

Real World Go

Andrew Gerrand
May 9, 2011

Background

3 Google Confidential

Why Go?

• Statically typed languages are efficient, but typically
bureaucratic and overly complex.

• Dynamic languages can be easy to use, but are error-prone,
inefficient, and break down at scale.

• Concurrent programming is hard (threads, locks, headache).

• “Speed, reliability, or simplicity: pick two.” (sometimes just one)
• Can’t we do better?

3 Google Confidential

What is Go?

• Go is a modern, general purpose language.

• Compiles to native machine code (32-bit and 64-bit x86, ARM).
• Statically typed.
• Lightweight syntax.
• Simple type system.
• Concurrency primitives.

3 Google Confidential

Tenets of Go’s design

• Simplicity
– Each language feature should be easy to understand.

• Orthogonality
– Go’s features should interact in predictable and consistent ways.

• Readability
– What is written on the page should be comprehensible with little

context.

“Consensus drove the design. Nothing went
into the language until [Ken Thompson,
Robert Griesemer, and myself] all agreed that
it was right. Some features didn’t get resolved
until after a year or more of discussion.”

Rob Pike

3 Google Confidential

Hello, world

package main

import "fmt"

func main() {
 fmt.Println("Hello, 世界")
}

3 Google Confidential

Hello, world 2.0

Serving “Hello, world” at http://localhost:8080/world
package main

import (
 "fmt"
 "http"
)

func handler(w http.ResponseWriter, r *http.Request) {
 fmt.Fprint(w, "Hello, "+r.URL.Path[1:])
}

func main() {
 http.HandleFunc("/", handler)
 http.ListenAndServe(":8080", nil)
}

A simple type system

3 Google Confidential

Simple type system

Go is statically typed, but type inference saves repetition.
Java:
Integer i = new Integer(1);

C/C++:
int i = 1;

Go:
i := 1 // type int
pi := 3.142 // type float64
greeting := "Hello, Bootcamp!" // type string
mul := func(x, y int) int { return x * y }
 // type func(int, int) int

3 Google Confidential

Types and methods

You can define methods on any type:
type Point struct {
 X, Y float64
}

func (p Point) Abs() float64 {
 return math.Sqrt(p.X*p.X + p.Y*p.Y)
}

p := Point{4, 3} // type Point
p.Abs() // == 5.0

3 Google Confidential

Types and methods

You can define methods on any type:
type MyFloat float64

func (m MyFloat) Abs() float64 {
 f := float64(m)
 if f < 0 {
 return -f
 }
 return f
}

f := MyFloat(-42)
f.Abs() // == 42.0

Go “objects” are just values. There is no “box”.

3 Google Confidential

Interfaces

Interfaces specify behaviors.
An interface type defines a set of methods:
type Abser interface {
 Abs() float64
}

A type that implements those methods implements the interface:
func PrintAbs(a Abser) {
 fmt.Printf("Absolute value: %.2f\n", a.Abs())
}
PrintAbs(MyFloat(-10))
PrintAbs(Point{3, 4})

Types implement interfaces implicitly.
There is no “implements” declaration.

3 Google Confidential

Interfaces in practice

From the io package in the standard library:
type Writer interface {
 Write(p []byte) (n int, err os.Error)
}

There are many Writer implementations throughout the standard
library and other Go code.
We’ve already seen an example:
func handler(w http.ResponseWriter, r ...) {
 fmt.Fprint(w, "Hello, "+r.URL.Path[1:])
}

The fmt.Fprint function takes an io.Writer as its first
argument, and http.ResponseWriter implements the Write
method.
The fmt package doesn’t know http. It just works.

Concurrency

3 Google Confidential

Concurrency

In UNIX we think about processes connected by pipes:
find ~/go/src/pkg | grep _test.go$ | xargs wc -l

Each tool designed to do one thing and to do it well.
The Go analogue: goroutines connected by channels.

3 Google Confidential

Concurrency: goroutines

Goroutines are like threads:
•They share memory.
But cheaper:

•Smaller, segmented stacks.
•Many goroutines per operating system thread.

Start a new goroutine with the go keyword:
i := pivot(s)
go sort(s[:i])
go sort(s[i:])

3 Google Confidential

Concurrency: channels

Channels are a typed conduit for:
•Synchronization.
•Communication.

The channel operator <- is used to send and receive values:
func compute(ch chan int) {
 ch <- someComputation()
}

func main() {
 ch := make(chan int)
 go compute(ch)
 result := <-ch
}

3 Google Confidential

Concurrency: synchronization

Look back at the sort example - how to tell when it’s done?
Use a channel to synchronize goroutines:
done := make(chan bool)
doSort := func(s []int) {
 sort(s)
 done <- true
}
i := pivot(s)
go doSort(s[:i])
go doSort(s[i:])
<-done
<-done

Unbuffered channel operations are synchronous;
the send/receive happens only when both sides are ready.

