mirror of
https://github.com/golang/go.git
synced 2025-05-05 23:53:05 +00:00
[This CL is part of a sequence implementing the proposal #51082. The design doc is at https://go.dev/s/godocfmt-design.] Run the updated gofmt, which reformats doc comments, on the main repository. Vendored files are excluded. For #51082. Change-Id: I7332f099b60f716295fb34719c98c04eb1a85407 Reviewed-on: https://go-review.googlesource.com/c/go/+/384268 Reviewed-by: Jonathan Amsterdam <jba@google.com> Reviewed-by: Ian Lance Taylor <iant@golang.org>
1533 lines
44 KiB
Go
1533 lines
44 KiB
Go
// Copyright 2013 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Garbage collector liveness bitmap generation.
|
|
|
|
// The command line flag -live causes this code to print debug information.
|
|
// The levels are:
|
|
//
|
|
// -live (aka -live=1): print liveness lists as code warnings at safe points
|
|
// -live=2: print an assembly listing with liveness annotations
|
|
//
|
|
// Each level includes the earlier output as well.
|
|
|
|
package liveness
|
|
|
|
import (
|
|
"crypto/sha1"
|
|
"fmt"
|
|
"os"
|
|
"sort"
|
|
"strings"
|
|
|
|
"cmd/compile/internal/abi"
|
|
"cmd/compile/internal/base"
|
|
"cmd/compile/internal/bitvec"
|
|
"cmd/compile/internal/ir"
|
|
"cmd/compile/internal/objw"
|
|
"cmd/compile/internal/reflectdata"
|
|
"cmd/compile/internal/ssa"
|
|
"cmd/compile/internal/typebits"
|
|
"cmd/compile/internal/types"
|
|
"cmd/internal/obj"
|
|
"cmd/internal/objabi"
|
|
"cmd/internal/src"
|
|
)
|
|
|
|
// OpVarDef is an annotation for the liveness analysis, marking a place
|
|
// where a complete initialization (definition) of a variable begins.
|
|
// Since the liveness analysis can see initialization of single-word
|
|
// variables quite easy, OpVarDef is only needed for multi-word
|
|
// variables satisfying isfat(n.Type). For simplicity though, buildssa
|
|
// emits OpVarDef regardless of variable width.
|
|
//
|
|
// An 'OpVarDef x' annotation in the instruction stream tells the liveness
|
|
// analysis to behave as though the variable x is being initialized at that
|
|
// point in the instruction stream. The OpVarDef must appear before the
|
|
// actual (multi-instruction) initialization, and it must also appear after
|
|
// any uses of the previous value, if any. For example, if compiling:
|
|
//
|
|
// x = x[1:]
|
|
//
|
|
// it is important to generate code like:
|
|
//
|
|
// base, len, cap = pieces of x[1:]
|
|
// OpVarDef x
|
|
// x = {base, len, cap}
|
|
//
|
|
// If instead the generated code looked like:
|
|
//
|
|
// OpVarDef x
|
|
// base, len, cap = pieces of x[1:]
|
|
// x = {base, len, cap}
|
|
//
|
|
// then the liveness analysis would decide the previous value of x was
|
|
// unnecessary even though it is about to be used by the x[1:] computation.
|
|
// Similarly, if the generated code looked like:
|
|
//
|
|
// base, len, cap = pieces of x[1:]
|
|
// x = {base, len, cap}
|
|
// OpVarDef x
|
|
//
|
|
// then the liveness analysis will not preserve the new value of x, because
|
|
// the OpVarDef appears to have "overwritten" it.
|
|
//
|
|
// OpVarDef is a bit of a kludge to work around the fact that the instruction
|
|
// stream is working on single-word values but the liveness analysis
|
|
// wants to work on individual variables, which might be multi-word
|
|
// aggregates. It might make sense at some point to look into letting
|
|
// the liveness analysis work on single-word values as well, although
|
|
// there are complications around interface values, slices, and strings,
|
|
// all of which cannot be treated as individual words.
|
|
//
|
|
// OpVarKill is the opposite of OpVarDef: it marks a value as no longer needed,
|
|
// even if its address has been taken. That is, an OpVarKill annotation asserts
|
|
// that its argument is certainly dead, for use when the liveness analysis
|
|
// would not otherwise be able to deduce that fact.
|
|
|
|
// TODO: get rid of OpVarKill here. It's useful for stack frame allocation
|
|
// so the compiler can allocate two temps to the same location. Here it's now
|
|
// useless, since the implementation of stack objects.
|
|
|
|
// blockEffects summarizes the liveness effects on an SSA block.
|
|
type blockEffects struct {
|
|
// Computed during Liveness.prologue using only the content of
|
|
// individual blocks:
|
|
//
|
|
// uevar: upward exposed variables (used before set in block)
|
|
// varkill: killed variables (set in block)
|
|
uevar bitvec.BitVec
|
|
varkill bitvec.BitVec
|
|
|
|
// Computed during Liveness.solve using control flow information:
|
|
//
|
|
// livein: variables live at block entry
|
|
// liveout: variables live at block exit
|
|
livein bitvec.BitVec
|
|
liveout bitvec.BitVec
|
|
}
|
|
|
|
// A collection of global state used by liveness analysis.
|
|
type liveness struct {
|
|
fn *ir.Func
|
|
f *ssa.Func
|
|
vars []*ir.Name
|
|
idx map[*ir.Name]int32
|
|
stkptrsize int64
|
|
|
|
be []blockEffects
|
|
|
|
// allUnsafe indicates that all points in this function are
|
|
// unsafe-points.
|
|
allUnsafe bool
|
|
// unsafePoints bit i is set if Value ID i is an unsafe-point
|
|
// (preemption is not allowed). Only valid if !allUnsafe.
|
|
unsafePoints bitvec.BitVec
|
|
|
|
// An array with a bit vector for each safe point in the
|
|
// current Block during liveness.epilogue. Indexed in Value
|
|
// order for that block. Additionally, for the entry block
|
|
// livevars[0] is the entry bitmap. liveness.compact moves
|
|
// these to stackMaps.
|
|
livevars []bitvec.BitVec
|
|
|
|
// livenessMap maps from safe points (i.e., CALLs) to their
|
|
// liveness map indexes.
|
|
livenessMap Map
|
|
stackMapSet bvecSet
|
|
stackMaps []bitvec.BitVec
|
|
|
|
cache progeffectscache
|
|
|
|
// partLiveArgs includes input arguments (PPARAM) that may
|
|
// be partially live. That is, it is considered live because
|
|
// a part of it is used, but we may not initialize all parts.
|
|
partLiveArgs map[*ir.Name]bool
|
|
|
|
doClobber bool // Whether to clobber dead stack slots in this function.
|
|
noClobberArgs bool // Do not clobber function arguments
|
|
}
|
|
|
|
// Map maps from *ssa.Value to LivenessIndex.
|
|
type Map struct {
|
|
Vals map[ssa.ID]objw.LivenessIndex
|
|
// The set of live, pointer-containing variables at the DeferReturn
|
|
// call (only set when open-coded defers are used).
|
|
DeferReturn objw.LivenessIndex
|
|
}
|
|
|
|
func (m *Map) reset() {
|
|
if m.Vals == nil {
|
|
m.Vals = make(map[ssa.ID]objw.LivenessIndex)
|
|
} else {
|
|
for k := range m.Vals {
|
|
delete(m.Vals, k)
|
|
}
|
|
}
|
|
m.DeferReturn = objw.LivenessDontCare
|
|
}
|
|
|
|
func (m *Map) set(v *ssa.Value, i objw.LivenessIndex) {
|
|
m.Vals[v.ID] = i
|
|
}
|
|
|
|
func (m Map) Get(v *ssa.Value) objw.LivenessIndex {
|
|
// If v isn't in the map, then it's a "don't care" and not an
|
|
// unsafe-point.
