mirror of
https://github.com/golang/go.git
synced 2025-05-09 01:23:01 +00:00
Now that we are no longer calling the old typechecker at all during the noder2 pass, we don't need to create and set an Ntype node ((which is just a node representation of the type which we already know) for the Name and Closure nodes. This should reduce memory usage a bit for -G=3. Change-Id: I6b1345007ce067a89ee64955a53f25645c303f4d Reviewed-on: https://go-review.googlesource.com/c/go/+/308909 Trust: Dan Scales <danscales@google.com> Run-TryBot: Dan Scales <danscales@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
1456 lines
41 KiB
Go
1456 lines
41 KiB
Go
// Copyright 2011 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
//
|
|
// The inlining facility makes 2 passes: first caninl determines which
|
|
// functions are suitable for inlining, and for those that are it
|
|
// saves a copy of the body. Then InlineCalls walks each function body to
|
|
// expand calls to inlinable functions.
|
|
//
|
|
// The Debug.l flag controls the aggressiveness. Note that main() swaps level 0 and 1,
|
|
// making 1 the default and -l disable. Additional levels (beyond -l) may be buggy and
|
|
// are not supported.
|
|
// 0: disabled
|
|
// 1: 80-nodes leaf functions, oneliners, panic, lazy typechecking (default)
|
|
// 2: (unassigned)
|
|
// 3: (unassigned)
|
|
// 4: allow non-leaf functions
|
|
//
|
|
// At some point this may get another default and become switch-offable with -N.
|
|
//
|
|
// The -d typcheckinl flag enables early typechecking of all imported bodies,
|
|
// which is useful to flush out bugs.
|
|
//
|
|
// The Debug.m flag enables diagnostic output. a single -m is useful for verifying
|
|
// which calls get inlined or not, more is for debugging, and may go away at any point.
|
|
|
|
package inline
|
|
|
|
import (
|
|
"fmt"
|
|
"go/constant"
|
|
"strings"
|
|
|
|
"cmd/compile/internal/base"
|
|
"cmd/compile/internal/ir"
|
|
"cmd/compile/internal/logopt"
|
|
"cmd/compile/internal/typecheck"
|
|
"cmd/compile/internal/types"
|
|
"cmd/internal/obj"
|
|
"cmd/internal/src"
|
|
)
|
|
|
|
// Inlining budget parameters, gathered in one place
|
|
const (
|
|
inlineMaxBudget = 80
|
|
inlineExtraAppendCost = 0
|
|
// default is to inline if there's at most one call. -l=4 overrides this by using 1 instead.
|
|
inlineExtraCallCost = 57 // 57 was benchmarked to provided most benefit with no bad surprises; see https://github.com/golang/go/issues/19348#issuecomment-439370742
|
|
inlineExtraPanicCost = 1 // do not penalize inlining panics.
|
|
inlineExtraThrowCost = inlineMaxBudget // with current (2018-05/1.11) code, inlining runtime.throw does not help.
|
|
|
|
inlineBigFunctionNodes = 5000 // Functions with this many nodes are considered "big".
|
|
inlineBigFunctionMaxCost = 20 // Max cost of inlinee when inlining into a "big" function.
|
|
)
|
|
|
|
func InlinePackage() {
|
|
// Find functions that can be inlined and clone them before walk expands them.
|
|
ir.VisitFuncsBottomUp(typecheck.Target.Decls, func(list []*ir.Func, recursive bool) {
|
|
numfns := numNonClosures(list)
|
|
for _, n := range list {
|
|
if !recursive || numfns > 1 {
|
|
// We allow inlining if there is no
|
|
// recursion, or the recursion cycle is
|
|
// across more than one function.
|
|
CanInline(n)
|
|
} else {
|
|
if base.Flag.LowerM > 1 {
|
|
fmt.Printf("%v: cannot inline %v: recursive\n", ir.Line(n), n.Nname)
|
|
}
|
|
}
|
|
InlineCalls(n)
|
|
}
|
|
})
|
|
}
|
|
|
|
// CanInline determines whether fn is inlineable.
|
|
// If so, CanInline saves fn->nbody in fn->inl and substitutes it with a copy.
|
|
// fn and ->nbody will already have been typechecked.