3 Google Confidential

Concurrency: communication

A common task: many workers feeding from task pool.
Traditionally, worker threads contend over a lock for work:

type Task struct {
 // some state
}
type Pool struct {
 Mu sync.Mutex
 Tasks []Task
}
func worker(pool *Pool) { // many of these run concurrently
 for {
 pool.Mu.Lock()
 task := pool.Tasks[0]
 pool.Tasks = pool.Tasks[1:]
 pool.mu.Unlock()
 process(task)
 }
}

3 Google Confidential

Concurrency: communication

A Go idiom: many worker goroutines receive tasks from a channel.
type Task struct {
 // some state
}
func worker(in, out chan *Task) {
 for {
 t := <-in
 process(t)
 out <- t
 }
}
func main() {
 pending, done := make(chan *Task), make(chan *Task)
 go sendWork(pending)
 for i := 0; i < 10; i++ {
 go worker(pending, done)
 }
 consumeWork(done)
}

3 Google Confidential

Concurrency: philosophy

• Goroutines give the efficiency of an asynchronous model,
but you can write code in a synchronous style.

• Easier to reason about: write goroutines that do their specific
jobs well, and connect them with channels.
– In practice, this yields simpler and more maintainable code.

• Think about the concurrency issues that matter:

“Don’t communicate by sharing memory.
Instead, share memory by communicating.”

3 Google Confidential

Rich library support

• Diverse, carefully-constructed, consistent standard library
• More than 150 packages
• Constantly under development; improving every day

• Many great external libraries, too
http://godashboard.appspot.com/package lists >200 packages

• MySQL, MongoDB, and SQLite3 database drivers,
• SDL bindings,
• Protocol Buffers,
• OAuth libraries,
• and much more.

3 Google Confidential

Go: What is it good for?

• Initially called it a “systems language.”
• People found this confusing (oops).
• Unexpected interest from users of scripting languages.

– Attracted by an easy, reliable language that performs well.

• Diverse uses across the community:
– scientific computing,
– web applications,
– graphics and sound,
– network tools,
– and much more.

• Now we call Go a “general-purpose language.”

Real World Go

4 Google Confidential

Heroku

• http://www.heroku.com/
• Heroku provides cloud hosting for Ruby programmers.
• Keith Rarick and Blake Mizerany were designing

a “distributed init system” for
– managing processes across clusters of machines, and
– recovering gracefully from instance failures and network partitions.

• They need to reliably synchronize and share information among
many servers.

• That’s why they wrote Doozer.

Who are Heroku?

4 Google Confidential

Heroku’s Doozer

Doozer is a rock-solid basis for building distributed systems.
• A highly available (works during network partitions),
• consistent (no inconsistent writes),
• data store (for small amounts of data).
It provides a single fundamental synchronization primitive:
compare-and-set.

What is Doozer?

4 Google Confidential

Heroku’s Doozer

“Doozer is where you put the family jewels.”

Example use cases:
• Database master election
• Name service
• Configuration

What is it good for?

4 Google Confidential

Heroku’s Doozer

Go’s concurrency primitives suit the problem:
• Doozer uses Paxos to achieve consensus between nodes,
• Paxos is a distributed algorithm described in terms of separate

entities exchanging messages asynchronously,
• It is notoriously difficult to get right, but
• Goroutines and channels made it manageable.

"In the same way that garbage collectors improve upon malloc
and free, we found that goroutines and channels improve upon
the lock-based approach to concurrency. These tools let us avoid
complex bookkeeping and stay focused on the problem at hand.
We are still amazed at how few lines of code it took to achieve
something renowned for being difficult."
 - Blake Mizerany, The Go Programming Language Blog, April 2011

Why choose Go?

4 Google Confidential

Heroku’s Doozer

The convenience of the standard library:
"Using the websocket package, Keith was able to add the web
viewer on his train ride home and without requiring external
dependencies. This is a real testament to how well Go mixes
systems and application programming."

Mechanical source formatting settled arguments:
"One of our favorite productivity gains was provided by Go's source
formatter: gofmt. We never argued over where to put a curly-brace,
tabs vs. spaces, or if we should align assignments. We simply
agreed that the buck stopped at the default output from gofmt. "

Why choose Go?

4 Google Confidential

MROffice

• http://www.mroffice.org/
• Kees Varekamp; one man based in New Zealand.
• Has a background in market research software.
• Found most existing software in that space to be pretty bad.
• Launched MROffice in 2010 to provide better software to the

Market Research industry.
• His flagship product is called Dialer.

Who are MROffice?

4 Google Confidential

MROffice Dialer

• Connects interviewers in a call center to interviewees.
• A bridge between interview platforms (that provide scripts and

collect statistics) and a VoIP dialer (to do the actual telephony).

What does Dialer do?

