mirror of
https://github.com/golang/go.git
synced 2025-05-07 00:23:03 +00:00
This CL moves two bits of related code from order.go to escape analysis: 1. The recognition of "unsafe uintptr" arguments passed to syscall-like functions. 2. The wrapping of go/defer function calls in parameter-free function literals. As with previous CLs, it would be nice to push this logic even further forward, but for now escape analysis seems most pragmatic. A couple side benefits: 1. It allows getting rid of the uintptrEscapesHack kludge. 2. When inserting wrappers, we can move some expressions into the wrapper and escape analyze them better. For example, the test expectation changes are all due to slice literals in go/defer calls where the slice is now constructed at the call site, and can now be stack allocated. Change-Id: I73679bcad7fa8d61d2fc52d4cea0dc5ff0de8c0c Reviewed-on: https://go-review.googlesource.com/c/go/+/330330 Run-TryBot: Matthew Dempsky <mdempsky@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Matthew Dempsky <mdempsky@google.com> Reviewed-by: Cuong Manh Le <cuong.manhle.vn@gmail.com>
332 lines
8.4 KiB
Go
332 lines
8.4 KiB
Go
// Copyright 2018 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package escape
|
|
|
|
import (
|
|
"cmd/compile/internal/base"
|
|
"cmd/compile/internal/ir"
|
|
"cmd/compile/internal/types"
|
|
)
|
|
|
|
// expr models evaluating an expression n and flowing the result into
|
|
// hole k.
|
|
func (e *escape) expr(k hole, n ir.Node) {
|
|
if n == nil {
|
|
return
|
|
}
|
|
e.stmts(n.Init())
|
|
e.exprSkipInit(k, n)
|
|
}
|
|
|
|
func (e *escape) exprSkipInit(k hole, n ir.Node) {
|
|
if n == nil {
|
|
return
|
|
}
|
|
|
|
lno := ir.SetPos(n)
|
|
defer func() {
|
|
base.Pos = lno
|
|
}()
|
|
|
|
if k.derefs >= 0 && !n.Type().HasPointers() {
|
|
k.dst = &e.blankLoc
|
|
}
|
|
|
|
switch n.Op() {
|
|
default:
|
|
base.Fatalf("unexpected expr: %s %v", n.Op().String(), n)
|
|
|
|
case ir.OLITERAL, ir.ONIL, ir.OGETG, ir.OGETCALLERPC, ir.OGETCALLERSP, ir.OTYPE, ir.OMETHEXPR, ir.OLINKSYMOFFSET:
|
|
// nop
|
|
|
|
case ir.ONAME:
|
|
n := n.(*ir.Name)
|
|
if n.Class == ir.PFUNC || n.Class == ir.PEXTERN {
|
|
return
|
|
}
|
|
if n.IsClosureVar() && n.Defn == nil {
|
|
return // ".this" from method value wrapper
|
|
}
|
|
e.flow(k, e.oldLoc(n))
|
|
|
|
case ir.OPLUS, ir.ONEG, ir.OBITNOT, ir.ONOT:
|
|
n := n.(*ir.UnaryExpr)
|
|
e.discard(n.X)
|
|
case ir.OADD, ir.OSUB, ir.OOR, ir.OXOR, ir.OMUL, ir.ODIV, ir.OMOD, ir.OLSH, ir.ORSH, ir.OAND, ir.OANDNOT, ir.OEQ, ir.ONE, ir.OLT, ir.OLE, ir.OGT, ir.OGE:
|
|
n := n.(*ir.BinaryExpr)
|
|
e.discard(n.X)
|
|
e.discard(n.Y)
|
|
case ir.OANDAND, ir.OOROR:
|
|
n := n.(*ir.LogicalExpr)
|
|
e.discard(n.X)
|
|
e.discard(n.Y)
|
|
case ir.OADDR:
|
|
n := n.(*ir.AddrExpr)
|
|
e.expr(k.addr(n, "address-of"), n.X) // "address-of"
|
|
case ir.ODEREF:
|
|
n := n.(*ir.StarExpr)
|
|
e.expr(k.deref(n, "indirection"), n.X) // "indirection"
|
|
case ir.ODOT, ir.ODOTMETH, ir.ODOTINTER:
|
|
n := n.(*ir.SelectorExpr)
|
|
e.expr(k.note(n, "dot"), n.X)
|
|
case ir.ODOTPTR:
|
|
n := n.(*ir.SelectorExpr)
|
|
e.expr(k.deref(n, "dot of pointer"), n.X) // "dot of pointer"
|
|
case ir.ODOTTYPE, ir.ODOTTYPE2:
|
|
n := n.(*ir.TypeAssertExpr)
|
|
e.expr(k.dotType(n.Type(), n, "dot"), n.X)
|
|
case ir.OINDEX:
|
|
n := n.(*ir.IndexExpr)
|
|
if n.X.Type().IsArray() {
|
|
e.expr(k.note(n, "fixed-array-index-of"), n.X)
|
|
} else {
|
|
// TODO(mdempsky): Fix why reason text.
