mirror of
https://github.com/golang/go.git
synced 2025-05-05 15:43:04 +00:00
Use the following (suboptimal) script to obtain a list of possible typos: #!/usr/bin/env sh set -x git ls-files |\ grep -e '\.\(c\|cc\|go\)$' |\ xargs -n 1\ awk\ '/\/\// { gsub(/.*\/\//, ""); print; } /\/\*/, /\*\// { gsub(/.*\/\*/, ""); gsub(/\*\/.*/, ""); }' |\ hunspell -d en_US -l |\ grep '^[[:upper:]]\{0,1\}[[:lower:]]\{1,\}$' |\ grep -v -e '^.\{1,4\}$' -e '^.\{16,\}$' |\ sort -f |\ uniq -c |\ awk '$1 == 1 { print $2; }' Then, go through the results manually and fix the most obvious typos in the non-vendored code. Change-Id: I3cb5830a176850e1a0584b8a40b47bde7b260eae Reviewed-on: https://go-review.googlesource.com/c/go/+/193848 Reviewed-by: Robert Griesemer <gri@golang.org>
915 lines
24 KiB
Go
915 lines
24 KiB
Go
// Copyright 2013 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Writing of Go object files.
|
|
|
|
package obj
|
|
|
|
import (
|
|
"bufio"
|
|
"cmd/internal/dwarf"
|
|
"cmd/internal/objabi"
|
|
"cmd/internal/sys"
|
|
"fmt"
|
|
"log"
|
|
"path/filepath"
|
|
"sort"
|
|
"strings"
|
|
"sync"
|
|
)
|
|
|
|
// objWriter writes Go object files.
|
|
type objWriter struct {
|
|
wr *bufio.Writer
|
|
ctxt *Link
|
|
// Temporary buffer for zigzag int writing.
|
|
varintbuf [10]uint8
|
|
|
|
// Number of objects written of each type.
|
|
nRefs int
|
|
nData int
|
|
nReloc int
|
|
nPcdata int
|
|
nAutom int
|
|
nFuncdata int
|
|
nFile int
|
|
|
|
pkgpath string // the package import path (escaped), "" if unknown
|
|
}
|
|
|
|
func (w *objWriter) addLengths(s *LSym) {
|
|
w.nData += len(s.P)
|
|
w.nReloc += len(s.R)
|
|
|
|
if s.Type != objabi.STEXT {
|
|
return
|
|
}
|
|
|
|
pc := &s.Func.Pcln
|
|
|
|
data := 0
|
|
data += len(pc.Pcsp.P)
|
|
data += len(pc.Pcfile.P)
|
|
data += len(pc.Pcline.P)
|
|
data += len(pc.Pcinline.P)
|
|
for _, pcd := range pc.Pcdata {
|
|
data += len(pcd.P)
|
|
}
|
|
|
|
w.nData += data
|
|
w.nPcdata += len(pc.Pcdata)
|
|
|
|
w.nAutom += len(s.Func.Autom)
|
|
w.nFuncdata += len(pc.Funcdataoff)
|
|
w.nFile += len(pc.File)
|
|
}
|
|
|
|
func (w *objWriter) writeLengths() {
|
|
w.writeInt(int64(w.nData))
|
|
w.writeInt(int64(w.nReloc))
|
|
w.writeInt(int64(w.nPcdata))
|
|
w.writeInt(int64(w.nAutom))
|
|
w.writeInt(int64(w.nFuncdata))
|
|
w.writeInt(int64(w.nFile))
|
|
}
|
|
|
|
func newObjWriter(ctxt *Link, b *bufio.Writer, pkgpath string) *objWriter {
|
|
return &objWriter{
|
|
ctxt: ctxt,
|
|
wr: b,
|
|
pkgpath: objabi.PathToPrefix(pkgpath),
|
|
}
|
|
}
|
|
|
|
func WriteObjFile(ctxt *Link, b *bufio.Writer, pkgpath string) {
|
|
w := newObjWriter(ctxt, b, pkgpath)
|
|
|
|
// Magic header
|
|
w.wr.WriteString("\x00go112ld")
|
|
|
|
// Version
|
|
w.wr.WriteByte(1)
|
|
|
|
// Autolib
|
|
for _, pkg := range ctxt.Imports {
|
|
w.writeString(pkg)
|
|
}
|
|
w.writeString("")
|
|
|
|
// Symbol references
|
|
for _, s := range ctxt.Text {
|
|
w.writeRefs(s)
|
|
w.addLengths(s)
|
|
}
|
|
|
|
if ctxt.Headtype == objabi.Haix {
|
|
// Data must be sorted to keep a constant order in TOC symbols.
|
|
// As they are created during Progedit, two symbols can be switched between
|
|
// two different compilations. Therefore, BuildID will be different.