|
|
if idx, ok := m.Vals[v.ID]; ok {
|
|
return idx
|
|
}
|
|
return objw.LivenessIndex{StackMapIndex: objw.StackMapDontCare, IsUnsafePoint: false}
|
|
}
|
|
|
|
type progeffectscache struct {
|
|
retuevar []int32
|
|
tailuevar []int32
|
|
initialized bool
|
|
}
|
|
|
|
// shouldTrack reports whether the liveness analysis
|
|
// should track the variable n.
|
|
// We don't care about variables that have no pointers,
|
|
// nor do we care about non-local variables,
|
|
// nor do we care about empty structs (handled by the pointer check),
|
|
// nor do we care about the fake PAUTOHEAP variables.
|
|
func shouldTrack(n *ir.Name) bool {
|
|
return (n.Class == ir.PAUTO && n.Esc() != ir.EscHeap || n.Class == ir.PPARAM || n.Class == ir.PPARAMOUT) && n.Type().HasPointers()
|
|
}
|
|
|
|
// getvariables returns the list of on-stack variables that we need to track
|
|
// and a map for looking up indices by *Node.
|
|
func getvariables(fn *ir.Func) ([]*ir.Name, map[*ir.Name]int32) {
|
|
var vars []*ir.Name
|
|
for _, n := range fn.Dcl {
|
|
if shouldTrack(n) {
|
|
vars = append(vars, n)
|
|
}
|
|
}
|
|
idx := make(map[*ir.Name]int32, len(vars))
|
|
for i, n := range vars {
|
|
idx[n] = int32(i)
|
|
}
|
|
return vars, idx
|
|
}
|
|
|
|
func (lv *liveness) initcache() {
|
|
if lv.cache.initialized {
|
|
base.Fatalf("liveness cache initialized twice")
|
|
return
|
|
}
|
|
lv.cache.initialized = true
|
|
|
|
for i, node := range lv.vars {
|
|
switch node.Class {
|
|
case ir.PPARAM:
|
|
// A return instruction with a p.to is a tail return, which brings
|
|
// the stack pointer back up (if it ever went down) and then jumps
|
|
// to a new function entirely. That form of instruction must read
|
|
// all the parameters for correctness, and similarly it must not
|
|
// read the out arguments - they won't be set until the new
|
|
// function runs.
|
|
lv.cache.tailuevar = append(lv.cache.tailuevar, int32(i))
|
|
|
|
case ir.PPARAMOUT:
|
|
// All results are live at every return point.
|
|
// Note that this point is after escaping return values
|
|
// are copied back to the stack using their PAUTOHEAP references.
|
|
lv.cache.retuevar = append(lv.cache.retuevar, int32(i))
|
|
}
|
|
}
|
|
}
|
|
|
|
// A liveEffect is a set of flags that describe an instruction's
|
|
// liveness effects on a variable.
|
|
//
|
|
// The possible flags are:
|
|
//
|
|
// uevar - used by the instruction
|
|
// varkill - killed by the instruction (set)
|
|
//
|
|
// A kill happens after the use (for an instruction that updates a value, for example).
|
|
type liveEffect int
|
|
|
|
const (
|
|
uevar liveEffect = 1 << iota
|
|
varkill
|
|
)
|
|
|
|
// valueEffects returns the index of a variable in lv.vars and the
|
|
// liveness effects v has on that variable.
|
|
// If v does not affect any tracked variables, it returns -1, 0.
|
|
func (lv *liveness) valueEffects(v *ssa.Value) (int32, liveEffect) {
|
|
n, e := affectedVar(v)
|
|
if e == 0 || n == nil { // cheapest checks first
|
|
return -1, 0
|
|
}
|
|
// AllocFrame has dropped unused variables from
|
|
// lv.fn.Func.Dcl, but they might still be referenced by
|
|
// OpVarFoo pseudo-ops. Ignore them to prevent "lost track of
|
|
// variable" ICEs (issue 19632).
|
|
switch v.Op {
|
|
case ssa.OpVarDef, ssa.OpVarKill, ssa.OpVarLive, ssa.OpKeepAlive:
|
|
if !n.Used() {
|
|
return -1, 0
|
|
}
|
|
}
|
|
|
|
if n.Class == ir.PPARAM && !n.Addrtaken() && n.Type().Size() > int64(types.PtrSize) {
|
|
// Only aggregate-typed arguments that are not address-taken can be
|
|
// partially live.
|
|
lv.partLiveArgs[n] = true
|
|
}
|
|
|
|
var effect liveEffect
|
|
// Read is a read, obviously.
|
|
//
|
|
// Addr is a read also, as any subsequent holder of the pointer must be able
|
|
// to see all the values (including initialization) written so far.
|
|
// This also prevents a variable from "coming back from the dead" and presenting
|
|
// stale pointers to the garbage collector. See issue 28445.
|
|
if e&(ssa.SymRead|ssa.SymAddr) != 0 {
|
|
effect |= uevar
|
|
}
|
|
if e&ssa.SymWrite != 0 && (!isfat(n.Type()) || v.Op == ssa.OpVarDef) {
|
|
effect |= varkill
|
|
}
|
|
|
|
if effect == 0 {
|
|
return -1, 0
|
|
}
|
|
|
|
if pos, ok := lv.idx[n]; ok {
|
|
return pos, effect
|
|
}
|
|
return -1, 0
|
|
}
|
|
|
|
// affectedVar returns the *ir.Name node affected by v
|
|
func affectedVar(v *ssa.Value) (*ir.Name, ssa.SymEffect) {
|
|
// Special cases.
|
|
switch v.Op {
|
|
case ssa.OpLoadReg:
|
|
n, _ := ssa.AutoVar(v.Args[0])
|
|
return n, ssa.SymRead
|
|
case ssa.OpStoreReg:
|
|
n, _ := ssa.AutoVar(v)
|
|
return n, ssa.SymWrite
|
|
|
|
case ssa.OpArgIntReg:
|
|
// This forces the spill slot for the register to be live at function entry.
|
|
// one of the following holds for a function F with pointer-valued register arg X:
|
|
// 0. No GC (so an uninitialized spill slot is okay)
|
|
// 1. GC at entry of F. GC is precise, but the spills around morestack initialize X's spill slot
|
|
// 2. Stack growth at entry of F. Same as GC.
|
|
// 3. GC occurs within F itself. This has to be from preemption, and thus GC is conservative.
|
|
// a. X is in a register -- then X is seen, and the spill slot is also scanned conservatively.
|
|
// b. X is spilled -- the spill slot is initialized, and scanned conservatively
|
|
// c. X is not live -- the spill slot is scanned conservatively, and it may contain X from an earlier spill.
|
|
// 4. GC within G, transitively called from F
|
|
// a. X is live at call site, therefore is spilled, to its spill slot (which is live because of subsequent LoadReg).
|
|
// b. X is not live at call site -- but neither is its spill slot.
|
|
n, _ := ssa.AutoVar(v)
|
|
return n, ssa.SymRead
|
|
|
|
case ssa.OpVarLive:
|
|
return v.Aux.(*ir.Name), ssa.SymRead
|
|
case ssa.OpVarDef, ssa.OpVarKill:
|
|
return v.Aux.(*ir.Name), ssa.SymWrite
|
|
case ssa.OpKeepAlive:
|
|
n, _ := ssa.AutoVar(v.Args[0])
|
|
return n, ssa.SymRead
|
|
}
|
|
|
|
e := v.Op.SymEffect()
|
|
if e == 0 {
|
|
return nil, 0
|
|
}
|
|
|
|
switch a := v.Aux.(type) {
|
|
case nil, *obj.LSym:
|
|
// ok, but no node
|
|
return nil, e
|
|
case *ir.Name:
|
|
return a, e
|
|
default:
|
|
base.Fatalf("weird aux: %s", v.LongString())
|
|
return nil, e
|
|
}
|
|
}
|
|
|
|
type livenessFuncCache struct {
|
|
be []blockEffects
|
|
livenessMap Map
|
|
}
|
|
|
|
// Constructs a new liveness structure used to hold the global state of the
|
|
// liveness computation. The cfg argument is a slice of *BasicBlocks and the
|
|
// vars argument is a slice of *Nodes.
