { p := Gins(obj.AUSEFIELD, nil, nil) p.From.Type = obj.TYPE_MEM p.From.Name = obj.NAME_EXTERN p.From.Sym = Linksym(s) } func isfat(t *Type) bool { if t != nil { switch t.Etype { case TSTRUCT, TARRAY, TSLICE, TSTRING, TINTER: // maybe remove later return true } } return false } // Sweep the prog list to mark any used nodes. func markautoused(p *obj.Prog) { for ; p != nil; p = p.Link { if p.As == obj.ATYPE || p.As == obj.AVARDEF || p.As == obj.AVARKILL { continue } if p.From.Node != nil { ((p.From.Node).(*Node)).Used = true } if p.To.Node != nil { ((p.To.Node).(*Node)).Used = true } } } // Naddr rewrites a to refer to n. // It assumes that a is zeroed on entry. func Naddr(a *obj.Addr, n *Node) { if n == nil { return } if n.Type != nil && n.Type.Etype != TIDEAL { // TODO(rsc): This is undone by the selective clearing of width below, // to match architectures that were not as aggressive in setting width // during naddr. Those widths must be cleared to avoid triggering // failures in gins when it detects real but heretofore latent (and one // hopes innocuous) type mismatches. // The type mismatches should be fixed and the clearing below removed. dowidth(n.Type) a.Width = n.Type.Width } switch n.Op { default: a := a // copy to let escape into Ctxt.Dconv Debug['h'] = 1 Dump("naddr", n) Fatalf("naddr: bad %v %v", n.Op, Ctxt.Dconv(a)) case OREGISTER: a.Type = obj.TYPE_REG a.Reg = n.Reg a.Sym = nil if Thearch.LinkArch.Family == sys.I386 { // TODO(rsc): Never clear a->width. a.Width = 0 } case OINDREG: a.Type = obj.TYPE_MEM a.Reg = n.Reg a.Sym = Linksym(n.Sym) a.Offset = n.Xoffset if a.Offset != int64(int32(a.Offset)) { yyerror("offset %d too large for OINDREG", a.Offset) } if Thearch.LinkArch.Family == sys.I386 { // TODO(rsc): Never clear a->width. a.Width = 0 } case OCLOSUREVAR: if !Curfn.Func.Needctxt { Fatalf("closurevar without needctxt") } a.Type = obj.TYPE_MEM a.Reg = int16(Thearch.REGCTXT) a.Sym = nil a.Offset = n.Xoffset case OCFUNC: Naddr(a, n.Left) a.Sym = Linksym(n.Left.Sym) case ONAME: a.Etype = 0 if n.Type != nil { a.Etype = uint8(simtype[n.Type.Etype]) } a.Offset = n.Xoffset s := n.Sym a.Node = n.Orig //if(a->node >= (Node*)&n) // fatal("stack node"); if s == nil { s = lookup(".noname") } if n.Name.Method && n.Type != nil && n.Type.Sym != nil && n.Type.Sym.Pkg != nil { s = Pkglookup(s.Name, n.Type.Sym.Pkg) } a.Type = obj.TYPE_MEM switch n.Class { default: Fatalf("naddr: ONAME class %v %d\n", n.Sym, n.Class) case PEXTERN: a.Name = obj.NAME_EXTERN case PAUTO: a.Name = obj.NAME_AUTO case PPARAM, PPARAMOUT: a.Name = obj.NAME_PARAM case PFUNC: a.Name = obj.NAME_EXTERN a.Type = obj.TYPE_ADDR a.Width = int64(Widthptr) s = funcsym(s) } a.Sym = Linksym(s) case ODOT: // A special case to make write barriers more efficient. // Taking the address of the first field of a named struct // is the same as taking the address of the struct. if !n.Left.Type.IsStruct() || n.Left.Type.Field(0).Sym != n.Sym { Debug['h'] = 1 Dump("naddr", n) Fatalf("naddr: bad %v %v", n.Op, Ctxt.Dconv(a)) } Naddr(a, n.Left) case OLITERAL: if Thearch.LinkArch.Family == sys.I386 { a.Width = 0 } switch u := n.Val().U.