Dan Scales 08a598f8c1 [dev.typeparams] cmd/compile: fix MethodExpr handling with embedded fields
The recent refactoring of SelectorExpr code to helpers broke the
handling of MethodExprs when there is an embedded field involved (e.g.
test/method7.go, line 48). If there is an embedded field involved, the
node op seen in DotMethod() is an ODOT rather than an OTYPE. Also, the
receiver type of the result should be the original type, but the new
code was using the last type after following the embedding path.

Change-Id: I13f7ea6448b03d3e8f974103ee3a027219ca8388
Reviewed-on: https://go-review.googlesource.com/c/go/+/286176
Run-TryBot: Dan Scales <danscales@google.com>
TryBot-Result: Go Bot <gobot@golang.org>
Trust: Dan Scales <danscales@google.com>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2021-01-26 17:05:06 +00:00

235 lines
6.2 KiB
Go

// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"go/constant"
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/internal/src"
)
// Helpers for constructing typed IR nodes.
//
// TODO(mdempsky): Move into their own package so they can be easily
// reused by iimport and frontend optimizations.
//
// TODO(mdempsky): Update to consistently return already typechecked
// results, rather than leaving the caller responsible for using
// typecheck.Expr or typecheck.Stmt.
type ImplicitNode interface {
ir.Node
SetImplicit(x bool)
}
// Implicit returns n after marking it as Implicit.
func Implicit(n ImplicitNode) ImplicitNode {
n.SetImplicit(true)
return n
}
// typed returns n after setting its type to typ.
func typed(typ *types.Type, n ir.Node) ir.Node {
n.SetType(typ)
n.SetTypecheck(1)
return n
}
// Values
func Const(pos src.XPos, typ *types.Type, val constant.Value) ir.Node {
return typed(typ, ir.NewBasicLit(pos, val))
}
func Nil(pos src.XPos, typ *types.Type) ir.Node {
return typed(typ, ir.NewNilExpr(pos))
}
// Expressions
func Addr(pos src.XPos, x ir.Node) *ir.AddrExpr {
// TODO(mdempsky): Avoid typecheck.Expr. Probably just need to set OPTRLIT when appropriate.
n := typecheck.Expr(typecheck.NodAddrAt(pos, x)).(*ir.AddrExpr)
typed(types.NewPtr(x.Type()), n)
return n
}
func Assert(pos src.XPos, x ir.Node, typ *types.Type) ir.Node {
return typed(typ, ir.NewTypeAssertExpr(pos, x, nil))
}
func Binary(pos src.XPos, op ir.Op, x, y ir.Node) ir.Node {
switch op {
case ir.OANDAND, ir.OOROR:
return typed(x.Type(), ir.NewLogicalExpr(pos, op, x, y))
case ir.OADD:
if x.Type().IsString() {
// TODO(mdempsky): Construct OADDSTR directly.
return typecheck.Expr(ir.NewBinaryExpr(pos, op, x, y))
}
fallthrough
default:
return typed(x.Type(), ir.NewBinaryExpr(pos, op, x, y))
}
}
func Call(pos src.XPos, fun ir.Node, args []ir.Node, dots bool) ir.Node {
// TODO(mdempsky): This should not be so difficult.
n := ir.NewCallExpr(pos, ir.OCALL, fun, args)
n.IsDDD = dots
// Actually a type conversion.
if fun.Op() == ir.OTYPE {
return typecheck.Expr(n)
}
if fun, ok := fun.(*ir.Name); ok && fun.BuiltinOp != 0 {
switch fun.BuiltinOp {
case ir.OCLOSE, ir.ODELETE, ir.OPANIC, ir.OPRINT, ir.OPRINTN:
return typecheck.Stmt(n)
default:
return typecheck.Expr(n)
}
}
// Add information, now that we know that fun is actually being called.
switch fun := fun.(type) {
case *ir.ClosureExpr:
fun.Func.SetClosureCalled(true)
case *ir.SelectorExpr:
if fun.Op() == ir.OCALLPART {
op := ir.ODOTMETH
if fun.X.Type().IsInterface() {
op = ir.ODOTINTER
}
