Dan Scales 4edefe9568 cmd/compile: delay all call transforms if in a generic function
We changed to delaying all transforms of generic functions, since there
are so many complicated situations where type params can be used. We
missed changing so that all Call expressions(not just some) are delayed
if in a generic function. This changes to delaying all transforms on
calls in generic functions. Had to convert Call() to g.callExpr() (so we
can access g.delayTransform()). By always delaying transforms on calls
in generic functions, we actually simplify the code a bit both in
g.CallExpr() and stencil.go.

Fixes #51236

Change-Id: I0342c7995254082c4baf709b0b92a06ec14425e9
Reviewed-on: https://go-review.googlesource.com/c/go/+/386220
Reviewed-by: Keith Randall <khr@golang.org>
Trust: Dan Scales <danscales@google.com>
Run-TryBot: Dan Scales <danscales@google.com>
TryBot-Result: Gopher Robot <gobot@golang.org>
2022-02-24 17:35:40 +00:00

227 lines
6.0 KiB
Go

// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"go/constant"
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/internal/src"
)
// Helpers for constructing typed IR nodes.
//
// TODO(mdempsky): Move into their own package so they can be easily
// reused by iimport and frontend optimizations.
type ImplicitNode interface {
ir.Node
SetImplicit(x bool)
}
// Implicit returns n after marking it as Implicit.
func Implicit(n ImplicitNode) ImplicitNode {
n.SetImplicit(true)
return n
}
// typed returns n after setting its type to typ.
func typed(typ *types.Type, n ir.Node) ir.Node {
n.SetType(typ)
n.SetTypecheck(1)
return n
}
// Values
func Const(pos src.XPos, typ *types.Type, val constant.Value) ir.Node {
return typed(typ, ir.NewBasicLit(pos, val))
}
func OrigConst(pos src.XPos, typ *types.Type, val constant.Value, op ir.Op, raw string) ir.Node {
orig := ir.NewRawOrigExpr(pos, op, raw)
return ir.NewConstExpr(val, typed(typ, orig))
}
// FixValue returns val after converting and truncating it as
// appropriate for typ.
func FixValue(typ *types.Type, val constant.Value) constant.Value {
assert(typ.Kind() != types.TFORW)
switch {
case typ.IsInteger():
val = constant.ToInt(val)
case typ.IsFloat():
val = constant.ToFloat(val)
case typ.IsComplex():
val = constant.ToComplex(val)
}
if !typ.IsUntyped() {
val = typecheck.DefaultLit(ir.NewBasicLit(src.NoXPos, val), typ).Val()
}
if !typ.IsTypeParam() {
ir.AssertValidTypeForConst(typ, val)
}
return val
}
func Nil(pos src.XPos, typ *types.Type) ir.Node {
return typed(typ, ir.NewNilExpr(pos))
}
// Expressions
func Addr(pos src.XPos, x ir.Node) *ir.AddrExpr {
n := typecheck.NodAddrAt(pos, x)
typed(types.NewPtr(x.Type()), n)
return n
}
func Assert(pos src.XPos, x ir.Node, typ *types.Type) ir.Node {
return typed(typ, ir.NewTypeAssertExpr(pos, x, nil))
}
func Binary(pos src.XPos, op ir.Op, typ *types.Type, x, y ir.Node) *ir.BinaryExpr {
switch op {
case ir.OADD:
n := ir.NewBinaryExpr(pos, op, x, y)
typed(typ, n)
return n
default:
n := ir.NewBinaryExpr(pos, op, x, y)
typed(x.Type(), n)
return n
}
}
func Compare(pos src.XPos, typ *types.Type, op ir.Op, x, y ir.Node) *ir.BinaryExpr {
n := ir.NewBinaryExpr(pos, op, x, y)
typed(typ, n)
return n
}
func Deref(pos src.XPos, typ *types.Type, x ir.Node) *ir.StarExpr {
n := ir.NewStarExpr(pos, x)
typed(typ, n)
return n
}
func DotField(pos src.XPos, x ir.Node, index int) *ir.SelectorExpr {