|
|
func CanInline(fn *ir.Func) {
|
|
if fn.Nname == nil {
|
|
base.Fatalf("CanInline no nname %+v", fn)
|
|
}
|
|
|
|
var reason string // reason, if any, that the function was not inlined
|
|
if base.Flag.LowerM > 1 || logopt.Enabled() {
|
|
defer func() {
|
|
if reason != "" {
|
|
if base.Flag.LowerM > 1 {
|
|
fmt.Printf("%v: cannot inline %v: %s\n", ir.Line(fn), fn.Nname, reason)
|
|
}
|
|
if logopt.Enabled() {
|
|
logopt.LogOpt(fn.Pos(), "cannotInlineFunction", "inline", ir.FuncName(fn), reason)
|
|
}
|
|
}
|
|
}()
|
|
}
|
|
|
|
// If marked "go:noinline", don't inline
|
|
if fn.Pragma&ir.Noinline != 0 {
|
|
reason = "marked go:noinline"
|
|
return
|
|
}
|
|
|
|
// If marked "go:norace" and -race compilation, don't inline.
|
|
if base.Flag.Race && fn.Pragma&ir.Norace != 0 {
|
|
reason = "marked go:norace with -race compilation"
|
|
return
|
|
}
|
|
|
|
// If marked "go:nocheckptr" and -d checkptr compilation, don't inline.
|
|
if base.Debug.Checkptr != 0 && fn.Pragma&ir.NoCheckPtr != 0 {
|
|
reason = "marked go:nocheckptr"
|
|
return
|
|
}
|
|
|
|
// If marked "go:cgo_unsafe_args", don't inline, since the
|
|
// function makes assumptions about its argument frame layout.
|
|
if fn.Pragma&ir.CgoUnsafeArgs != 0 {
|
|
reason = "marked go:cgo_unsafe_args"
|
|
return
|
|
}
|
|
|
|
// If marked as "go:uintptrescapes", don't inline, since the
|
|
// escape information is lost during inlining.
|
|
if fn.Pragma&ir.UintptrEscapes != 0 {
|
|
reason = "marked as having an escaping uintptr argument"
|
|
return
|
|
}
|
|
|
|
// The nowritebarrierrec checker currently works at function
|
|
// granularity, so inlining yeswritebarrierrec functions can
|
|
// confuse it (#22342). As a workaround, disallow inlining
|
|
// them for now.
|
|
if fn.Pragma&ir.Yeswritebarrierrec != 0 {
|
|
reason = "marked go:yeswritebarrierrec"
|
|
return
|
|
}
|
|
|
|
// If fn has no body (is defined outside of Go), cannot inline it.
|
|
if len(fn.Body) == 0 {
|
|
reason = "no function body"
|
|
return
|
|
}
|
|
|
|
if fn.Typecheck() == 0 {
|
|
base.Fatalf("CanInline on non-typechecked function %v", fn)
|
|
}
|
|
|
|
n := fn.Nname
|
|
if n.Func.InlinabilityChecked() {
|
|
return
|
|
}
|
|
defer n.Func.SetInlinabilityChecked(true)
|
|
|
|
cc := int32(inlineExtraCallCost)
|
|
if base.Flag.LowerL == 4 {
|
|
cc = 1 // this appears to yield better performance than 0.
|
|
}
|
|
|
|
// At this point in the game the function we're looking at may
|
|
// have "stale" autos, vars that still appear in the Dcl list, but
|
|
// which no longer have any uses in the function body (due to
|
|
// elimination by deadcode). We'd like to exclude these dead vars
|
|
// when creating the "Inline.Dcl" field below; to accomplish this,
|
|
// the hairyVisitor below builds up a map of used/referenced
|
|
// locals, and we use this map to produce a pruned Inline.Dcl
|
|
// list. See issue 25249 for more context.
|
|
|
|
visitor := hairyVisitor{
|
|
budget: inlineMaxBudget,
|
|
extraCallCost: cc,
|
|
}
|
|
if visitor.tooHairy(fn) {
|
|
reason = visitor.reason
|
|
return
|
|
}
|
|
|
|
n.Func.Inl = &ir.Inline{
|
|
Cost: inlineMaxBudget - visitor.budget,
|
|
Dcl: pruneUnusedAutos(n.Defn.(*ir.Func).Dcl, &visitor),
|
|
Body: inlcopylist(fn.Body),
|
|
}
|
|
|
|
if base.Flag.LowerM > 1 {
|
|
fmt.Printf("%v: can inline %v with cost %d as: %v { %v }\n", ir.Line(fn), n, inlineMaxBudget-visitor.budget, fn.Type(), ir.Nodes(n.Func.Inl.Body))
|
|
} else if base.Flag.LowerM != 0 {
|
|
fmt.Printf("%v: can inline %v\n", ir.Line(fn), n)
|
|
}
|
|
if logopt.Enabled() {
|
|
logopt.LogOpt(fn.Pos(), "canInlineFunction", "inline", ir.FuncName(fn), fmt.Sprintf("cost: %d", inlineMaxBudget-visitor.budget))
|
|
}
|
|
}
|
|
|
|
// Inline_Flood marks n's inline body for export and recursively ensures
|
|
// all called functions are marked too.