|
|
func newliveness(fn *ir.Func, f *ssa.Func, vars []*ir.Name, idx map[*ir.Name]int32, stkptrsize int64) *liveness {
|
|
lv := &liveness{
|
|
fn: fn,
|
|
f: f,
|
|
vars: vars,
|
|
idx: idx,
|
|
stkptrsize: stkptrsize,
|
|
}
|
|
|
|
// Significant sources of allocation are kept in the ssa.Cache
|
|
// and reused. Surprisingly, the bit vectors themselves aren't
|
|
// a major source of allocation, but the liveness maps are.
|
|
if lc, _ := f.Cache.Liveness.(*livenessFuncCache); lc == nil {
|
|
// Prep the cache so liveness can fill it later.
|
|
f.Cache.Liveness = new(livenessFuncCache)
|
|
} else {
|
|
if cap(lc.be) >= f.NumBlocks() {
|
|
lv.be = lc.be[:f.NumBlocks()]
|
|
}
|
|
lv.livenessMap = Map{Vals: lc.livenessMap.Vals, DeferReturn: objw.LivenessDontCare}
|
|
lc.livenessMap.Vals = nil
|
|
}
|
|
if lv.be == nil {
|
|
lv.be = make([]blockEffects, f.NumBlocks())
|
|
}
|
|
|
|
nblocks := int32(len(f.Blocks))
|
|
nvars := int32(len(vars))
|
|
bulk := bitvec.NewBulk(nvars, nblocks*7)
|
|
for _, b := range f.Blocks {
|
|
be := lv.blockEffects(b)
|
|
|
|
be.uevar = bulk.Next()
|
|
be.varkill = bulk.Next()
|
|
be.livein = bulk.Next()
|
|
be.liveout = bulk.Next()
|
|
}
|
|
lv.livenessMap.reset()
|
|
|
|
lv.markUnsafePoints()
|
|
|
|
lv.partLiveArgs = make(map[*ir.Name]bool)
|
|
|
|
lv.enableClobber()
|
|
|
|
return lv
|
|
}
|
|
|
|
func (lv *liveness) blockEffects(b *ssa.Block) *blockEffects {
|
|
return &lv.be[b.ID]
|
|
}
|
|
|
|
// Generates live pointer value maps for arguments and local variables. The
|
|
// this argument and the in arguments are always assumed live. The vars
|
|
// argument is a slice of *Nodes.
|
|
func (lv *liveness) pointerMap(liveout bitvec.BitVec, vars []*ir.Name, args, locals bitvec.BitVec) {
|
|
for i := int32(0); ; i++ {
|
|
i = liveout.Next(i)
|
|
if i < 0 {
|
|
break
|
|
}
|
|
node := vars[i]
|
|
switch node.Class {
|
|
case ir.PPARAM, ir.PPARAMOUT:
|
|
if !node.IsOutputParamInRegisters() {
|
|
if node.FrameOffset() < 0 {
|
|
lv.f.Fatalf("Node %v has frameoffset %d\n", node.Sym().Name, node.FrameOffset())
|
|
}
|
|
typebits.Set(node.Type(), node.FrameOffset(), args)
|
|
break
|
|
}
|
|
fallthrough // PPARAMOUT in registers acts memory-allocates like an AUTO
|
|
case ir.PAUTO:
|
|
typebits.Set(node.Type(), node.FrameOffset()+lv.stkptrsize, locals)
|
|
}
|
|
}
|
|
}
|
|
|
|
// IsUnsafe indicates that all points in this function are
|
|
// unsafe-points.
|
|
func IsUnsafe(f *ssa.Func) bool {
|
|
// The runtime assumes the only safe-points are function
|
|
// prologues (because that's how it used to be). We could and
|
|
// should improve that, but for now keep consider all points
|
|
// in the runtime unsafe. obj will add prologues and their
|
|
// safe-points.
|
|
//
|
|
// go:nosplit functions are similar. Since safe points used to
|
|
// be coupled with stack checks, go:nosplit often actually
|
|
// means "no safe points in this function".
|
|
return base.Flag.CompilingRuntime || f.NoSplit
|
|
}
|
|
|
|
// markUnsafePoints finds unsafe points and computes lv.unsafePoints.
|
|
func (lv *liveness) markUnsafePoints() {
|
|
if IsUnsafe(lv.f) {
|
|
// No complex analysis necessary.
|
|
lv.allUnsafe = true
|
|
return
|
|
}
|
|
|
|
lv.unsafePoints = bitvec.New(int32(lv.f.NumValues()))
|
|
|
|
// Mark architecture-specific unsafe points.
|
|
for _, b := range lv.f.Blocks {
|
|
for _, v := range b.Values {
|
|
if v.Op.UnsafePoint() {
|
|
lv.unsafePoints.Set(int32(v.ID))
|
|
}
|
|
}
|
|
}
|
|
|
|
// Mark write barrier unsafe points.
|
|
for _, wbBlock := range lv.f.WBLoads {
|
|
if wbBlock.Kind == ssa.BlockPlain && len(wbBlock.Values) == 0 {
|
|
// The write barrier block was optimized away
|
|
// but we haven't done dead block elimination.
|
|
// (This can happen in -N mode.)
|
|
continue
|
|
}
|
|
// Check that we have the expected diamond shape.
|
|
if len(wbBlock.Succs) != 2 {
|
|
lv.f.Fatalf("expected branch at write barrier block %v", wbBlock)
|
|
}
|
|
s0, s1 := wbBlock.Succs[0].Block(), wbBlock.Succs[1].Block()
|
|
if s0 == s1 {
|
|
// There's no difference between write barrier on and off.
|
|
// Thus there's no unsafe locations. See issue 26024.
|
|
continue
|
|
}
|
|
if s0.Kind != ssa.BlockPlain || s1.Kind != ssa.BlockPlain {
|
|
lv.f.Fatalf("expected successors of write barrier block %v to be plain", wbBlock)
|
|
}
|
|
if s0.Succs[0].Block() != s1.Succs[0].Block() {
|
|
lv.f.Fatalf("expected successors of write barrier block %v to converge", wbBlock)
|
|
}
|
|
|
|
// Flow backwards from the control value to find the
|
|
// flag load. We don't know what lowered ops we're
|
|
// looking for, but all current arches produce a
|
|
// single op that does the memory load from the flag
|
|
// address, so we look for that.
|
|
var load *ssa.Value
|
|
v := wbBlock.Controls[0]
|
|
for {
|
|
if sym, ok := v.Aux.(*obj.LSym); ok && sym == ir.Syms.WriteBarrier {
|
|
load = v
|
|
break
|
|
}
|
|
switch v.Op {
|
|
case ssa.Op386TESTL:
|
|
// 386 lowers Neq32 to (TESTL cond cond),
|
|
if v.Args[0] == v.Args[1] {
|
|
v = v.Args[0]
|
|
continue
|
|
}
|
|
case ssa.Op386MOVLload, ssa.OpARM64MOVWUload, ssa.OpPPC64MOVWZload, ssa.OpWasmI64Load32U:
|
|
// Args[0] is the address of the write
|
|
// barrier control. Ignore Args[1],
|
|
// which is the mem operand.
|
|
// TODO: Just ignore mem operands?
|
|
v = v.Args[0]
|
|
continue
|
|
}
|
|
// Common case: just flow backwards.
|
|
if len(v.Args) != 1 {
|
|
v.Fatalf("write barrier control value has more than one argument: %s", v.LongString())
|
|
}
|
|
v = v.Args[0]
|
|
}
|
|
|
|
// Mark everything after the load unsafe.
|
|
found := false
|
|
for _, v := range wbBlock.Values {
|
|
found = found || v == load
|
|
if found {
|
|
lv.unsafePoints.Set(int32(v.ID))
|
|
}
|
|
}
|
|
|
|
// Mark the two successor blocks unsafe. These come
|
|
// back together immediately after the direct write in
|
|
// one successor and the last write barrier call in
|
|
// the other, so there's no need to be more precise.