|
|
// TODO: find a better place and optimize to only sort TOC symbols
|
|
sort.Slice(ctxt.Data, func(i, j int) bool {
|
|
return ctxt.Data[i].Name < ctxt.Data[j].Name
|
|
})
|
|
}
|
|
|
|
for _, s := range ctxt.Data {
|
|
w.writeRefs(s)
|
|
w.addLengths(s)
|
|
}
|
|
for _, s := range ctxt.ABIAliases {
|
|
w.writeRefs(s)
|
|
w.addLengths(s)
|
|
}
|
|
// End symbol references
|
|
w.wr.WriteByte(0xff)
|
|
|
|
// Lengths
|
|
w.writeLengths()
|
|
|
|
// Data block
|
|
for _, s := range ctxt.Text {
|
|
w.wr.Write(s.P)
|
|
pc := &s.Func.Pcln
|
|
w.wr.Write(pc.Pcsp.P)
|
|
w.wr.Write(pc.Pcfile.P)
|
|
w.wr.Write(pc.Pcline.P)
|
|
w.wr.Write(pc.Pcinline.P)
|
|
for _, pcd := range pc.Pcdata {
|
|
w.wr.Write(pcd.P)
|
|
}
|
|
}
|
|
for _, s := range ctxt.Data {
|
|
if len(s.P) > 0 {
|
|
switch s.Type {
|
|
case objabi.SBSS, objabi.SNOPTRBSS, objabi.STLSBSS:
|
|
ctxt.Diag("cannot provide data for %v sym %v", s.Type, s.Name)
|
|
}
|
|
}
|
|
w.wr.Write(s.P)
|
|
}
|
|
|
|
// Symbols
|
|
for _, s := range ctxt.Text {
|
|
w.writeSym(s)
|
|
}
|
|
for _, s := range ctxt.Data {
|
|
w.writeSym(s)
|
|
}
|
|
for _, s := range ctxt.ABIAliases {
|
|
w.writeSym(s)
|
|
}
|
|
|
|
// Magic footer
|
|
w.wr.WriteString("\xffgo112ld")
|
|
}
|
|
|
|
// Symbols are prefixed so their content doesn't get confused with the magic footer.
|
|
const symPrefix = 0xfe
|
|
|
|
func (w *objWriter) writeRef(s *LSym, isPath bool) {
|
|
if s == nil || s.RefIdx != 0 {
|
|
return
|
|
}
|
|
w.wr.WriteByte(symPrefix)
|
|
if isPath {
|
|
w.writeString(filepath.ToSlash(s.Name))
|
|
} else if w.pkgpath != "" {
|
|
// w.pkgpath is already escaped.
|
|
n := strings.Replace(s.Name, "\"\".", w.pkgpath+".", -1)
|
|
w.writeString(n)
|
|
} else {
|
|
w.writeString(s.Name)
|
|
}
|
|
// Write ABI/static information.
|
|
abi := int64(s.ABI())
|
|
if s.Static() {
|
|
abi = -1
|
|
}
|
|
w.writeInt(abi)
|
|
w.nRefs++
|
|
s.RefIdx = w.nRefs
|
|
}
|
|
|
|
func (w *objWriter) writeRefs(s *LSym) {
|
|
w.writeRef(s, false)
|
|
w.writeRef(s.Gotype, false)
|
|
for _, r := range s.R {
|
|
w.writeRef(r.Sym, false)
|
|
}
|
|
|
|
if s.Type == objabi.STEXT {
|
|
for _, a := range s.Func.Autom {
|
|
w.writeRef(a.Asym, false)
|
|
w.writeRef(a.Gotype, false)
|
|
}
|
|
pc := &s.Func.Pcln
|
|
for _, d := range pc.Funcdata {
|
|
w.writeRef(d, false)
|
|
}
|
|
for _, f := range pc.File {
|
|
fsym := w.ctxt.Lookup(f)
|
|
w.writeRef(fsym, true)
|
|
}
|
|
for _, call := range pc.InlTree.nodes {
|
|
w.writeRef(call.Func, false)
|
|
f, _ := linkgetlineFromPos(w.ctxt, call.Pos)
|
|
fsym := w.ctxt.Lookup(f)
|
|
w.writeRef(fsym, true)
|
|
}
|
|
}
|
|
}
|
|
|
|
func (w *objWriter) writeSymDebug(s *LSym) {
|
|
ctxt := w.ctxt
|
|
fmt.Fprintf(ctxt.Bso, "%s ", s.Name)
|
|
if s.Type != 0 {
|
|
fmt.Fprintf(ctxt.Bso, "%v ", s.Type)
|
|
}
|
|
if s.Static() {
|
|
fmt.Fprint(ctxt.Bso, "static ")
|
|
}
|
|
if s.DuplicateOK() {
|
|
fmt.Fprintf(ctxt.Bso, "dupok ")
|
|
}
|
|
if s.CFunc() {
|
|
fmt.Fprintf(ctxt.Bso, "cfunc ")
|
|
}
|
|
if s.NoSplit() {
|
|
fmt.Fprintf(ctxt.Bso, "nosplit ")
|
|
}
|
|
if s.TopFrame() {
|
|
fmt.Fprintf(ctxt.Bso, "topframe ")
|
|
}
|
|
fmt.Fprintf(ctxt.Bso, "size=%d", s.Size)