fun.SetOp(op)
// Set the type to include the receiver, since that's what
// later parts of the compiler expect
fun.SetType(fun.Selection.Type)
}
}
typecheck.Call(n)
return n
}
func Compare(pos src.XPos, typ *types.Type, op ir.Op, x, y ir.Node) ir.Node {
n := ir.NewBinaryExpr(pos, op, x, y)
if !types.Identical(x.Type(), y.Type()) {
// TODO(mdempsky): Handle subtleties of constructing mixed-typed comparisons.
n = typecheck.Expr(n).(*ir.BinaryExpr)
}
return typed(typ, n)
}
func Deref(pos src.XPos, x ir.Node) *ir.StarExpr {
n := ir.NewStarExpr(pos, x)
typed(x.Type().Elem(), n)
return n
}
func DotField(pos src.XPos, x ir.Node, index int) *ir.SelectorExpr {
op, typ := ir.ODOT, x.Type()
if typ.IsPtr() {
op, typ = ir.ODOTPTR, typ.Elem()
}
if !typ.IsStruct() {
base.FatalfAt(pos, "DotField of non-struct: %L", x)
}
// TODO(mdempsky): This is the backend's responsibility.
types.CalcSize(typ)
field := typ.Field(index)
return dot(pos, field.Type, op, x, field)
}
func DotMethod(pos src.XPos, x ir.Node, index int) *ir.SelectorExpr {
method := method(x.Type(), index)
// Method value.
typ := typecheck.NewMethodType(method.Type, nil)
return dot(pos, typ, ir.OCALLPART, x, method)
}
// MethodExpr returns a OMETHEXPR node with the indicated index into the methods
// of typ. The receiver type is set from recv, which is different from typ if the
// method was accessed via embedded fields. Similarly, the X value of the
// ir.SelectorExpr is recv, the original OTYPE node before passing through the
// embedded fields.
func MethodExpr(pos src.XPos, recv ir.Node, embed *types.Type, index int) *ir.SelectorExpr {
method := method(embed, index)
typ := typecheck.NewMethodType(method.Type, recv.Type())
// The method expression T.m requires a wrapper when T
// is different from m's declared receiver type. We
// normally generate these wrappers while writing out
// runtime type descriptors, which is always done for
// types declared at package scope. However, we need
// to make sure to generate wrappers for anonymous
// receiver types too.
if recv.Sym() == nil {
typecheck.NeedRuntimeType(recv.Type())
}
return dot(pos, typ, ir.OMETHEXPR, recv, method)
}
func dot(pos src.XPos, typ *types.Type, op ir.Op, x ir.Node, selection *types.Field) *ir.SelectorExpr {
n := ir.NewSelectorExpr(pos, op, x, selection.Sym)
n.Selection = selection
typed(typ, n)
return n
}
// TODO(mdempsky): Move to package types.
func method(typ *types.Type, index int) *types.Field {
if typ.IsInterface() {
return typ.Field(index)
}
return types.ReceiverBaseType(typ).Methods().Index(index)
}
func Index(pos src.XPos, x, index ir.Node) ir.Node {
// TODO(mdempsky): Avoid typecheck.Expr.
return typecheck.Expr(ir.NewIndexExpr(pos, x, index))
}
func Slice(pos src.XPos, x, low, high, max ir.Node) ir.Node {
op := ir.OSLICE
if max != nil {
op = ir.OSLICE3
}
// TODO(mdempsky): Avoid typecheck.Expr.
return typecheck.Expr(ir.NewSliceExpr(pos, op, x, low, high, max))
}
func Unary(pos src.XPos, op ir.Op, x ir.Node) ir.Node {
switch op {
case ir.OADDR:
return Addr(pos, x)
case ir.ODEREF:
return Deref(pos, x)
}
typ := x.Type()
if op == ir.ORECV {
typ = typ.Elem()
}
return typed(typ, ir.NewUnaryExpr(pos, op, x))
}
// Statements
var one = constant.MakeInt64(1)
func IncDec(pos src.XPos, op ir.Op, x ir.Node) ir.Node {
x = typecheck.AssignExpr(x)
return ir.NewAssignOpStmt(pos, op, x, typecheck.DefaultLit(ir.NewBasicLit(pos, one), x.Type()))
}