|
|
for _, succ := range wbBlock.Succs {
|
|
for _, v := range succ.Block().Values {
|
|
lv.unsafePoints.Set(int32(v.ID))
|
|
}
|
|
}
|
|
}
|
|
|
|
// Find uintptr -> unsafe.Pointer conversions and flood
|
|
// unsafeness back to a call (which is always a safe point).
|
|
//
|
|
// Looking for the uintptr -> unsafe.Pointer conversion has a
|
|
// few advantages over looking for unsafe.Pointer -> uintptr
|
|
// conversions:
|
|
//
|
|
// 1. We avoid needlessly blocking safe-points for
|
|
// unsafe.Pointer -> uintptr conversions that never go back to
|
|
// a Pointer.
|
|
//
|
|
// 2. We don't have to detect calls to reflect.Value.Pointer,
|
|
// reflect.Value.UnsafeAddr, and reflect.Value.InterfaceData,
|
|
// which are implicit unsafe.Pointer -> uintptr conversions.
|
|
// We can't even reliably detect this if there's an indirect
|
|
// call to one of these methods.
|
|
//
|
|
// TODO: For trivial unsafe.Pointer arithmetic, it would be
|
|
// nice to only flood as far as the unsafe.Pointer -> uintptr
|
|
// conversion, but it's hard to know which argument of an Add
|
|
// or Sub to follow.
|
|
var flooded bitvec.BitVec
|
|
var flood func(b *ssa.Block, vi int)
|
|
flood = func(b *ssa.Block, vi int) {
|
|
if flooded.N == 0 {
|
|
flooded = bitvec.New(int32(lv.f.NumBlocks()))
|
|
}
|
|
if flooded.Get(int32(b.ID)) {
|
|
return
|
|
}
|
|
for i := vi - 1; i >= 0; i-- {
|
|
v := b.Values[i]
|
|
if v.Op.IsCall() {
|
|
// Uintptrs must not contain live
|
|
// pointers across calls, so stop
|
|
// flooding.
|
|
return
|
|
}
|
|
lv.unsafePoints.Set(int32(v.ID))
|
|
}
|
|
if vi == len(b.Values) {
|
|
// We marked all values in this block, so no
|
|
// need to flood this block again.
|
|
flooded.Set(int32(b.ID))
|
|
}
|
|
for _, pred := range b.Preds {
|
|
flood(pred.Block(), len(pred.Block().Values))
|
|
}
|
|
}
|
|
for _, b := range lv.f.Blocks {
|
|
for i, v := range b.Values {
|
|
if !(v.Op == ssa.OpConvert && v.Type.IsPtrShaped()) {
|
|
continue
|
|
}
|
|
// Flood the unsafe-ness of this backwards
|
|
// until we hit a call.
|
|
flood(b, i+1)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Returns true for instructions that must have a stack map.
|
|
//
|
|
// This does not necessarily mean the instruction is a safe-point. In
|
|
// particular, call Values can have a stack map in case the callee
|
|
// grows the stack, but not themselves be a safe-point.
|
|
func (lv *liveness) hasStackMap(v *ssa.Value) bool {
|
|
if !v.Op.IsCall() {
|
|
return false
|
|
}
|
|
// typedmemclr and typedmemmove are write barriers and
|
|
// deeply non-preemptible. They are unsafe points and
|
|
// hence should not have liveness maps.
|
|
if sym, ok := v.Aux.(*ssa.AuxCall); ok && (sym.Fn == ir.Syms.Typedmemclr || sym.Fn == ir.Syms.Typedmemmove) {
|
|
return false
|
|
}
|
|
return true
|
|
}
|
|
|
|
// Initializes the sets for solving the live variables. Visits all the
|
|
// instructions in each basic block to summarizes the information at each basic
|
|
// block
|
|
func (lv *liveness) prologue() {
|
|
lv.initcache()
|
|
|
|
for _, b := range lv.f.Blocks {
|
|
be := lv.blockEffects(b)
|
|
|
|
// Walk the block instructions backward and update the block
|
|
// effects with the each prog effects.
|
|
for j := len(b.Values) - 1; j >= 0; j-- {
|
|
pos, e := lv.valueEffects(b.Values[j])
|
|
if e&varkill != 0 {
|
|
be.varkill.Set(pos)
|
|
be.uevar.Unset(pos)
|
|
}
|
|
if e&uevar != 0 {
|
|
be.uevar.Set(pos)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Solve the liveness dataflow equations.
|
|
func (lv *liveness) solve() {
|
|
// These temporary bitvectors exist to avoid successive allocations and
|
|
// frees within the loop.
|
|
nvars := int32(len(lv.vars))
|
|
newlivein := bitvec.New(nvars)
|
|
newliveout := bitvec.New(nvars)
|
|
|
|
// Walk blocks in postorder ordering. This improves convergence.
|
|
po := lv.f.Postorder()
|
|
|
|
// Iterate through the blocks in reverse round-robin fashion. A work
|
|
// queue might be slightly faster. As is, the number of iterations is
|
|
// so low that it hardly seems to be worth the complexity.
|
|
|
|
for change := true; change; {
|
|
change = false
|
|
for _, b := range po {
|
|
be := lv.blockEffects(b)
|
|
|
|
newliveout.Clear()
|
|
switch b.Kind {
|
|
case ssa.BlockRet:
|
|
for _, pos := range lv.cache.retuevar {
|
|
newliveout.Set(pos)
|
|
}
|
|
case ssa.BlockRetJmp:
|
|
for _, pos := range lv.cache.tailuevar {
|
|
newliveout.Set(pos)
|
|
}
|
|
case ssa.BlockExit:
|
|
// panic exit - nothing to do
|
|
default:
|
|
// A variable is live on output from this block
|
|
// if it is live on input to some successor.
|
|
//
|
|
// out[b] = \bigcup_{s \in succ[b]} in[s]
|
|
newliveout.Copy(lv.blockEffects(b.Succs[0].Block()).livein)
|
|
for _, succ := range b.Succs[1:] {
|
|
newliveout.Or(newliveout, lv.blockEffects(succ.Block()).livein)
|
|
}
|
|
}
|
|
|
|
if !be.liveout.Eq(newliveout) {
|
|
change = true
|
|
be.liveout.Copy(newliveout)
|
|
}
|
|
|
|
// A variable is live on input to this block
|
|
// if it is used by this block, or live on output from this block and
|
|
// not set by the code in this block.
|
|
//
|
|
// in[b] = uevar[b] \cup (out[b] \setminus varkill[b])
|
|
newlivein.AndNot(be.liveout, be.varkill)
|
|
be.livein.Or(newlivein, be.uevar)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Visits all instructions in a basic block and computes a bit vector of live
|
|
// variables at each safe point locations.
|
|
func (lv *liveness) epilogue() {
|
|
nvars := int32(len(lv.vars))
|
|
liveout := bitvec.New(nvars)
|
|
livedefer := bitvec.New(nvars) // always-live variables
|
|
|
|
// If there is a defer (that could recover), then all output
|
|
// parameters are live all the time. In addition, any locals
|
|
// that are pointers to heap-allocated output parameters are
|
|
// also always live (post-deferreturn code needs these
|
|
// pointers to copy values back to the stack).
|
|
// TODO: if the output parameter is heap-allocated, then we
|
|
// don't need to keep the stack copy live?
|
|
if lv.fn.HasDefer() {
|
|
for i, n := range lv.vars {
|
|
if n.Class == ir.PPARAMOUT {
|
|
if n.IsOutputParamHeapAddr() {
|
|
// Just to be paranoid. Heap addresses are PAUTOs.
|
|
base.Fatalf("variable %v both output param and heap output param", n)
|
|
}
|
|
if n.Heapaddr != nil {
|
|
// If this variable moved to the heap, then
|
|
// its stack copy is not live.
|
|
continue
|
|
}
|
|
// Note: zeroing is handled by zeroResults in walk.go.
|
|
livedefer.Set(int32(i))
|
|
}
|
|
if n.IsOutputParamHeapAddr() {
|
|
// This variable will be overwritten early in the function
|
|
// prologue (from the result of a mallocgc) but we need to
|
|
// zero it in case that malloc causes a stack scan.