op, typ := ir.ODOT, x.Type()
if typ.IsPtr() {
op, typ = ir.ODOTPTR, typ.Elem()
}
if !typ.IsStruct() {
base.FatalfAt(pos, "DotField of non-struct: %L", x)
}
// TODO(mdempsky): This is the backend's responsibility.
types.CalcSize(typ)
field := typ.Field(index)
return dot(pos, field.Type, op, x, field)
}
func DotMethod(pos src.XPos, x ir.Node, index int) *ir.SelectorExpr {
method := method(x.Type(), index)
// Method value.
typ := typecheck.NewMethodType(method.Type, nil)
return dot(pos, typ, ir.OMETHVALUE, x, method)
}
// MethodExpr returns a OMETHEXPR node with the indicated index into the methods
// of typ. The receiver type is set from recv, which is different from typ if the
// method was accessed via embedded fields. Similarly, the X value of the
// ir.SelectorExpr is recv, the original OTYPE node before passing through the
// embedded fields.
func MethodExpr(pos src.XPos, recv ir.Node, embed *types.Type, index int) *ir.SelectorExpr {
method := method(embed, index)
typ := typecheck.NewMethodType(method.Type, recv.Type())
// The method expression T.m requires a wrapper when T
// is different from m's declared receiver type. We
// normally generate these wrappers while writing out
// runtime type descriptors, which is always done for
// types declared at package scope. However, we need
// to make sure to generate wrappers for anonymous
// receiver types too.
if recv.Sym() == nil {
typecheck.NeedRuntimeType(recv.Type())
}
return dot(pos, typ, ir.OMETHEXPR, recv, method)
}
func dot(pos src.XPos, typ *types.Type, op ir.Op, x ir.Node, selection *types.Field) *ir.SelectorExpr {
n := ir.NewSelectorExpr(pos, op, x, selection.Sym)
n.Selection = selection
typed(typ, n)
return n
}
// TODO(mdempsky): Move to package types.
func method(typ *types.Type, index int) *types.Field {
if typ.IsInterface() {
return typ.AllMethods().Index(index)
}
return types.ReceiverBaseType(typ).Methods().Index(index)
}
func Index(pos src.XPos, typ *types.Type, x, index ir.Node) *ir.IndexExpr {
n := ir.NewIndexExpr(pos, x, index)
typed(typ, n)
return n
}
func Slice(pos src.XPos, typ *types.Type, x, low, high, max ir.Node) *ir.SliceExpr {
op := ir.OSLICE
if max != nil {
op = ir.OSLICE3
}
n := ir.NewSliceExpr(pos, op, x, low, high, max)
typed(typ, n)
return n
}
func Unary(pos src.XPos, typ *types.Type, op ir.Op, x ir.Node) ir.Node {
switch op {
case ir.OADDR:
return Addr(pos, x)
case ir.ODEREF:
return Deref(pos, typ, x)
}
if op == ir.ORECV {
if typ.IsFuncArgStruct() && typ.NumFields() == 2 {
// Remove the second boolean type (if provided by type2),
// since that works better with the rest of the compiler
// (which will add it back in later).
assert(typ.Field(1).Type.Kind() == types.TBOOL)
typ = typ.Field(0).Type
}
}
return typed(typ, ir.NewUnaryExpr(pos, op, x))
}
// Statements
var one = constant.MakeInt64(1)
func IncDec(pos src.XPos, op ir.Op, x ir.Node) *ir.AssignOpStmt {
assert(x.Type() != nil)
bl := ir.NewBasicLit(pos, one)
if x.Type().HasTParam() {
// If the operand is generic, then types2 will have proved it must be
// a type that fits with increment/decrement, so just set the type of
// "one" to n.Type(). This works even for types that are eventually
// float or complex.
typed(x.Type(), bl)
} else {
bl = typecheck.DefaultLit(bl, x.Type())
}
return ir.NewAssignOpStmt(pos, op, x, bl)
}