|
|
if s.Type == objabi.STEXT {
|
|
fmt.Fprintf(ctxt.Bso, " args=%#x locals=%#x", uint64(s.Func.Args), uint64(s.Func.Locals))
|
|
if s.Leaf() {
|
|
fmt.Fprintf(ctxt.Bso, " leaf")
|
|
}
|
|
}
|
|
fmt.Fprintf(ctxt.Bso, "\n")
|
|
if s.Type == objabi.STEXT {
|
|
for p := s.Func.Text; p != nil; p = p.Link {
|
|
var s string
|
|
if ctxt.Debugasm > 1 {
|
|
s = p.String()
|
|
} else {
|
|
s = p.InnermostString()
|
|
}
|
|
fmt.Fprintf(ctxt.Bso, "\t%#04x %s\n", uint(int(p.Pc)), s)
|
|
}
|
|
}
|
|
for i := 0; i < len(s.P); i += 16 {
|
|
fmt.Fprintf(ctxt.Bso, "\t%#04x", uint(i))
|
|
j := i
|
|
for ; j < i+16 && j < len(s.P); j++ {
|
|
fmt.Fprintf(ctxt.Bso, " %02x", s.P[j])
|
|
}
|
|
for ; j < i+16; j++ {
|
|
fmt.Fprintf(ctxt.Bso, " ")
|
|
}
|
|
fmt.Fprintf(ctxt.Bso, " ")
|
|
for j = i; j < i+16 && j < len(s.P); j++ {
|
|
c := int(s.P[j])
|
|
if ' ' <= c && c <= 0x7e {
|
|
fmt.Fprintf(ctxt.Bso, "%c", c)
|
|
} else {
|
|
fmt.Fprintf(ctxt.Bso, ".")
|
|
}
|
|
}
|
|
|
|
fmt.Fprintf(ctxt.Bso, "\n")
|
|
}
|
|
|
|
sort.Sort(relocByOff(s.R)) // generate stable output
|
|
for _, r := range s.R {
|
|
name := ""
|
|
if r.Sym != nil {
|
|
name = r.Sym.Name
|
|
} else if r.Type == objabi.R_TLS_LE {
|
|
name = "TLS"
|
|
}
|
|
if ctxt.Arch.InFamily(sys.ARM, sys.PPC64) {
|
|
fmt.Fprintf(ctxt.Bso, "\trel %d+%d t=%d %s+%x\n", int(r.Off), r.Siz, r.Type, name, uint64(r.Add))
|
|
} else {
|
|
fmt.Fprintf(ctxt.Bso, "\trel %d+%d t=%d %s+%d\n", int(r.Off), r.Siz, r.Type, name, r.Add)
|
|
}
|
|
}
|
|
}
|
|
|
|
func (w *objWriter) writeSym(s *LSym) {
|
|
ctxt := w.ctxt
|
|
if ctxt.Debugasm > 0 {
|
|
w.writeSymDebug(s)
|
|
}
|
|
|
|
w.wr.WriteByte(symPrefix)
|
|
w.wr.WriteByte(byte(s.Type))
|
|
w.writeRefIndex(s)
|
|
flags := int64(0)
|
|
if s.DuplicateOK() {
|
|
flags |= 1
|
|
}
|
|
if s.Local() {
|
|
flags |= 1 << 1
|
|
}
|
|
if s.MakeTypelink() {
|
|
flags |= 1 << 2
|
|
}
|
|
w.writeInt(flags)
|
|
w.writeInt(s.Size)
|
|
w.writeRefIndex(s.Gotype)
|
|
w.writeInt(int64(len(s.P)))
|
|
|
|
w.writeInt(int64(len(s.R)))
|
|
var r *Reloc
|
|
for i := range s.R {
|
|
r = &s.R[i]
|
|
w.writeInt(int64(r.Off))
|
|
w.writeInt(int64(r.Siz))
|
|
w.writeInt(int64(r.Type))
|
|
w.writeInt(r.Add)
|
|
w.writeRefIndex(r.Sym)
|
|
}
|
|
|
|
if s.Type != objabi.STEXT {
|
|
return
|
|
}
|
|
|
|
w.writeInt(int64(s.Func.Args))
|
|
w.writeInt(int64(s.Func.Locals))
|
|
w.writeBool(s.NoSplit())
|
|
flags = int64(0)
|
|
if s.Leaf() {
|
|
flags |= 1
|
|
}
|
|
if s.CFunc() {
|
|
flags |= 1 << 1
|
|
}
|
|
if s.ReflectMethod() {
|
|
flags |= 1 << 2
|
|
}
|
|
if ctxt.Flag_shared {
|
|
flags |= 1 << 3
|
|
}
|
|
if s.TopFrame() {
|
|
flags |= 1 << 4
|
|
}
|
|
w.writeInt(flags)
|
|
w.writeInt(int64(len(s.Func.Autom)))
|
|
for _, a := range s.Func.Autom {
|
|
w.writeRefIndex(a.Asym)
|
|
w.writeInt(int64(a.Aoffset))
|
|
if a.Name == NAME_AUTO {
|
|
w.writeInt(objabi.A_AUTO)
|
|
} else if a.Name == NAME_PARAM {
|
|
w.writeInt(objabi.A_PARAM)
|
|
} else if a.Name == NAME_DELETED_AUTO {
|
|
w.writeInt(objabi.A_DELETED_AUTO)
|
|
} else {
|
|
log.Fatalf("%s: invalid local variable type %d", s.Name, a.Name)
|
|
}
|
|
w.writeRefIndex(a.Gotype)
|
|
}
|