|
|
n.SetNeedzero(true)
|
|
livedefer.Set(int32(i))
|
|
}
|
|
if n.OpenDeferSlot() {
|
|
// Open-coded defer args slots must be live
|
|
// everywhere in a function, since a panic can
|
|
// occur (almost) anywhere. Because it is live
|
|
// everywhere, it must be zeroed on entry.
|
|
livedefer.Set(int32(i))
|
|
// It was already marked as Needzero when created.
|
|
if !n.Needzero() {
|
|
base.Fatalf("all pointer-containing defer arg slots should have Needzero set")
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// We must analyze the entry block first. The runtime assumes
|
|
// the function entry map is index 0. Conveniently, layout
|
|
// already ensured that the entry block is first.
|
|
if lv.f.Entry != lv.f.Blocks[0] {
|
|
lv.f.Fatalf("entry block must be first")
|
|
}
|
|
|
|
{
|
|
// Reserve an entry for function entry.
|
|
live := bitvec.New(nvars)
|
|
lv.livevars = append(lv.livevars, live)
|
|
}
|
|
|
|
for _, b := range lv.f.Blocks {
|
|
be := lv.blockEffects(b)
|
|
|
|
// Walk forward through the basic block instructions and
|
|
// allocate liveness maps for those instructions that need them.
|
|
for _, v := range b.Values {
|
|
if !lv.hasStackMap(v) {
|
|
continue
|
|
}
|
|
|
|
live := bitvec.New(nvars)
|
|
lv.livevars = append(lv.livevars, live)
|
|
}
|
|
|
|
// walk backward, construct maps at each safe point
|
|
index := int32(len(lv.livevars) - 1)
|
|
|
|
liveout.Copy(be.liveout)
|
|
for i := len(b.Values) - 1; i >= 0; i-- {
|
|
v := b.Values[i]
|
|
|
|
if lv.hasStackMap(v) {
|
|
// Found an interesting instruction, record the
|
|
// corresponding liveness information.
|
|
|
|
live := &lv.livevars[index]
|
|
live.Or(*live, liveout)
|
|
live.Or(*live, livedefer) // only for non-entry safe points
|
|
index--
|
|
}
|
|
|
|
// Update liveness information.
|
|
pos, e := lv.valueEffects(v)
|
|
if e&varkill != 0 {
|
|
liveout.Unset(pos)
|
|
}
|
|
if e&uevar != 0 {
|
|
liveout.Set(pos)
|
|
}
|
|
}
|
|
|
|
if b == lv.f.Entry {
|
|
if index != 0 {
|
|
base.Fatalf("bad index for entry point: %v", index)
|
|
}
|
|
|
|
// Check to make sure only input variables are live.
|
|
for i, n := range lv.vars {
|
|
if !liveout.Get(int32(i)) {
|
|
continue
|
|
}
|
|
if n.Class == ir.PPARAM {
|
|
continue // ok
|
|
}
|
|
base.FatalfAt(n.Pos(), "bad live variable at entry of %v: %L", lv.fn.Nname, n)
|
|
}
|
|
|
|
// Record live variables.
|
|
live := &lv.livevars[index]
|
|
live.Or(*live, liveout)
|
|
}
|
|
|
|
if lv.doClobber {
|
|
lv.clobber(b)
|
|
}
|
|
|
|
// The liveness maps for this block are now complete. Compact them.
|
|
lv.compact(b)
|
|
}
|
|
|
|
// If we have an open-coded deferreturn call, make a liveness map for it.
|
|
if lv.fn.OpenCodedDeferDisallowed() {
|
|
lv.livenessMap.DeferReturn = objw.LivenessDontCare
|
|
} else {
|
|
idx, _ := lv.stackMapSet.add(livedefer)
|
|
lv.livenessMap.DeferReturn = objw.LivenessIndex{
|
|
StackMapIndex: idx,
|
|
IsUnsafePoint: false,
|
|
}
|
|
}
|
|
|
|
// Done compacting. Throw out the stack map set.
|
|
lv.stackMaps = lv.stackMapSet.extractUnique()
|
|
lv.stackMapSet = bvecSet{}
|
|
|
|
// Useful sanity check: on entry to the function,
|
|
// the only things that can possibly be live are the
|
|
// input parameters.
|
|
for j, n := range lv.vars {
|
|
if n.Class != ir.PPARAM && lv.stackMaps[0].Get(int32(j)) {
|
|
lv.f.Fatalf("%v %L recorded as live on entry", lv.fn.Nname, n)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compact coalesces identical bitmaps from lv.livevars into the sets
|
|
// lv.stackMapSet.
|
|
//
|
|
// Compact clears lv.livevars.
|
|
//
|
|
// There are actually two lists of bitmaps, one list for the local variables and one
|
|
// list for the function arguments. Both lists are indexed by the same PCDATA
|
|
// index, so the corresponding pairs must be considered together when
|
|
// merging duplicates. The argument bitmaps change much less often during
|
|
// function execution than the local variable bitmaps, so it is possible that
|
|
// we could introduce a separate PCDATA index for arguments vs locals and
|
|
// then compact the set of argument bitmaps separately from the set of
|
|
// local variable bitmaps. As of 2014-04-02, doing this to the godoc binary
|
|
// is actually a net loss: we save about 50k of argument bitmaps but the new
|
|
// PCDATA tables cost about 100k. So for now we keep using a single index for
|
|
// both bitmap lists.
|
|
func (lv *liveness) compact(b *ssa.Block) {
|
|
pos := 0
|
|
if b == lv.f.Entry {
|
|
// Handle entry stack map.
|
|
lv.stackMapSet.add(lv.livevars[0])
|
|
pos++
|
|
}
|
|
for _, v := range b.Values {
|
|
hasStackMap := lv.hasStackMap(v)
|
|
isUnsafePoint := lv.allUnsafe || v.Op != ssa.OpClobber && lv.unsafePoints.Get(int32(v.ID))
|
|
idx := objw.LivenessIndex{StackMapIndex: objw.StackMapDontCare, IsUnsafePoint: isUnsafePoint}
|
|
if hasStackMap {
|
|
idx.StackMapIndex, _ = lv.stackMapSet.add(lv.livevars[pos])
|
|
pos++
|
|
}
|
|
if hasStackMap || isUnsafePoint {
|
|
lv.livenessMap.set(v, idx)
|
|
}
|
|
}
|
|
|
|
// Reset livevars.
|
|
lv.livevars = lv.livevars[:0]
|
|
}
|
|
|
|
func (lv *liveness) enableClobber() {
|
|
// The clobberdead experiment inserts code to clobber pointer slots in all
|
|
// the dead variables (locals and args) at every synchronous safepoint.
|
|
if !base.Flag.ClobberDead {
|
|
return
|
|
}
|
|
if lv.fn.Pragma&ir.CgoUnsafeArgs != 0 {
|
|
// C or assembly code uses the exact frame layout. Don't clobber.
|
|
return
|
|
}
|
|
if len(lv.vars) > 10000 || len(lv.f.Blocks) > 10000 {
|
|
// Be careful to avoid doing too much work.
|
|
// Bail if >10000 variables or >10000 blocks.
|
|
// Otherwise, giant functions make this experiment generate too much code.
|
|
return
|
|
}
|
|
if lv.f.Name == "forkAndExecInChild" {
|
|
// forkAndExecInChild calls vfork on some platforms.
|
|
// The code we add here clobbers parts of the stack in the child.
|
|
// When the parent resumes, it is using the same stack frame. But the
|
|
// child has clobbered stack variables that the parent needs. Boom!
|
|
// In particular, the sys argument gets clobbered.
|
|
return
|
|
}
|
|
if lv.f.Name == "wbBufFlush" ||
|
|
((lv.f.Name == "callReflect" || lv.f.Name == "callMethod") && lv.fn.ABIWrapper()) {
|
|
// runtime.wbBufFlush must not modify its arguments. See the comments
|
|
// in runtime/mwbbuf.go:wbBufFlush.