|
|
e.expr(k.deref(n, "dot of pointer"), n.X)
|
|
}
|
|
e.discard(n.Index)
|
|
case ir.OINDEXMAP:
|
|
n := n.(*ir.IndexExpr)
|
|
e.discard(n.X)
|
|
e.discard(n.Index)
|
|
case ir.OSLICE, ir.OSLICEARR, ir.OSLICE3, ir.OSLICE3ARR, ir.OSLICESTR:
|
|
n := n.(*ir.SliceExpr)
|
|
e.expr(k.note(n, "slice"), n.X)
|
|
e.discard(n.Low)
|
|
e.discard(n.High)
|
|
e.discard(n.Max)
|
|
|
|
case ir.OCONV, ir.OCONVNOP:
|
|
n := n.(*ir.ConvExpr)
|
|
if ir.ShouldCheckPtr(e.curfn, 2) && n.Type().IsUnsafePtr() && n.X.Type().IsPtr() {
|
|
// When -d=checkptr=2 is enabled, treat
|
|
// conversions to unsafe.Pointer as an
|
|
// escaping operation. This allows better
|
|
// runtime instrumentation, since we can more
|
|
// easily detect object boundaries on the heap
|
|
// than the stack.
|
|
e.assignHeap(n.X, "conversion to unsafe.Pointer", n)
|
|
} else if n.Type().IsUnsafePtr() && n.X.Type().IsUintptr() {
|
|
e.unsafeValue(k, n.X)
|
|
} else {
|
|
e.expr(k, n.X)
|
|
}
|
|
case ir.OCONVIFACE:
|
|
n := n.(*ir.ConvExpr)
|
|
if !n.X.Type().IsInterface() && !types.IsDirectIface(n.X.Type()) {
|
|
k = e.spill(k, n)
|
|
}
|
|
e.expr(k.note(n, "interface-converted"), n.X)
|
|
case ir.OEFACE:
|
|
n := n.(*ir.BinaryExpr)
|
|
// Note: n.X is not needed because it can never point to memory that might escape.
|
|
e.expr(k, n.Y)
|
|
case ir.OIDATA, ir.OSPTR:
|
|
n := n.(*ir.UnaryExpr)
|
|
e.expr(k, n.X)
|
|
case ir.OSLICE2ARRPTR:
|
|
// the slice pointer flows directly to the result
|
|
n := n.(*ir.ConvExpr)
|
|
e.expr(k, n.X)
|
|
case ir.ORECV:
|
|
n := n.(*ir.UnaryExpr)
|
|
e.discard(n.X)
|
|
|
|
case ir.OCALLMETH, ir.OCALLFUNC, ir.OCALLINTER, ir.OLEN, ir.OCAP, ir.OCOMPLEX, ir.OREAL, ir.OIMAG, ir.OAPPEND, ir.OCOPY, ir.ORECOVER, ir.OUNSAFEADD, ir.OUNSAFESLICE:
|
|
e.call([]hole{k}, n)
|
|
|
|
case ir.ONEW:
|
|
n := n.(*ir.UnaryExpr)
|
|
e.spill(k, n)
|
|
|
|
case ir.OMAKESLICE:
|
|
n := n.(*ir.MakeExpr)
|
|
e.spill(k, n)
|
|
e.discard(n.Len)
|
|
e.discard(n.Cap)
|
|
case ir.OMAKECHAN:
|
|
n := n.(*ir.MakeExpr)
|
|
e.discard(n.Len)
|
|
case ir.OMAKEMAP:
|
|
n := n.(*ir.MakeExpr)
|
|
e.spill(k, n)
|
|
e.discard(n.Len)
|
|
|
|
case ir.OCALLPART:
|
|
// Flow the receiver argument to both the closure and
|
|
// to the receiver parameter.