4 Google Confidential

MROffice Dialer

• Originally written in Python:
“I LOVE Python; I use it for everything. But I found that for long-
running server processes it might not be such a good choice: lots of
runtime errors that could have been caught during compile time.”
“When Go came out it immediately made sense to me:
Type safe, compiled, feels like a scripting language.”
 - Kees at the Sydney Go User Group, March 2011

• So he ported the Python code to Go.

Switching languages

3 Google Confidential

MROffice Dialer

• Why Go works
– The concurrency model suited the problem.

A goroutine to handle each call, interviewer, and interviewee,
all communicating via channels.

– The http and websocket libraries made it easy to write a
management UI.

• Onward and upward
– Beta product now running in multiple call centers.
– Predictive dialer design that uses neural networks.

• Conclusions about Go
– “Excellent tutorials and documentation.”
– “I’ve been converted to statically typed languages.”
– “[Go is a] good compromise for cooperation between type purists

and lazy scripters.”

3 Google Confidential

Atlassian

Atlassian make development and collaboration tools for software
developers. They are mostly a Java shop.
They have a testing cluster of virtual machines, run over a large
number of diskless hosts.
Its provisioning and monitoring system is written in Go.
The system is in three parts:
• Agent processes that run on each server,

broadcasting the state of their VMs.
• A manager process that listens to the agent’s broadcasts

and takes action if a VM fails to report in.
• A command-line tool for issuing commands to the manager

process (“shut down”, “restart”, etc.).

4 Google Confidential

Go at Atlassian

• A trivial Go program.
• It does three things, forever:

– Read VM state from /proc,
– Encode the state information as a protocol buffer,
– Broadcast the protocol buffer via UDP.

The Agent

4 Google Confidential

Go at Atlassian

• Read a configuration file.
• Launch one goroutine for each VM in the cluster.
• Each goroutine

– listens for announcements from its corresponding VM, and
– issues instructions (shell commands) to keep it in the correct state.

The Manager

4 Google Confidential

Go at Atlassian
System overview

4 Google Confidential

Go at Atlassian

• Easy to deploy; ship binaries with no dependencies:
– “The agent process runs on machines that netboot and run

completely from RAM. A single static binary was a major saving,
compared to a JVM or Python runtime.”
 - Dave Cheney, Atlassian Engineer

• “One goroutine per VM” maps nicely to their problem:
– “[This] is trivial in Go, but painful in [other languages].”

Why Go works

4 Google Confidential

Camlistore

• http://www.camlistore.org/
• Brad Fitzpatrick wanted to store his data across all his devices,

and to share that data with friends and the public.
• Camlistore is:

– a content-addressable data store,
– a synchronization and access-control mechanism,
– an API,
– a user interface,
– your “home directory for the web”,
– programming language-agnostic.

• The largest parts of it are written in Go.

What is Camlistore?

4 Google Confidential

Camlistore

• Personal backups, automatically synced to remote servers.
• Dropbox-style file synchronization across machines.
• Photo management and sharing.
• Web site content management.

Use cases

4 Google Confidential

Camlistore

• camlistored:
– blobserver, a place to keep blocks of immutable data,
– HTTP server for interacting with Camlistore clients,
– HTTP user interface for users and administrators.

• command-line tools:
– camput, put things in the blob store,
– camget, get things from the blob store,
– camsync, synchronize blob stores,
– cammount, a FUSE filesystem for accessing your data.

• two dozen assorted libraries.

The Go parts

4 Google Confidential

Camlistore

“I’ve been writing [Go] for over a year now and it makes me
giddy about programming again.
Annoying things aren’t annoying, trade-offs that I’d normally
worry about I no longer worry about.
I bust out lots of fast, correct, maintainable testable code in
very small amounts of time, without much code.
I haven’t been this excited about a language in ages.”

“We wrote [cammount] in two or three beers.”

“I had the idea for Camlistore a long time ago, but before I
learned Go it had always seemed too painful.”

Why Go?

3 Google Confidential

Go’s diverse talents

• Heroku: Doozer, a highly available consistent data store,
– rock-solid systems programming.

• MROffice: a dialer for call centers,
– simple, reliable applications programming.

• Atlassian: virtual machine cluster management,
– utility programming with concurrency support.

• Camlistore: content addressable storage system,
– “full stack” programming, from the data store to the UI.

3 Google Confidential

Go is Open Source

• Development began at Google in 2007 as a 20% project.
• Released under a BSD-style license in November 2009.
• Since its release, more than 130 non-Google contributors have

submitted over 1000 changes to the Go core.
• ~10 Google employees work on Go full-time.
• Two non-Google committers, dozens of regular contributors.
• All Go development (code reviews, etc.) takes place on a public

mailing list.

• You are invited to be involved!

3 Google Confidential

More about Go

• You can learn more about Go at I/O:
– “Get Started With Go” workshops at Bootcamp this afternoon,
– “Writing Web Apps in Go” talk,11:30am Tuesday,
– Office hours: meet the Go team,12-3pm both days.

• Also visit our web site and the official blog:
– http://golang.org/
– http://blog.golang.org/

Questions?