|
|
//
|
|
// reflect.callReflect and reflect.callMethod are called from special
|
|
// functions makeFuncStub and methodValueCall. The runtime expects
|
|
// that it can find the first argument (ctxt) at 0(SP) in makeFuncStub
|
|
// and methodValueCall's frame (see runtime/traceback.go:getArgInfo).
|
|
// Normally callReflect and callMethod already do not modify the
|
|
// argument, and keep it alive. But the compiler-generated ABI wrappers
|
|
// don't do that. Special case the wrappers to not clobber its arguments.
|
|
lv.noClobberArgs = true
|
|
}
|
|
if h := os.Getenv("GOCLOBBERDEADHASH"); h != "" {
|
|
// Clobber only functions where the hash of the function name matches a pattern.
|
|
// Useful for binary searching for a miscompiled function.
|
|
hstr := ""
|
|
for _, b := range sha1.Sum([]byte(lv.f.Name)) {
|
|
hstr += fmt.Sprintf("%08b", b)
|
|
}
|
|
if !strings.HasSuffix(hstr, h) {
|
|
return
|
|
}
|
|
fmt.Printf("\t\t\tCLOBBERDEAD %s\n", lv.f.Name)
|
|
}
|
|
lv.doClobber = true
|
|
}
|
|
|
|
// Inserts code to clobber pointer slots in all the dead variables (locals and args)
|
|
// at every synchronous safepoint in b.
|
|
func (lv *liveness) clobber(b *ssa.Block) {
|
|
// Copy block's values to a temporary.
|
|
oldSched := append([]*ssa.Value{}, b.Values...)
|
|
b.Values = b.Values[:0]
|
|
idx := 0
|
|
|
|
// Clobber pointer slots in all dead variables at entry.
|
|
if b == lv.f.Entry {
|
|
for len(oldSched) > 0 && len(oldSched[0].Args) == 0 {
|
|
// Skip argless ops. We need to skip at least
|
|
// the lowered ClosurePtr op, because it
|
|
// really wants to be first. This will also
|
|
// skip ops like InitMem and SP, which are ok.
|
|
b.Values = append(b.Values, oldSched[0])
|
|
oldSched = oldSched[1:]
|
|
}
|
|
clobber(lv, b, lv.livevars[0])
|
|
idx++
|
|
}
|
|
|
|
// Copy values into schedule, adding clobbering around safepoints.
|
|
for _, v := range oldSched {
|
|
if !lv.hasStackMap(v) {
|
|
b.Values = append(b.Values, v)
|
|
continue
|
|
}
|
|
clobber(lv, b, lv.livevars[idx])
|
|
b.Values = append(b.Values, v)
|
|
idx++
|
|
}
|
|
}
|
|
|
|
// clobber generates code to clobber pointer slots in all dead variables
|
|
// (those not marked in live). Clobbering instructions are added to the end
|
|
// of b.Values.
|
|
func clobber(lv *liveness, b *ssa.Block, live bitvec.BitVec) {
|
|
for i, n := range lv.vars {
|
|
if !live.Get(int32(i)) && !n.Addrtaken() && !n.OpenDeferSlot() && !n.IsOutputParamHeapAddr() {
|
|
// Don't clobber stack objects (address-taken). They are
|
|
// tracked dynamically.
|
|
// Also don't clobber slots that are live for defers (see
|
|
// the code setting livedefer in epilogue).
|
|
if lv.noClobberArgs && n.Class == ir.PPARAM {
|
|
continue
|
|
}
|
|
clobberVar(b, n)
|
|
}
|
|
}
|
|
}
|
|
|
|
// clobberVar generates code to trash the pointers in v.
|
|
// Clobbering instructions are added to the end of b.Values.
|
|
func clobberVar(b *ssa.Block, v *ir.Name) {
|
|
clobberWalk(b, v, 0, v.Type())
|
|
}
|
|
|
|
// b = block to which we append instructions
|
|
// v = variable
|
|
// offset = offset of (sub-portion of) variable to clobber (in bytes)
|
|
// t = type of sub-portion of v.
|
|
func clobberWalk(b *ssa.Block, v *ir.Name, offset int64, t *types.Type) {
|
|
if !t.HasPointers() {
|
|
return
|
|
}
|
|
switch t.Kind() {
|
|
case types.TPTR,
|
|
types.TUNSAFEPTR,
|
|
types.TFUNC,
|
|
types.TCHAN,
|
|
types.TMAP:
|
|
clobberPtr(b, v, offset)
|
|
|
|
case types.TSTRING:
|
|
// struct { byte *str; int len; }
|
|
clobberPtr(b, v, offset)
|
|
|
|
case types.TINTER:
|
|
// struct { Itab *tab; void *data; }
|
|
// or, when isnilinter(t)==true:
|
|
// struct { Type *type; void *data; }
|
|
clobberPtr(b, v, offset)
|
|
clobberPtr(b, v, offset+int64(types.PtrSize))
|
|
|
|
case types.TSLICE:
|
|
// struct { byte *array; int len; int cap; }
|
|
clobberPtr(b, v, offset)
|
|
|
|
case types.TARRAY:
|
|
for i := int64(0); i < t.NumElem(); i++ {
|
|
clobberWalk(b, v, offset+i*t.Elem().Size(), t.Elem())
|
|
}
|
|
|
|
case types.TSTRUCT:
|
|
for _, t1 := range t.Fields().Slice() {
|
|
clobberWalk(b, v, offset+t1.Offset, t1.Type)
|
|
}
|
|
|
|
default:
|
|
base.Fatalf("clobberWalk: unexpected type, %v", t)
|
|
}
|
|
}
|
|
|
|
// clobberPtr generates a clobber of the pointer at offset offset in v.
|
|
// The clobber instruction is added at the end of b.
|
|
func clobberPtr(b *ssa.Block, v *ir.Name, offset int64) {
|
|
b.NewValue0IA(src.NoXPos, ssa.OpClobber, types.TypeVoid, offset, v)
|
|
}
|
|
|
|
func (lv *liveness) showlive(v *ssa.Value, live bitvec.BitVec) {
|
|
if base.Flag.Live == 0 || ir.FuncName(lv.fn) == "init" || strings.HasPrefix(ir.FuncName(lv.fn), ".") {
|
|
return
|
|
}
|
|
if lv.fn.Wrapper() || lv.fn.Dupok() {
|
|
// Skip reporting liveness information for compiler-generated wrappers.
|
|
return
|
|
}
|
|
if !(v == nil || v.Op.IsCall()) {
|
|
// Historically we only printed this information at
|
|
// calls. Keep doing so.
|
|
return
|
|
}
|
|
if live.IsEmpty() {
|
|
return
|
|
}
|
|
|
|
pos := lv.fn.Nname.Pos()
|
|
if v != nil {
|
|
pos = v.Pos
|
|
}
|
|
|
|
s := "live at "
|
|
if v == nil {
|
|
s += fmt.Sprintf("entry to %s:", ir.FuncName(lv.fn))
|
|
} else if sym, ok := v.Aux.(*ssa.AuxCall); ok && sym.Fn != nil {
|
|
fn := sym.Fn.Name
|
|
if pos := strings.Index(fn, "."); pos >= 0 {
|
|
fn = fn[pos+1:]
|
|
}
|
|
s += fmt.Sprintf("call to %s:", fn)
|
|
} else {
|
|
s += "indirect call:"
|
|
}
|
|
|
|
for j, n := range lv.vars {
|
|
if live.Get(int32(j)) {
|
|
s += fmt.Sprintf(" %v", n)
|
|
}
|
|
}
|
|
|
|
base.WarnfAt(pos, s)
|
|
}
|
|
|
|
func (lv *liveness) printbvec(printed bool, name string, live bitvec.BitVec) bool {
|
|
if live.IsEmpty() {
|
|
return printed
|
|
}
|
|
|
|
if !printed {
|
|
fmt.Printf("\t")
|
|
} else {
|
|
fmt.Printf(" ")
|
|
}
|
|
fmt.Printf("%s=", name)
|
|
|
|
comma := ""
|
|
for i, n := range lv.vars {
|
|
if !live.Get(int32(i)) {
|
|
continue
|
|
}
|
|
fmt.Printf("%s%s", comma, n.Sym().Name)
|
|
comma = ","
|
|
}
|
|
return true
|
|
}
|
|
|
|
// printeffect is like printbvec, but for valueEffects.
