// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package gc // builtinpkg is a fake package that declares the universe block. var builtinpkg *Pkg var itable *Type // distinguished *byte var basicTypes = [...]struct { name string etype EType }{ {"int8", TINT8}, {"int16", TINT16}, {"int32", TINT32}, {"int64", TINT64}, {"uint8", TUINT8}, {"uint16", TUINT16}, {"uint32", TUINT32}, {"uint64", TUINT64}, {"float32", TFLOAT32}, {"float64", TFLOAT64}, {"complex64", TCOMPLEX64}, {"complex128", TCOMPLEX128}, {"bool", TBOOL}, {"string", TSTRING}, {"any", TANY}, } var typedefs = [...]struct { name string etype EType width *int sameas32 EType sameas64 EType }{ {"int", TINT, &Widthint, TINT32, TINT64}, {"uint", TUINT, &Widthint, TUINT32, TUINT64}, {"uintptr", TUINTPTR, &Widthptr, TUINT32, TUINT64}, } var builtinFuncs = [...]struct { name string op Op }{ {"append", OAPPEND}, {"cap", OCAP}, {"close", OCLOSE}, {"complex", OCOMPLEX}, {"copy", OCOPY}, {"delete", ODELETE}, {"imag", OIMAG}, {"len", OLEN}, {"make", OMAKE}, {"new", ONEW}, {"panic", OPANIC}, {"print", OPRINT}, {"println", OPRINTN}, {"real", OREAL}, {"recover", ORECOVER}, } // initUniverse initializes the universe block. func initUniverse() { lexinit() typeinit() lexinit1() } // lexinit initializes known symbols and the basic types. func lexinit() { for _, s := range basicTypes { etype := s.etype if int(etype) >= len(Types) { Fatalf("lexinit: %s bad etype", s.name) } s2 := Pkglookup(s.name, builtinpkg) t := Types[etype] if t == nil { t = typ(etype) t.Sym = s2 if etype != TANY && etype != TSTRING { dowidth(t) } Types[etype] = t } s2.Def = typenod(t) s2.Def.Name = new(Name) } for _, s := range builtinFuncs { // TODO(marvin): Fix Node.EType type union. s2 := Pkglookup(s.name, builtinpkg) s2.Def = Nod(ONAME, nil, nil) s2.Def.Sym = s2 s2.Def.Etype = EType(s.op) } idealstring = typ(TSTRING) idealbool = typ(TBOOL) s := Pkglookup("true", builtinpkg) s.Def = nodbool(true) s.Def.Sym = lookup("true") s.Def.Name = new(Name) s.Def.Type = idealbool s = Pkglookup("false", builtinpkg) s.Def = nodbool(false) s.Def.Sym = lookup("false") s.Def.Name = new(Name) s.Def.Type = idealbool s = lookup("_") s.Block = -100 s.Def = Nod(ONAME, nil, nil) s.Def.Sym = s Types[TBLANK] = typ(TBLANK) s.Def.Type = Types[TBLANK] nblank = s.Def s = Pkglookup("_", builtinpkg) s.Block = -100 s.Def = Nod(ONAME, nil, nil) s.Def.Sym = s Types[TBLANK] = typ(TBLANK) s.Def.Type = Types[TBLANK] Types[TNIL] = typ(TNIL) s = Pkglookup("nil", builtinpkg) var v Val v.U = new(NilVal) s.Def = nodlit(v) s.Def.Sym = s s.Def.Name = new(Name) s = Pkglookup("iota", builtinpkg) s.Def = Nod(OIOTA, nil, nil) s.Def.Sym = s s.Def.Name = new(Name) } func typeinit() { if Widthptr == 0 { Fatalf("typeinit before betypeinit") } for et := EType(0); et < NTYPE; et++ { Simtype[et] = et } Types[TPTR32] = typ(TPTR32) dowidth(Types[TPTR32]) Types[TPTR64] = typ(TPTR64) dowidth(Types[TPTR64]) t := typ(TUNSAFEPTR) Types[TUNSAFEPTR] = t t.Sym = Pkglookup("Pointer", unsafepkg) t.Sym.Def = typenod(t) t.Sym.Def.Name = new(Name) dowidth(Types[TUNSAFEPTR]) Tptr = TPTR32 if Widthptr == 8 { Tptr = TPTR64 } for et := TINT8; et <= TUINT64; et++ { Isint[et] = true } Isint[TINT] = true Isint[TUINT] = true Isint[TUINTPTR] = true Isfloat[TFLOAT32] = true Isfloat[TFLOAT64] = true