|
|
|
|
n := n.(*ir.SelectorExpr)
|
|
closureK := e.spill(k, n)
|
|
|
|
m := n.Selection
|
|
|
|
// We don't know how the method value will be called
|
|
// later, so conservatively assume the result
|
|
// parameters all flow to the heap.
|
|
//
|
|
// TODO(mdempsky): Change ks into a callback, so that
|
|
// we don't have to create this slice?
|
|
var ks []hole
|
|
for i := m.Type.NumResults(); i > 0; i-- {
|
|
ks = append(ks, e.heapHole())
|
|
}
|
|
name, _ := m.Nname.(*ir.Name)
|
|
paramK := e.tagHole(ks, name, m.Type.Recv())
|
|
|
|
e.expr(e.teeHole(paramK, closureK), n.X)
|
|
|
|
case ir.OPTRLIT:
|
|
n := n.(*ir.AddrExpr)
|
|
e.expr(e.spill(k, n), n.X)
|
|
|
|
case ir.OARRAYLIT:
|
|
n := n.(*ir.CompLitExpr)
|
|
for _, elt := range n.List {
|
|
if elt.Op() == ir.OKEY {
|
|
elt = elt.(*ir.KeyExpr).Value
|
|
}
|
|
e.expr(k.note(n, "array literal element"), elt)
|
|
}
|
|
|
|
case ir.OSLICELIT:
|
|
n := n.(*ir.CompLitExpr)
|
|
k = e.spill(k, n)
|
|
|
|
for _, elt := range n.List {
|
|
if elt.Op() == ir.OKEY {
|
|
elt = elt.(*ir.KeyExpr).Value
|
|
}
|
|
e.expr(k.note(n, "slice-literal-element"), elt)
|
|
}
|
|
|
|
case ir.OSTRUCTLIT:
|
|
n := n.(*ir.CompLitExpr)
|
|
for _, elt := range n.List {
|
|
e.expr(k.note(n, "struct literal element"), elt.(*ir.StructKeyExpr).Value)
|
|
}
|
|
|
|
case ir.OMAPLIT:
|
|
n := n.(*ir.CompLitExpr)
|
|
e.spill(k, n)
|
|
|
|
// Map keys and values are always stored in the heap.
|
|
for _, elt := range n.List {
|
|
elt := elt.(*ir.KeyExpr)
|
|
e.assignHeap(elt.Key, "map literal key", n)
|
|
e.assignHeap(elt.Value, "map literal value", n)
|
|
}
|
|
|
|
case ir.OCLOSURE:
|
|
n := n.(*ir.ClosureExpr)
|
|
k = e.spill(k, n)
|
|
e.closures = append(e.closures, closure{k, n})
|
|
|
|
if fn := n.Func; fn.IsHiddenClosure() {
|
|
for _, cv := range fn.ClosureVars {
|
|
if loc := e.oldLoc(cv); !loc.captured {
|
|
loc.captured = true
|
|
|
|
// Ignore reassignments to the variable in straightline code
|
|
// preceding the first capture by a closure.