|
|
func (lv *liveness) printeffect(printed bool, name string, pos int32, x bool) bool {
|
|
if !x {
|
|
return printed
|
|
}
|
|
if !printed {
|
|
fmt.Printf("\t")
|
|
} else {
|
|
fmt.Printf(" ")
|
|
}
|
|
fmt.Printf("%s=", name)
|
|
if x {
|
|
fmt.Printf("%s", lv.vars[pos].Sym().Name)
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
// Prints the computed liveness information and inputs, for debugging.
|
|
// This format synthesizes the information used during the multiple passes
|
|
// into a single presentation.
|
|
func (lv *liveness) printDebug() {
|
|
fmt.Printf("liveness: %s\n", ir.FuncName(lv.fn))
|
|
|
|
for i, b := range lv.f.Blocks {
|
|
if i > 0 {
|
|
fmt.Printf("\n")
|
|
}
|
|
|
|
// bb#0 pred=1,2 succ=3,4
|
|
fmt.Printf("bb#%d pred=", b.ID)
|
|
for j, pred := range b.Preds {
|
|
if j > 0 {
|
|
fmt.Printf(",")
|
|
}
|
|
fmt.Printf("%d", pred.Block().ID)
|
|
}
|
|
fmt.Printf(" succ=")
|
|
for j, succ := range b.Succs {
|
|
if j > 0 {
|
|
fmt.Printf(",")
|
|
}
|
|
fmt.Printf("%d", succ.Block().ID)
|
|
}
|
|
fmt.Printf("\n")
|
|
|
|
be := lv.blockEffects(b)
|
|
|
|
// initial settings
|
|
printed := false
|
|
printed = lv.printbvec(printed, "uevar", be.uevar)
|
|
printed = lv.printbvec(printed, "livein", be.livein)
|
|
if printed {
|
|
fmt.Printf("\n")
|
|
}
|
|
|
|
// program listing, with individual effects listed
|
|
|
|
if b == lv.f.Entry {
|
|
live := lv.stackMaps[0]
|
|
fmt.Printf("(%s) function entry\n", base.FmtPos(lv.fn.Nname.Pos()))
|
|
fmt.Printf("\tlive=")
|
|
printed = false
|
|
for j, n := range lv.vars {
|
|
if !live.Get(int32(j)) {
|
|
continue
|
|
}
|
|
if printed {
|
|
fmt.Printf(",")
|
|
}
|
|
fmt.Printf("%v", n)
|
|
printed = true
|
|
}
|
|
fmt.Printf("\n")
|
|
}
|
|
|
|
for _, v := range b.Values {
|
|
fmt.Printf("(%s) %v\n", base.FmtPos(v.Pos), v.LongString())
|
|
|
|
pcdata := lv.livenessMap.Get(v)
|
|
|
|
pos, effect := lv.valueEffects(v)
|
|
printed = false
|
|
printed = lv.printeffect(printed, "uevar", pos, effect&uevar != 0)
|
|
printed = lv.printeffect(printed, "varkill", pos, effect&varkill != 0)
|
|
if printed {
|
|
fmt.Printf("\n")
|
|
}
|
|
|
|
if pcdata.StackMapValid() {
|
|
fmt.Printf("\tlive=")
|
|
printed = false
|
|
if pcdata.StackMapValid() {
|
|
live := lv.stackMaps[pcdata.StackMapIndex]
|
|
for j, n := range lv.vars {
|
|
if !live.Get(int32(j)) {
|
|
continue
|
|
}
|
|
if printed {
|
|
fmt.Printf(",")
|
|
}
|
|
fmt.Printf("%v", n)
|
|
printed = true
|
|
}
|
|
}
|
|
fmt.Printf("\n")
|
|
}
|
|
|
|
if pcdata.IsUnsafePoint {
|
|
fmt.Printf("\tunsafe-point\n")
|
|
}
|
|
}
|
|
|
|
// bb bitsets
|
|
fmt.Printf("end\n")
|
|
printed = false
|
|
printed = lv.printbvec(printed, "varkill", be.varkill)
|
|
printed = lv.printbvec(printed, "liveout", be.liveout)
|
|
if printed {
|
|
fmt.Printf("\n")
|
|
}
|
|
}
|
|
|
|
fmt.Printf("\n")
|
|
}
|
|
|
|
// Dumps a slice of bitmaps to a symbol as a sequence of uint32 values. The
|
|
// first word dumped is the total number of bitmaps. The second word is the
|
|
// length of the bitmaps. All bitmaps are assumed to be of equal length. The
|
|
// remaining bytes are the raw bitmaps.
|
|
func (lv *liveness) emit() (argsSym, liveSym *obj.LSym) {
|
|
// Size args bitmaps to be just large enough to hold the largest pointer.
|
|
// First, find the largest Xoffset node we care about.
|
|
// (Nodes without pointers aren't in lv.vars; see ShouldTrack.)
|
|
var maxArgNode *ir.Name
|
|
for _, n := range lv.vars {
|
|
switch n.Class {
|
|
case ir.PPARAM, ir.PPARAMOUT:
|
|
if !n.IsOutputParamInRegisters() {
|
|
if maxArgNode == nil || n.FrameOffset() > maxArgNode.FrameOffset() {
|
|
maxArgNode = n
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Next, find the offset of the largest pointer in the largest node.
|
|
var maxArgs int64
|
|
if maxArgNode != nil {
|
|
maxArgs = maxArgNode.FrameOffset() + types.PtrDataSize(maxArgNode.Type())
|
|
}
|
|
|
|
// Size locals bitmaps to be stkptrsize sized.
|
|
// We cannot shrink them to only hold the largest pointer,
|
|
// because their size is used to calculate the beginning
|
|
// of the local variables frame.
|
|
// Further discussion in https://golang.org/cl/104175.
|
|
// TODO: consider trimming leading zeros.
|
|
// This would require shifting all bitmaps.
|
|
maxLocals := lv.stkptrsize
|
|
|
|
// Temporary symbols for encoding bitmaps.
|
|
var argsSymTmp, liveSymTmp obj.LSym
|
|
|
|
args := bitvec.New(int32(maxArgs / int64(types.PtrSize)))
|
|
aoff := objw.Uint32(&argsSymTmp, 0, uint32(len(lv.stackMaps))) // number of bitmaps
|
|
aoff = objw.Uint32(&argsSymTmp, aoff, uint32(args.N)) // number of bits in each bitmap
|
|
|
|
locals := bitvec.New(int32(maxLocals / int64(types.PtrSize)))
|
|
loff := objw.Uint32(&liveSymTmp, 0, uint32(len(lv.stackMaps))) // number of bitmaps
|
|
loff = objw.Uint32(&liveSymTmp, loff, uint32(locals.N)) // number of bits in each bitmap
|
|
|
|
for _, live := range lv.stackMaps {
|
|
args.Clear()
|
|
locals.Clear()
|
|
|
|
lv.pointerMap(live, lv.vars, args, locals)
|
|
|
|
aoff = objw.BitVec(&argsSymTmp, aoff, args)
|
|
loff = objw.BitVec(&liveSymTmp, loff, locals)
|
|
}
|
|
|
|
// These symbols will be added to Ctxt.Data by addGCLocals
|
|
// after parallel compilation is done.
|
|
return base.Ctxt.GCLocalsSym(argsSymTmp.P), base.Ctxt.GCLocalsSym(liveSymTmp.P)
|
|
}
|
|
|
|
// Entry pointer for Compute analysis. Solves for the Compute of
|
|
// pointer variables in the function and emits a runtime data
|
|
// structure read by the garbage collector.
|
|
// Returns a map from GC safe points to their corresponding stack map index,
|
|
// and a map that contains all input parameters that may be partially live.
|
|
func Compute(curfn *ir.Func, f *ssa.Func, stkptrsize int64, pp *objw.Progs) (Map, map[*ir.Name]bool) {
|
|
// Construct the global liveness state.