|
|
|
pc := &s.Func.Pcln
|
|
w.writeInt(int64(len(pc.Pcsp.P)))
|
|
w.writeInt(int64(len(pc.Pcfile.P)))
|
|
w.writeInt(int64(len(pc.Pcline.P)))
|
|
w.writeInt(int64(len(pc.Pcinline.P)))
|
|
w.writeInt(int64(len(pc.Pcdata)))
|
|
for _, pcd := range pc.Pcdata {
|
|
w.writeInt(int64(len(pcd.P)))
|
|
}
|
|
w.writeInt(int64(len(pc.Funcdataoff)))
|
|
for i := range pc.Funcdataoff {
|
|
w.writeRefIndex(pc.Funcdata[i])
|
|
}
|
|
for i := range pc.Funcdataoff {
|
|
w.writeInt(pc.Funcdataoff[i])
|
|
}
|
|
w.writeInt(int64(len(pc.File)))
|
|
for _, f := range pc.File {
|
|
fsym := ctxt.Lookup(f)
|
|
w.writeRefIndex(fsym)
|
|
}
|
|
w.writeInt(int64(len(pc.InlTree.nodes)))
|
|
for _, call := range pc.InlTree.nodes {
|
|
w.writeInt(int64(call.Parent))
|
|
f, l := linkgetlineFromPos(w.ctxt, call.Pos)
|
|
fsym := ctxt.Lookup(f)
|
|
w.writeRefIndex(fsym)
|
|
w.writeInt(int64(l))
|
|
w.writeRefIndex(call.Func)
|
|
w.writeInt(int64(call.ParentPC))
|
|
}
|
|
}
|
|
|
|
func (w *objWriter) writeBool(b bool) {
|
|
if b {
|
|
w.writeInt(1)
|
|
} else {
|
|
w.writeInt(0)
|
|
}
|
|
}
|
|
|
|
func (w *objWriter) writeInt(sval int64) {
|
|
var v uint64
|
|
uv := (uint64(sval) << 1) ^ uint64(sval>>63)
|
|
p := w.varintbuf[:]
|
|
for v = uv; v >= 0x80; v >>= 7 {
|
|
p[0] = uint8(v | 0x80)
|
|
p = p[1:]
|
|
}
|
|
p[0] = uint8(v)
|
|
p = p[1:]
|
|
w.wr.Write(w.varintbuf[:len(w.varintbuf)-len(p)])
|
|
}
|
|
|
|
func (w *objWriter) writeString(s string) {
|
|
w.writeInt(int64(len(s)))
|
|
w.wr.WriteString(s)
|
|
}
|
|
|
|
func (w *objWriter) writeRefIndex(s *LSym) {
|
|
if s == nil {
|
|
w.writeInt(0)
|
|
return
|
|
}
|
|
if s.RefIdx == 0 {
|
|
log.Fatalln("writing an unreferenced symbol", s.Name)
|
|
}
|
|
w.writeInt(int64(s.RefIdx))
|
|
}
|
|
|
|
// relocByOff sorts relocations by their offsets.
|
|
type relocByOff []Reloc
|
|
|
|
func (x relocByOff) Len() int { return len(x) }
|
|
func (x relocByOff) Less(i, j int) bool { return x[i].Off < x[j].Off }
|
|
func (x relocByOff) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
|
|
|
|
// implement dwarf.Context
|
|
type dwCtxt struct{ *Link }
|
|
|
|
func (c dwCtxt) PtrSize() int {
|
|
return c.Arch.PtrSize
|
|
}
|
|
func (c dwCtxt) AddInt(s dwarf.Sym, size int, i int64) {
|
|
ls := s.(*LSym)
|
|
ls.WriteInt(c.Link, ls.Size, size, i)
|
|
}
|
|
func (c dwCtxt) AddBytes(s dwarf.Sym, b []byte) {
|
|
ls := s.(*LSym)
|
|
ls.WriteBytes(c.Link, ls.Size, b)
|
|
}
|
|
func (c dwCtxt) AddString(s dwarf.Sym, v string) {
|
|
ls := s.(*LSym)
|
|
ls.WriteString(c.Link, ls.Size, len(v), v)
|
|
ls.WriteInt(c.Link, ls.Size, 1, 0)
|
|
}
|
|
func (c dwCtxt) AddAddress(s dwarf.Sym, data interface{}, value int64) {
|
|
ls := s.(*LSym)
|
|
size := c.PtrSize()
|
|
if data != nil {
|
|
rsym := data.(*LSym)
|
|
ls.WriteAddr(c.Link, ls.Size, size, rsym, value)
|
|
} else {
|
|
ls.WriteInt(c.Link, ls.Size, size, value)
|
|
}
|
|
}
|
|
func (c dwCtxt) AddCURelativeAddress(s dwarf.Sym, data interface{}, value int64) {
|
|
ls := s.(*LSym)
|
|
rsym := data.(*LSym)
|
|
ls.WriteCURelativeAddr(c.Link, ls.Size, rsym, value)
|
|
}
|
|
func (c dwCtxt) AddSectionOffset(s dwarf.Sym, size int, t interface{}, ofs int64) {