(type) { default: Fatalf("naddr: const %L", n.Type) case *Mpflt: a.Type = obj.TYPE_FCONST a.Val = u.Float64() case *Mpint: a.Sym = nil a.Type = obj.TYPE_CONST a.Offset = u.Int64() case string: datagostring(u, a) case bool: a.Sym = nil a.Type = obj.TYPE_CONST a.Offset = int64(obj.Bool2int(u)) case *NilVal: a.Sym = nil a.Type = obj.TYPE_CONST a.Offset = 0 } case OADDR: Naddr(a, n.Left) a.Etype = uint8(Tptr) if !Thearch.LinkArch.InFamily(sys.MIPS64, sys.ARM, sys.ARM64, sys.PPC64, sys.S390X) { // TODO(rsc): Do this even for these architectures. a.Width = int64(Widthptr) } if a.Type != obj.TYPE_MEM { a := a // copy to let escape into Ctxt.Dconv Fatalf("naddr: OADDR %v (from %v)", Ctxt.Dconv(a), n.Left.Op) } a.Type = obj.TYPE_ADDR case OITAB: // itable of interface value Naddr(a, n.Left) if a.Type == obj.TYPE_CONST && a.Offset == 0 { break // itab(nil) } a.Etype = uint8(Tptr) a.Width = int64(Widthptr) case OIDATA: // idata of interface value Naddr(a, n.Left) if a.Type == obj.TYPE_CONST && a.Offset == 0 { break // idata(nil) } if isdirectiface(n.Type) { a.Etype = uint8(simtype[n.Type.Etype]) } else { a.Etype = uint8(Tptr) } a.Offset += int64(Widthptr) a.Width = int64(Widthptr) // pointer in a string or slice case OSPTR: Naddr(a, n.Left) if a.Type == obj.TYPE_CONST && a.Offset == 0 { break // ptr(nil) } a.Etype = uint8(simtype[Tptr]) a.Offset += int64(array_array) a.Width = int64(Widthptr) // len of string or slice case OLEN: Naddr(a, n.Left) if a.Type == obj.TYPE_CONST && a.Offset == 0 { break // len(nil) } a.Etype = uint8(simtype[TUINT]) a.Offset += int64(array_nel) if Thearch.LinkArch.Family != sys.ARM { // TODO(rsc): Do this even on arm. a.Width = int64(Widthint) } // cap of string or slice case OCAP: Naddr(a, n.Left) if a.Type == obj.TYPE_CONST && a.Offset == 0 { break // cap(nil) } a.Etype = uint8(simtype[TUINT]) a.Offset += int64(array_cap) if Thearch.LinkArch.Family != sys.ARM { // TODO(rsc): Do this even on arm. a.Width = int64(Widthint) } } } func newplist() *obj.Plist { pl := obj.Linknewplist(Ctxt) Pc = Ctxt.NewProg() Clearp(Pc) pl.Firstpc = Pc return pl } // nodarg returns a Node for the function argument denoted by t, // which is either the entire function argument or result struct (t is a struct *Type) // or a specific argument (t is a *Field within a struct *Type). // // If fp is 0, the node is for use by a caller invoking the given // function, preparing the arguments before the call // or retrieving the results after the call. // In this case, the node will correspond to an outgoing argument // slot like 8(SP). // // If fp is 1, the node is for use by the function itself // (the callee), to retrieve its arguments or write its results. // In this case the node will be an ONAME with an appropriate // type and offset. func nodarg(t interface{}, fp int) *Node { var n *Node var funarg Funarg switch t := t.