|
|
vars, idx := getvariables(curfn)
|
|
lv := newliveness(curfn, f, vars, idx, stkptrsize)
|
|
|
|
// Run the dataflow framework.
|
|
lv.prologue()
|
|
lv.solve()
|
|
lv.epilogue()
|
|
if base.Flag.Live > 0 {
|
|
lv.showlive(nil, lv.stackMaps[0])
|
|
for _, b := range f.Blocks {
|
|
for _, val := range b.Values {
|
|
if idx := lv.livenessMap.Get(val); idx.StackMapValid() {
|
|
lv.showlive(val, lv.stackMaps[idx.StackMapIndex])
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if base.Flag.Live >= 2 {
|
|
lv.printDebug()
|
|
}
|
|
|
|
// Update the function cache.
|
|
{
|
|
cache := f.Cache.Liveness.(*livenessFuncCache)
|
|
if cap(lv.be) < 2000 { // Threshold from ssa.Cache slices.
|
|
for i := range lv.be {
|
|
lv.be[i] = blockEffects{}
|
|
}
|
|
cache.be = lv.be
|
|
}
|
|
if len(lv.livenessMap.Vals) < 2000 {
|
|
cache.livenessMap = lv.livenessMap
|
|
}
|
|
}
|
|
|
|
// Emit the live pointer map data structures
|
|
ls := curfn.LSym
|
|
fninfo := ls.Func()
|
|
fninfo.GCArgs, fninfo.GCLocals = lv.emit()
|
|
|
|
p := pp.Prog(obj.AFUNCDATA)
|
|
p.From.SetConst(objabi.FUNCDATA_ArgsPointerMaps)
|
|
p.To.Type = obj.TYPE_MEM
|
|
p.To.Name = obj.NAME_EXTERN
|
|
p.To.Sym = fninfo.GCArgs
|
|
|
|
p = pp.Prog(obj.AFUNCDATA)
|
|
p.From.SetConst(objabi.FUNCDATA_LocalsPointerMaps)
|
|
p.To.Type = obj.TYPE_MEM
|
|
p.To.Name = obj.NAME_EXTERN
|
|
p.To.Sym = fninfo.GCLocals
|
|
|
|
if x := lv.emitStackObjects(); x != nil {
|
|
p := pp.Prog(obj.AFUNCDATA)
|
|
p.From.SetConst(objabi.FUNCDATA_StackObjects)
|
|
p.To.Type = obj.TYPE_MEM
|
|
p.To.Name = obj.NAME_EXTERN
|
|
p.To.Sym = x
|
|
}
|
|
|
|
return lv.livenessMap, lv.partLiveArgs
|
|
}
|
|
|
|
func (lv *liveness) emitStackObjects() *obj.LSym {
|
|
var vars []*ir.Name
|
|
for _, n := range lv.fn.Dcl {
|
|
if shouldTrack(n) && n.Addrtaken() && n.Esc() != ir.EscHeap {
|
|
vars = append(vars, n)
|
|
}
|
|
}
|
|
if len(vars) == 0 {
|
|
return nil
|
|
}
|
|
|
|
// Sort variables from lowest to highest address.
|
|
sort.Slice(vars, func(i, j int) bool { return vars[i].FrameOffset() < vars[j].FrameOffset() })
|
|
|
|
// Populate the stack object data.
|
|
// Format must match runtime/stack.go:stackObjectRecord.
|
|
x := base.Ctxt.Lookup(lv.fn.LSym.Name + ".stkobj")
|
|
x.Set(obj.AttrContentAddressable, true)
|
|
lv.fn.LSym.Func().StackObjects = x
|
|
off := 0
|
|
off = objw.Uintptr(x, off, uint64(len(vars)))
|
|
for _, v := range vars {
|
|
// Note: arguments and return values have non-negative Xoffset,
|
|
// in which case the offset is relative to argp.
|
|
// Locals have a negative Xoffset, in which case the offset is relative to varp.
|
|
// We already limit the frame size, so the offset and the object size
|
|
// should not be too big.
|
|
frameOffset := v.FrameOffset()
|
|
if frameOffset != int64(int32(frameOffset)) {
|
|
base.Fatalf("frame offset too big: %v %d", v, frameOffset)
|
|
}
|
|
off = objw.Uint32(x, off, uint32(frameOffset))
|
|
|
|
t := v.Type()
|
|
sz := t.Size()
|
|
if sz != int64(int32(sz)) {
|
|
base.Fatalf("stack object too big: %v of type %v, size %d", v, t, sz)
|
|
}
|
|
lsym, useGCProg, ptrdata := reflectdata.GCSym(t)
|
|
if useGCProg {
|
|
ptrdata = -ptrdata
|
|
}
|
|
off = objw.Uint32(x, off, uint32(sz))
|
|
off = objw.Uint32(x, off, uint32(ptrdata))
|
|
off = objw.SymPtrOff(x, off, lsym)
|
|
}
|
|
|
|
if base.Flag.Live != 0 {
|
|
for _, v := range vars {
|
|
base.WarnfAt(v.Pos(), "stack object %v %v", v, v.Type())
|
|
}
|
|
}
|
|
|
|
return x
|
|
}
|
|
|
|
// isfat reports whether a variable of type t needs multiple assignments to initialize.
|
|
// For example:
|
|
//
|
|
// type T struct { x, y int }
|
|
// x := T{x: 0, y: 1}
|
|
//
|
|
// Then we need:
|
|
//
|
|
// var t T
|
|
// t.x = 0
|
|
// t.y = 1
|
|
//
|
|
// to fully initialize t.
|
|
func isfat(t *types.Type) bool {
|
|
if t != nil {
|
|
switch t.Kind() {
|
|
case types.TSLICE, types.TSTRING,
|
|
types.TINTER: // maybe remove later
|
|
return true
|
|
case types.TARRAY:
|
|
// Array of 1 element, check if element is fat
|
|
if t.NumElem() == 1 {
|
|
return isfat(t.Elem())
|
|
}
|
|
return true
|
|
case types.TSTRUCT:
|
|
// Struct with 1 field, check if field is fat
|
|
if t.NumFields() == 1 {
|
|
return isfat(t.Field(0).Type)
|
|
}
|
|
return true
|
|
}
|
|
}
|
|
|
|
return false
|
|
}
|
|
|
|
// WriteFuncMap writes the pointer bitmaps for bodyless function fn's
|
|
// inputs and outputs as the value of symbol <fn>.args_stackmap.
|
|
// If fn has outputs, two bitmaps are written, otherwise just one.
|
|
func WriteFuncMap(fn *ir.Func, abiInfo *abi.ABIParamResultInfo) {
|
|
if ir.FuncName(fn) == "_" || fn.Sym().Linkname != "" {
|
|
return
|
|
}
|
|
nptr := int(abiInfo.ArgWidth() / int64(types.PtrSize))
|
|
bv := bitvec.New(int32(nptr) * 2)
|
|
|
|
for _, p := range abiInfo.InParams() {
|
|
typebits.Set(p.Type, p.FrameOffset(abiInfo), bv)
|
|
}
|
|
|
|
nbitmap := 1
|
|
if fn.Type().NumResults() > 0 {
|
|
nbitmap = 2
|
|
}
|
|
lsym := base.Ctxt.Lookup(fn.LSym.Name + ".args_stackmap")
|
|
off := objw.Uint32(lsym, 0, uint32(nbitmap))
|
|
off = objw.Uint32(lsym, off, uint32(bv.N))
|
|
off = objw.BitVec(lsym, off, bv)
|
|
|
|
if fn.Type().NumResults() > 0 {
|
|
for _, p := range abiInfo.OutParams() {
|
|
if len(p.Registers) == 0 {
|
|
typebits.Set(p.Type, p.FrameOffset(abiInfo), bv)
|
|
}
|
|
}
|
|
off = objw.BitVec(lsym, off, bv)
|
|
}
|
|
|
|
objw.Global(lsym, int32(off), obj.RODATA|obj.LOCAL)
|
|
}
|