|
|
panic("should be used only in the linker")
|
|
}
|
|
func (c dwCtxt) AddDWARFAddrSectionOffset(s dwarf.Sym, t interface{}, ofs int64) {
|
|
size := 4
|
|
if isDwarf64(c.Link) {
|
|
size = 8
|
|
}
|
|
|
|
ls := s.(*LSym)
|
|
rsym := t.(*LSym)
|
|
ls.WriteAddr(c.Link, ls.Size, size, rsym, ofs)
|
|
r := &ls.R[len(ls.R)-1]
|
|
r.Type = objabi.R_DWARFSECREF
|
|
}
|
|
func (c dwCtxt) AddFileRef(s dwarf.Sym, f interface{}) {
|
|
ls := s.(*LSym)
|
|
rsym := f.(*LSym)
|
|
ls.WriteAddr(c.Link, ls.Size, 4, rsym, 0)
|
|
r := &ls.R[len(ls.R)-1]
|
|
r.Type = objabi.R_DWARFFILEREF
|
|
}
|
|
|
|
func (c dwCtxt) CurrentOffset(s dwarf.Sym) int64 {
|
|
ls := s.(*LSym)
|
|
return ls.Size
|
|
}
|
|
|
|
// Here "from" is a symbol corresponding to an inlined or concrete
|
|
// function, "to" is the symbol for the corresponding abstract
|
|
// function, and "dclIdx" is the index of the symbol of interest with
|
|
// respect to the Dcl slice of the original pre-optimization version
|
|
// of the inlined function.
|
|
func (c dwCtxt) RecordDclReference(from dwarf.Sym, to dwarf.Sym, dclIdx int, inlIndex int) {
|
|
ls := from.(*LSym)
|
|
tls := to.(*LSym)
|
|
ridx := len(ls.R) - 1
|
|
c.Link.DwFixups.ReferenceChildDIE(ls, ridx, tls, dclIdx, inlIndex)
|
|
}
|
|
|
|
func (c dwCtxt) RecordChildDieOffsets(s dwarf.Sym, vars []*dwarf.Var, offsets []int32) {
|
|
ls := s.(*LSym)
|
|
c.Link.DwFixups.RegisterChildDIEOffsets(ls, vars, offsets)
|
|
}
|
|
|
|
func (c dwCtxt) Logf(format string, args ...interface{}) {
|
|
c.Link.Logf(format, args...)
|
|
}
|
|
|
|
func isDwarf64(ctxt *Link) bool {
|
|
return ctxt.Headtype == objabi.Haix
|
|
}
|
|
|
|
func (ctxt *Link) dwarfSym(s *LSym) (dwarfInfoSym, dwarfLocSym, dwarfRangesSym, dwarfAbsFnSym, dwarfIsStmtSym *LSym) {
|
|
if s.Type != objabi.STEXT {
|
|
ctxt.Diag("dwarfSym of non-TEXT %v", s)
|
|
}
|
|
if s.Func.dwarfInfoSym == nil {
|
|
s.Func.dwarfInfoSym = ctxt.LookupDerived(s, dwarf.InfoPrefix+s.Name)
|
|
if ctxt.Flag_locationlists {
|
|
s.Func.dwarfLocSym = ctxt.LookupDerived(s, dwarf.LocPrefix+s.Name)
|
|
}
|
|
s.Func.dwarfRangesSym = ctxt.LookupDerived(s, dwarf.RangePrefix+s.Name)
|
|
if s.WasInlined() {
|
|
s.Func.dwarfAbsFnSym = ctxt.DwFixups.AbsFuncDwarfSym(s)
|
|
}
|
|
s.Func.dwarfIsStmtSym = ctxt.LookupDerived(s, dwarf.IsStmtPrefix+s.Name)
|
|
|
|
}
|
|
return s.Func.dwarfInfoSym, s.Func.dwarfLocSym, s.Func.dwarfRangesSym, s.Func.dwarfAbsFnSym, s.Func.dwarfIsStmtSym
|
|
}
|
|
|
|
func (s *LSym) Len() int64 {
|
|
return s.Size
|
|
}
|
|
|
|
// fileSymbol returns a symbol corresponding to the source file of the
|
|
// first instruction (prog) of the specified function. This will
|
|
// presumably be the file in which the function is defined.
|
|
func (ctxt *Link) fileSymbol(fn *LSym) *LSym {
|
|
p := fn.Func.Text
|
|
if p != nil {
|
|
f, _ := linkgetlineFromPos(ctxt, p.Pos)
|
|
fsym := ctxt.Lookup(f)
|
|
return fsym
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// populateDWARF fills in the DWARF Debugging Information Entries for
|
|
// TEXT symbol 's'. The various DWARF symbols must already have been
|
|
// initialized in InitTextSym.