Iscomplex[TCOMPLEX64] = true Iscomplex[TCOMPLEX128] = true isforw[TFORW] = true // initialize okfor for et := EType(0); et < NTYPE; et++ { if Isint[et] || et == TIDEAL { okforeq[et] = true okforcmp[et] = true okforarith[et] = true okforadd[et] = true okforand[et] = true okforconst[et] = true issimple[et] = true Minintval[et] = new(Mpint) Maxintval[et] = new(Mpint) } if Isfloat[et] { okforeq[et] = true okforcmp[et] = true okforadd[et] = true okforarith[et] = true okforconst[et] = true issimple[et] = true minfltval[et] = newMpflt() maxfltval[et] = newMpflt() } if Iscomplex[et] { okforeq[et] = true okforadd[et] = true okforarith[et] = true okforconst[et] = true issimple[et] = true } } issimple[TBOOL] = true okforadd[TSTRING] = true okforbool[TBOOL] = true okforcap[TARRAY] = true okforcap[TCHAN] = true okforcap[TSLICE] = true okforconst[TBOOL] = true okforconst[TSTRING] = true okforlen[TARRAY] = true okforlen[TCHAN] = true okforlen[TMAP] = true okforlen[TSLICE] = true okforlen[TSTRING] = true okforeq[TPTR32] = true okforeq[TPTR64] = true okforeq[TUNSAFEPTR] = true okforeq[TINTER] = true okforeq[TCHAN] = true okforeq[TSTRING] = true okforeq[TBOOL] = true okforeq[TMAP] = true // nil only; refined in typecheck okforeq[TFUNC] = true // nil only; refined in typecheck okforeq[TSLICE] = true // nil only; refined in typecheck okforeq[TARRAY] = true // only if element type is comparable; refined in typecheck okforeq[TSTRUCT] = true // only if all struct fields are comparable; refined in typecheck okforcmp[TSTRING] = true var i int for i = 0; i < len(okfor); i++ { okfor[i] = okfornone[:] } // binary okfor[OADD] = okforadd[:] okfor[OAND] = okforand[:] okfor[OANDAND] = okforbool[:] okfor[OANDNOT] = okforand[:] okfor[ODIV] = okforarith[:] okfor[OEQ] = okforeq[:] okfor[OGE] = okforcmp[:] okfor[OGT] = okforcmp[:] okfor[OLE] = okforcmp[:] okfor[OLT] = okforcmp[:] okfor[OMOD] = okforand[:] okfor[OHMUL] = okforarith[:] okfor[OMUL] = okforarith[:] okfor[ONE] = okforeq[:] okfor[OOR] = okforand[:] okfor[OOROR] = okforbool[:] okfor[OSUB] = okforarith[:] okfor[OXOR] = okforand[:] okfor[OLSH] = okforand[:] okfor[ORSH] = okforand[:] // unary okfor[OCOM] = okforand[:] okfor[OMINUS] = okforarith[:] okfor[ONOT] = okforbool[:] okfor[OPLUS] = okforarith[:] // special okfor[OCAP] = okforcap[:] okfor[OLEN] = okforlen[:] // comparison iscmp[OLT] = true iscmp[OGT] = true iscmp[OGE] = true iscmp[OLE] = true iscmp[OEQ] = true iscmp[ONE] = true Maxintval[TINT8].SetString("0x7f") Minintval[TINT8].SetString("-0x80") Maxintval[TINT16].SetString("0x7fff") Minintval[TINT16].SetString("-0x8000") Maxintval[TINT32].SetString("0x7fffffff") Minintval[TINT32].SetString("-0x80000000") Maxintval[TINT64].SetString("0x7fffffffffffffff") Minintval[TINT64].SetString("-0x8000000000000000") Maxintval[TUINT8].SetString("0xff") Maxintval[TUINT16].SetString("0xffff") Maxintval[TUINT32].SetString("0xffffffff") Maxintval[TUINT64].SetString("0xffffffffffffffff") // f is valid float if min < f < max. (min and max are not themselves valid.) maxfltval[TFLOAT32].SetString("33554431p103") // 2^24-1 p (127-23) + 1/2 ulp minfltval[TFLOAT32].SetString("-33554431p103") maxfltval[TFLOAT64].SetString("18014398509481983p970") // 2^53-1 p (1023-52) + 1/2 ulp