(type) { default: Fatalf("bad nodarg %T(%v)", t, t) case *Type: // Entire argument struct, not just one arg if !t.IsFuncArgStruct() { Fatalf("nodarg: bad type %v", t) } funarg = t.StructType().Funarg // Build fake variable name for whole arg struct. n = Nod(ONAME, nil, nil) n.Sym = lookup(".args") n.Type = t first := t.Field(0) if first == nil { Fatalf("nodarg: bad struct") } if first.Offset == BADWIDTH { Fatalf("nodarg: offset not computed for %v", t) } n.Xoffset = first.Offset n.Addable = true case *Field: funarg = t.Funarg if fp == 1 { // NOTE(rsc): This should be using t.Nname directly, // except in the case where t.Nname.Sym is the blank symbol and // so the assignment would be discarded during code generation. // In that case we need to make a new node, and there is no harm // in optimization passes to doing so. But otherwise we should // definitely be using the actual declaration and not a newly built node. // The extra Fatalf checks here are verifying that this is the case, // without changing the actual logic (at time of writing, it's getting // toward time for the Go 1.7 beta). // At some quieter time (assuming we've never seen these Fatalfs happen) // we could change this code to use "expect" directly. expect := t.Nname if expect.isParamHeapCopy() { expect = expect.Name.Param.Stackcopy } for _, n := range Curfn.Func.Dcl { if (n.Class == PPARAM || n.Class == PPARAMOUT) && !isblanksym(t.Sym) && n.Sym == t.Sym { if n != expect { Fatalf("nodarg: unexpected node: %v (%p %v) vs %v (%p %v)", n, n, n.Op, t.Nname, t.Nname, t.Nname.Op) } return n } } if !isblanksym(expect.Sym) { Fatalf("nodarg: did not find node in dcl list: %v", expect) } } // Build fake name for individual variable. // This is safe because if there was a real declared name // we'd have used it above. n = Nod(ONAME, nil, nil) n.Type = t.Type n.Sym = t.Sym if t.Offset == BADWIDTH { Fatalf("nodarg: offset not computed for %v", t) } n.Xoffset = t.Offset n.Addable = true n.Orig = t.Nname } // Rewrite argument named _ to __, // or else the assignment to _ will be // discarded during code generation. if isblank(n) { n.Sym = lookup("__") } switch fp { default: Fatalf("bad fp") case 0: // preparing arguments for call n.Op = OINDREG n.Reg = int16(Thearch.REGSP) n.Xoffset += Ctxt.FixedFrameSize() case 1: // reading arguments inside call n.Class = PPARAM if funarg == FunargResults { n.Class = PPARAMOUT } } n.Typecheck = 1 n.Addrtaken = true // keep optimizers at bay return n } func Patch(p *obj.Prog, to *obj.Prog) { if p.To.Type != obj.TYPE_BRANCH { Fatalf("patch: not a branch") } p.To.Val = to p.To.Offset = to.Pc } // Gins inserts instruction as. f is from, t is to. func Gins(as obj.As, f, t *Node) *obj.Prog { switch as { case obj.AVARKILL, obj.AVARLIVE, obj.AVARDEF, obj.ATYPE, obj.ATEXT, obj.AFUNCDATA, obj.AUSEFIELD, obj.AGLOBL: default: Fatalf("unhandled gins op %v", as) } p := Prog(as) Naddr(&p.From, f) Naddr(&p.To, t) if Debug['g'] != 0 { fmt.Printf("%v\n", p) } return p } var reg [100]int // count of references to reg var regstk [100][]byte // allocation sites, when -v is given func ginit() { for r := range reg { reg[r] = 1 } for r := Thearch.REGMIN; r <= Thearch.REGMAX; r++ { reg[r-Thearch.REGMIN] = 0 } for r := Thearch.FREGMIN; r <= Thearch.FREGMAX; r++ { reg[r-Thearch.REGMIN] = 0 } for _, r := range Thearch.ReservedRegs { reg[r-Thearch.REGMIN] = 1 } }