|
|
func (ctxt *Link) populateDWARF(curfn interface{}, s *LSym, myimportpath string) {
|
|
info, loc, ranges, absfunc, _ := ctxt.dwarfSym(s)
|
|
if info.Size != 0 {
|
|
ctxt.Diag("makeFuncDebugEntry double process %v", s)
|
|
}
|
|
var scopes []dwarf.Scope
|
|
var inlcalls dwarf.InlCalls
|
|
if ctxt.DebugInfo != nil {
|
|
stmtData(ctxt, s)
|
|
scopes, inlcalls = ctxt.DebugInfo(s, curfn)
|
|
}
|
|
var err error
|
|
dwctxt := dwCtxt{ctxt}
|
|
filesym := ctxt.fileSymbol(s)
|
|
fnstate := &dwarf.FnState{
|
|
Name: s.Name,
|
|
Importpath: myimportpath,
|
|
Info: info,
|
|
Filesym: filesym,
|
|
Loc: loc,
|
|
Ranges: ranges,
|
|
Absfn: absfunc,
|
|
StartPC: s,
|
|
Size: s.Size,
|
|
External: !s.Static(),
|
|
Scopes: scopes,
|
|
InlCalls: inlcalls,
|
|
UseBASEntries: ctxt.UseBASEntries,
|
|
}
|
|
if absfunc != nil {
|
|
err = dwarf.PutAbstractFunc(dwctxt, fnstate)
|
|
if err != nil {
|
|
ctxt.Diag("emitting DWARF for %s failed: %v", s.Name, err)
|
|
}
|
|
err = dwarf.PutConcreteFunc(dwctxt, fnstate)
|
|
} else {
|
|
err = dwarf.PutDefaultFunc(dwctxt, fnstate)
|
|
}
|
|
if err != nil {
|
|
ctxt.Diag("emitting DWARF for %s failed: %v", s.Name, err)
|
|
}
|
|
}
|
|
|
|
// DwarfIntConst creates a link symbol for an integer constant with the
|
|
// given name, type and value.
|
|
func (ctxt *Link) DwarfIntConst(myimportpath, name, typename string, val int64) {
|
|
if myimportpath == "" {
|
|
return
|
|
}
|
|
s := ctxt.LookupInit(dwarf.ConstInfoPrefix+myimportpath, func(s *LSym) {
|
|
s.Type = objabi.SDWARFINFO
|
|
ctxt.Data = append(ctxt.Data, s)
|
|
})
|
|
dwarf.PutIntConst(dwCtxt{ctxt}, s, ctxt.Lookup(dwarf.InfoPrefix+typename), myimportpath+"."+name, val)
|
|
}
|
|
|
|
func (ctxt *Link) DwarfAbstractFunc(curfn interface{}, s *LSym, myimportpath string) {
|
|
absfn := ctxt.DwFixups.AbsFuncDwarfSym(s)
|
|
if absfn.Size != 0 {
|
|
ctxt.Diag("internal error: DwarfAbstractFunc double process %v", s)
|
|
}
|
|
if s.Func == nil {
|
|
s.Func = new(FuncInfo)
|
|
}
|
|
scopes, _ := ctxt.DebugInfo(s, curfn)
|
|
dwctxt := dwCtxt{ctxt}
|
|
filesym := ctxt.fileSymbol(s)
|
|
fnstate := dwarf.FnState{
|
|
Name: s.Name,
|
|
Importpath: myimportpath,
|
|
Info: absfn,
|
|
Filesym: filesym,
|
|
Absfn: absfn,
|
|
External: !s.Static(),
|
|
Scopes: scopes,
|
|
UseBASEntries: ctxt.UseBASEntries,
|
|
}
|
|
if err := dwarf.PutAbstractFunc(dwctxt, &fnstate); err != nil {
|
|
ctxt.Diag("emitting DWARF for %s failed: %v", s.Name, err)
|
|
}
|
|
}
|
|
|
|
// This table is designed to aid in the creation of references between
|
|
// DWARF subprogram DIEs.
|
|
//
|
|
// In most cases when one DWARF DIE has to refer to another DWARF DIE,
|
|
// the target of the reference has an LSym, which makes it easy to use
|
|
// the existing relocation mechanism. For DWARF inlined routine DIEs,
|
|
// however, the subprogram DIE has to refer to a child
|
|
// parameter/variable DIE of the abstract subprogram. This child DIE
|
|
// doesn't have an LSym, and also of interest is the fact that when
|
|
// DWARF generation is happening for inlined function F within caller
|
|
// G, it's possible that DWARF generation hasn't happened yet for F,
|
|
// so there is no way to know the offset of a child DIE within F's
|
|
// abstract function. Making matters more complex, each inlined
|
|
// instance of F may refer to a subset of the original F's variables
|
|
// (depending on what happens with optimization, some vars may be
|
|
// eliminated).