|
|
if loc.loopDepth == e.loopDepth {
|
|
loc.reassigned = false
|
|
}
|
|
}
|
|
}
|
|
|
|
for _, n := range fn.Dcl {
|
|
// Add locations for local variables of the
|
|
// closure, if needed, in case we're not including
|
|
// the closure func in the batch for escape
|
|
// analysis (happens for escape analysis called
|
|
// from reflectdata.methodWrapper)
|
|
if n.Op() == ir.ONAME && n.Opt == nil {
|
|
e.with(fn).newLoc(n, false)
|
|
}
|
|
}
|
|
e.walkFunc(fn)
|
|
}
|
|
|
|
case ir.ORUNES2STR, ir.OBYTES2STR, ir.OSTR2RUNES, ir.OSTR2BYTES, ir.ORUNESTR:
|
|
n := n.(*ir.ConvExpr)
|
|
e.spill(k, n)
|
|
e.discard(n.X)
|
|
|
|
case ir.OADDSTR:
|
|
n := n.(*ir.AddStringExpr)
|
|
e.spill(k, n)
|
|
|
|
// Arguments of OADDSTR never escape;
|
|
// runtime.concatstrings makes sure of that.
|
|
e.discards(n.List)
|
|
}
|
|
}
|
|
|
|
// unsafeValue evaluates a uintptr-typed arithmetic expression looking
|
|
// for conversions from an unsafe.Pointer.
|
|
func (e *escape) unsafeValue(k hole, n ir.Node) {
|
|
if n.Type().Kind() != types.TUINTPTR {
|
|
base.Fatalf("unexpected type %v for %v", n.Type(), n)
|
|
}
|
|
if k.addrtaken {
|
|
base.Fatalf("unexpected addrtaken")
|
|
}
|
|
|
|
e.stmts(n.Init())
|
|
|
|
switch n.Op() {
|
|
case ir.OCONV, ir.OCONVNOP:
|
|
n := n.(*ir.ConvExpr)
|
|
if n.X.Type().IsUnsafePtr() {
|
|
e.expr(k, n.X)
|
|
} else {
|
|
e.discard(n.X)
|
|
}
|
|
case ir.ODOTPTR:
|
|
n := n.(*ir.SelectorExpr)
|
|
if ir.IsReflectHeaderDataField(n) {
|
|
e.expr(k.deref(n, "reflect.Header.Data"), n.X)
|
|
} else {
|
|
e.discard(n.X)
|
|
}
|
|
case ir.OPLUS, ir.ONEG, ir.OBITNOT:
|
|
n := n.(*ir.UnaryExpr)
|
|
e.unsafeValue(k, n.X)
|
|
case ir.OADD, ir.OSUB, ir.OOR, ir.OXOR, ir.OMUL, ir.ODIV, ir.OMOD, ir.OAND, ir.OANDNOT:
|
|
n := n.(*ir.BinaryExpr)
|
|
e.unsafeValue(k, n.X)
|
|
e.unsafeValue(k, n.Y)
|
|
case ir.OLSH, ir.ORSH:
|
|
n := n.(*ir.BinaryExpr)
|
|
e.unsafeValue(k, n.X)
|
|
// RHS need not be uintptr-typed (#32959) and can't meaningfully
|
|
// flow pointers anyway.
|
|
e.discard(n.Y)
|
|
default:
|
|
e.exprSkipInit(e.discardHole(), n)
|
|
}
|
|
}
|
|
|
|
// discard evaluates an expression n for side-effects, but discards
|
|
// its value.
|
|
func (e *escape) discard(n ir.Node) {
|
|
e.expr(e.discardHole(), n)
|
|
}
|
|
|
|
func (e *escape) discards(l ir.Nodes) {
|
|
for _, n := range l {
|
|
e.discard(n)
|
|
}
|
|
}
|
|
|
|
// spill allocates a new location associated with expression n, flows
|
|
// its address to k, and returns a hole that flows values to it. It's
|
|
// intended for use with most expressions that allocate storage.
|
|
func (e *escape) spill(k hole, n ir.Node) hole {
|
|
loc := e.newLoc(n, true)
|
|
e.flow(k.addr(n, "spill"), loc)
|
|
return loc.asHole()
|
|
}
|