minfltval[TFLOAT64].SetString("-18014398509481983p970") maxfltval[TCOMPLEX64] = maxfltval[TFLOAT32] minfltval[TCOMPLEX64] = minfltval[TFLOAT32] maxfltval[TCOMPLEX128] = maxfltval[TFLOAT64] minfltval[TCOMPLEX128] = minfltval[TFLOAT64] // for walk to use in error messages Types[TFUNC] = functype(nil, nil, nil) // types used in front end // types[TNIL] got set early in lexinit Types[TIDEAL] = typ(TIDEAL) Types[TINTER] = typ(TINTER) // simple aliases Simtype[TMAP] = Tptr Simtype[TCHAN] = Tptr Simtype[TFUNC] = Tptr Simtype[TUNSAFEPTR] = Tptr Array_array = int(Rnd(0, int64(Widthptr))) Array_nel = int(Rnd(int64(Array_array)+int64(Widthptr), int64(Widthint))) Array_cap = int(Rnd(int64(Array_nel)+int64(Widthint), int64(Widthint))) sizeof_Array = int(Rnd(int64(Array_cap)+int64(Widthint), int64(Widthptr))) // string is same as slice wo the cap sizeof_String = int(Rnd(int64(Array_nel)+int64(Widthint), int64(Widthptr))) dowidth(Types[TSTRING]) dowidth(idealstring) itable = typPtr(Types[TUINT8]) } func makeErrorInterface() *Type { rcvr := typ(TSTRUCT) rcvr.StructType().Funarg = FunargRcvr field := newField() field.Type = ptrto(typ(TSTRUCT)) rcvr.SetFields([]*Field{field}) in := typ(TSTRUCT) in.StructType().Funarg = FunargParams out := typ(TSTRUCT) out.StructType().Funarg = FunargResults field = newField() field.Type = Types[TSTRING] out.SetFields([]*Field{field}) f := typ(TFUNC) f.FuncType().Receiver = rcvr f.FuncType().Results = out f.FuncType().Params = in t := typ(TINTER) field = newField() field.Sym = lookup("Error") field.Type = f t.SetFields([]*Field{field}) return t } func lexinit1() { // error type s := Pkglookup("error", builtinpkg) errortype = makeErrorInterface() errortype.Sym = s // TODO: If we can prove that it's safe to set errortype.Orig here // than we don't need the special errortype/errorInterface case in // bexport.go. See also issue #15920. // errortype.Orig = makeErrorInterface() s.Def = typenod(errortype) // byte alias s = Pkglookup("byte", builtinpkg) bytetype = typ(TUINT8) bytetype.Sym = s s.Def = typenod(bytetype) s.Def.Name = new(Name) // rune alias s = Pkglookup("rune", builtinpkg) runetype = typ(TINT32) runetype.Sym = s s.Def = typenod(runetype) s.Def.Name = new(Name) // backend-dependent builtin types (e.g. int). for _, s := range typedefs { s1 := Pkglookup(s.name, builtinpkg) sameas := s.sameas32 if *s.width == 8 { sameas = s.sameas64 } Simtype[s.etype] = sameas minfltval[s.etype] = minfltval[sameas] maxfltval[s.etype] = maxfltval[sameas] Minintval[s.etype] = Minintval[sameas] Maxintval[s.etype] = Maxintval[sameas] t := typ(s.etype) t.Sym = s1 Types[s.etype] = t s1.Def = typenod(t) s1.Def.Name = new(Name) s1.Origpkg = builtinpkg dowidth(t) } } // finishUniverse makes the universe block visible within the current package. func finishUniverse() { // Operationally, this is similar to a dot import of builtinpkg, except // that we silently skip symbols that are already declared in the // package block rather than emitting a redeclared symbol error. for _, s := range builtinpkg.Syms { if s.Def == nil || (s.Name == "any" && Debug['A'] == 0) { continue } s1 := lookup(s.Name) if s1.Def != nil { continue } s1.Def = s.Def s1.Block = s.Block } nodfp = Nod(ONAME, nil, nil) nodfp.Type = Types[TINT32] nodfp.Xoffset = 0 nodfp.Class = PPARAM nodfp.Sym = lookup(".fp") }