|
|
//
|
|
// The fixup table below helps overcome this hurdle. At the point
|
|
// where a parameter/variable reference is made (via a call to
|
|
// "ReferenceChildDIE"), a fixup record is generate that records
|
|
// the relocation that is targeting that child variable. At a later
|
|
// point when the abstract function DIE is emitted, there will be
|
|
// a call to "RegisterChildDIEOffsets", at which point the offsets
|
|
// needed to apply fixups are captured. Finally, once the parallel
|
|
// portion of the compilation is done, fixups can actually be applied
|
|
// during the "Finalize" method (this can't be done during the
|
|
// parallel portion of the compile due to the possibility of data
|
|
// races).
|
|
//
|
|
// This table is also used to record the "precursor" function node for
|
|
// each function that is the target of an inline -- child DIE references
|
|
// have to be made with respect to the original pre-optimization
|
|
// version of the function (to allow for the fact that each inlined
|
|
// body may be optimized differently).
|
|
type DwarfFixupTable struct {
|
|
ctxt *Link
|
|
mu sync.Mutex
|
|
symtab map[*LSym]int // maps abstract fn LSYM to index in svec
|
|
svec []symFixups
|
|
precursor map[*LSym]fnState // maps fn Lsym to precursor Node, absfn sym
|
|
}
|
|
|
|
type symFixups struct {
|
|
fixups []relFixup
|
|
doffsets []declOffset
|
|
inlIndex int32
|
|
defseen bool
|
|
}
|
|
|
|
type declOffset struct {
|
|
// Index of variable within DCL list of pre-optimization function
|
|
dclIdx int32
|
|
// Offset of var's child DIE with respect to containing subprogram DIE
|
|
offset int32
|
|
}
|
|
|
|
type relFixup struct {
|
|
refsym *LSym
|
|
relidx int32
|
|
dclidx int32
|
|
}
|
|
|
|
type fnState struct {
|
|
// precursor function (really *gc.Node)
|
|
precursor interface{}
|
|
// abstract function symbol
|
|
absfn *LSym
|
|
}
|
|
|
|
func NewDwarfFixupTable(ctxt *Link) *DwarfFixupTable {
|
|
return &DwarfFixupTable{
|
|
ctxt: ctxt,
|
|
symtab: make(map[*LSym]int),
|
|
precursor: make(map[*LSym]fnState),
|
|
}
|
|
}
|
|
|
|
func (ft *DwarfFixupTable) GetPrecursorFunc(s *LSym) interface{} {
|
|
if fnstate, found := ft.precursor[s]; found {
|
|
return fnstate.precursor
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func (ft *DwarfFixupTable) SetPrecursorFunc(s *LSym, fn interface{}) {
|
|
if _, found := ft.precursor[s]; found {
|
|
ft.ctxt.Diag("internal error: DwarfFixupTable.SetPrecursorFunc double call on %v", s)
|
|
}
|
|
|
|
// initialize abstract function symbol now. This is done here so
|
|
// as to avoid data races later on during the parallel portion of
|
|
// the back end.
|
|
absfn := ft.ctxt.LookupDerived(s, dwarf.InfoPrefix+s.Name+dwarf.AbstractFuncSuffix)
|
|
absfn.Set(AttrDuplicateOK, true)
|
|
absfn.Type = objabi.SDWARFINFO
|
|
ft.ctxt.Data = append(ft.ctxt.Data, absfn)
|
|
|
|
ft.precursor[s] = fnState{precursor: fn, absfn: absfn}
|
|
}
|
|
|
|
// Make a note of a child DIE reference: relocation 'ridx' within symbol 's'
|
|
// is targeting child 'c' of DIE with symbol 'tgt'.
|
|
func (ft *DwarfFixupTable) ReferenceChildDIE(s *LSym, ridx int, tgt *LSym, dclidx int, inlIndex int) {
|
|
// Protect against concurrent access if multiple backend workers
|
|
ft.mu.Lock()
|
|
defer ft.mu.Unlock()
|
|
|
|
// Create entry for symbol if not already present.
|
|
idx, found := ft.symtab[tgt]
|
|
if !found {
|
|
ft.svec = append(ft.svec, symFixups{inlIndex: int32(inlIndex)})
|
|
idx = len(ft.svec) - 1
|
|
ft.symtab[tgt] = idx
|
|
}
|
|
|
|
// Do we have child DIE offsets available? If so, then apply them,
|
|
// otherwise create a fixup record.
|
|
sf := &ft.svec[idx]
|
|
if len(sf.doffsets) > 0 {
|
|
found := false
|
|
for _, do := range sf.doffsets {
|
|
if do.dclIdx == int32(dclidx) {
|
|
off := do.offset
|
|
s.R[ridx].Add += int64(off)
|
|
found = true
|
|
break
|
|
}
|
|
}
|
|
if !found {
|
|
ft.ctxt.Diag("internal error: DwarfFixupTable.ReferenceChildDIE unable to locate child DIE offset for dclIdx=%d src=%v tgt=%v", dclidx, s, tgt)
|
|
}
|
|
} else {
|
|
sf.fixups = append(sf.fixups, relFixup{s, int32(ridx), int32(dclidx)})
|
|
}
|
|
}
|
|
|
|
// Called once DWARF generation is complete for a given abstract function,
|
|
// whose children might have been referenced via a call above. Stores
|
|
// the offsets for any child DIEs (vars, params) so that they can be
|
|
// consumed later in on DwarfFixupTable.Finalize, which applies any
|
|
// outstanding fixups.
|
|
func (ft *DwarfFixupTable) RegisterChildDIEOffsets(s *LSym, vars []*dwarf.Var, coffsets []int32) {
|
|
// Length of these two slices should agree
|
|
if len(vars) != len(coffsets) {
|
|
ft.ctxt.Diag("internal error: RegisterChildDIEOffsets vars/offsets length mismatch")
|
|
return
|
|
}
|
|
|
|
// Generate the slice of declOffset's based in vars/coffsets
|
|
doffsets := make([]declOffset, len(coffsets))
|
|
for i := range coffsets {
|
|
doffsets[i].dclIdx = vars[i].ChildIndex
|
|
doffsets[i].offset = coffsets[i]
|
|
}
|
|
|
|
ft.mu.Lock()
|
|
defer ft.mu.Unlock()
|
|
|
|
// Store offsets for this symbol.
|
|
idx, found := ft.symtab[s]
|
|
if !found {
|
|
sf := symFixups{inlIndex: -1, defseen: true, doffsets: doffsets}
|
|
ft.svec = append(ft.svec, sf)
|
|
ft.symtab[s] = len(ft.svec) - 1
|
|
} else {
|
|
sf := &ft.svec[idx]
|
|
sf.doffsets = doffsets
|
|
sf.defseen = true
|
|
}
|
|
}
|
|
|
|
func (ft *DwarfFixupTable) processFixups(slot int, s *LSym) {
|
|
sf := &ft.svec[slot]
|
|
for _, f := range sf.fixups {
|
|
dfound := false
|
|
for _, doffset := range sf.doffsets {
|
|
if doffset.dclIdx == f.dclidx {
|
|
f.refsym.R[f.relidx].Add += int64(doffset.offset)
|
|
dfound = true
|
|
break
|
|
}
|
|
}
|
|
if !dfound {
|
|
ft.ctxt.Diag("internal error: DwarfFixupTable has orphaned fixup on %v targeting %v relidx=%d dclidx=%d", f.refsym, s, f.relidx, f.dclidx)
|
|
}
|
|
}
|
|
}
|
|
|
|
// return the LSym corresponding to the 'abstract subprogram' DWARF
|
|
// info entry for a function.
|
|
func (ft *DwarfFixupTable) AbsFuncDwarfSym(fnsym *LSym) *LSym {
|
|
// Protect against concurrent access if multiple backend workers
|
|
ft.mu.Lock()
|
|
defer ft.mu.Unlock()
|
|
|
|
if fnstate, found := ft.precursor[fnsym]; found {
|
|
return fnstate.absfn
|
|
}
|
|
ft.ctxt.Diag("internal error: AbsFuncDwarfSym requested for %v, not seen during inlining", fnsym)
|
|
return nil
|
|
}
|
|
|
|
// Called after all functions have been compiled; the main job of this
|
|
// function is to identify cases where there are outstanding fixups.
|
|
// This scenario crops up when we have references to variables of an
|
|
// inlined routine, but that routine is defined in some other package.
|
|
// This helper walks through and locate these fixups, then invokes a
|
|
// helper to create an abstract subprogram DIE for each one.
|
|
func (ft *DwarfFixupTable) Finalize(myimportpath string, trace bool) {
|
|
if trace {
|
|
ft.ctxt.Logf("DwarfFixupTable.Finalize invoked for %s\n", myimportpath)
|
|
}
|
|
|
|
// Collect up the keys from the precursor map, then sort the
|
|
// resulting list (don't want to rely on map ordering here).
|
|
fns := make([]*LSym, len(ft.precursor))
|
|
idx := 0
|
|
for fn := range ft.precursor {
|
|
fns[idx] = fn
|
|
idx++
|
|
}
|
|
sort.Sort(bySymName(fns))
|
|
|
|
// Should not be called during parallel portion of compilation.
|
|
if ft.ctxt.InParallel {
|
|
ft.ctxt.Diag("internal error: DwarfFixupTable.Finalize call during parallel backend")
|
|
}
|
|
|
|
// Generate any missing abstract functions.
|
|
for _, s := range fns {
|
|
absfn := ft.AbsFuncDwarfSym(s)
|
|
slot, found := ft.symtab[absfn]
|
|
if !found || !ft.svec[slot].defseen {
|
|
ft.ctxt.GenAbstractFunc(s)
|
|
}
|
|
}
|
|
|
|
// Apply fixups.
|
|
for _, s := range fns {
|
|
absfn := ft.AbsFuncDwarfSym(s)
|
|
slot, found := ft.symtab[absfn]
|
|
if !found {
|
|
ft.ctxt.Diag("internal error: DwarfFixupTable.Finalize orphan abstract function for %v", s)
|
|
} else {
|
|
ft.processFixups(slot, s)
|
|
}
|
|
}
|
|
}
|
|
|
|
type bySymName []*LSym
|
|
|
|
func (s bySymName) Len() int { return len(s) }
|
|
func (s bySymName) Less(i, j int) bool { return s[i].Name < s[j].Name }
|
|
func (s bySymName) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
|