|
|
func Inline_Flood(n *ir.Name, exportsym func(*ir.Name)) {
|
|
if n == nil {
|
|
return
|
|
}
|
|
if n.Op() != ir.ONAME || n.Class != ir.PFUNC {
|
|
base.Fatalf("Inline_Flood: unexpected %v, %v, %v", n, n.Op(), n.Class)
|
|
}
|
|
fn := n.Func
|
|
if fn == nil {
|
|
base.Fatalf("Inline_Flood: missing Func on %v", n)
|
|
}
|
|
if fn.Inl == nil {
|
|
return
|
|
}
|
|
|
|
if fn.ExportInline() {
|
|
return
|
|
}
|
|
fn.SetExportInline(true)
|
|
|
|
typecheck.ImportedBody(fn)
|
|
|
|
var doFlood func(n ir.Node)
|
|
doFlood = func(n ir.Node) {
|
|
switch n.Op() {
|
|
case ir.OMETHEXPR, ir.ODOTMETH:
|
|
Inline_Flood(ir.MethodExprName(n), exportsym)
|
|
|
|
case ir.ONAME:
|
|
n := n.(*ir.Name)
|
|
switch n.Class {
|
|
case ir.PFUNC:
|
|
Inline_Flood(n, exportsym)
|
|
exportsym(n)
|
|
case ir.PEXTERN:
|
|
exportsym(n)
|
|
}
|
|
|
|
case ir.OCALLPART:
|
|
// Okay, because we don't yet inline indirect
|
|
// calls to method values.
|
|
case ir.OCLOSURE:
|
|
// VisitList doesn't visit closure bodies, so force a
|
|
// recursive call to VisitList on the body of the closure.
|
|
ir.VisitList(n.(*ir.ClosureExpr).Func.Body, doFlood)
|
|
}
|
|
}
|
|
|
|
// Recursively identify all referenced functions for
|
|
// reexport. We want to include even non-called functions,
|
|
// because after inlining they might be callable.
|
|
ir.VisitList(ir.Nodes(fn.Inl.Body), doFlood)
|
|
}
|
|
|
|
// hairyVisitor visits a function body to determine its inlining
|
|
// hairiness and whether or not it can be inlined.
|
|
type hairyVisitor struct {
|
|
budget int32
|
|
reason string
|
|
extraCallCost int32
|
|
usedLocals ir.NameSet
|
|
do func(ir.Node) bool
|
|
}
|
|
|
|
func (v *hairyVisitor) tooHairy(fn *ir.Func) bool {
|
|
v.do = v.doNode // cache closure
|
|
if ir.DoChildren(fn, v.do) {
|
|
return true
|
|
}
|
|
if v.budget < 0 {
|
|
v.reason = fmt.Sprintf("function too complex: cost %d exceeds budget %d", inlineMaxBudget-v.budget, inlineMaxBudget)
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
func (v *hairyVisitor) doNode(n ir.Node) bool {
|
|
if n == nil {
|
|
return false
|
|
}
|
|
switch n.Op() {
|
|
// Call is okay if inlinable and we have the budget for the body.
|
|
case ir.OCALLFUNC:
|
|
n := n.(*ir.CallExpr)
|
|
// Functions that call runtime.getcaller{pc,sp} can not be inlined
|
|
// because getcaller{pc,sp} expect a pointer to the caller's first argument.
|
|
//
|
|
// runtime.throw is a "cheap call" like panic in normal code.
|
|
if n.X.Op() == ir.ONAME {
|
|
name := n.X.(*ir.Name)
|
|
if name.Class == ir.PFUNC && types.IsRuntimePkg(name.Sym().Pkg) {
|
|
fn := name.Sym().Name
|
|
if fn == "getcallerpc" || fn == "getcallersp" {
|
|
v.reason = "call to " + fn
|
|
return true
|
|
}
|
|
if fn == "throw" {
|
|
v.budget -= inlineExtraThrowCost
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
if ir.IsIntrinsicCall(n) {
|
|
// Treat like any other node.
|
|
break
|
|
}
|
|
|
|
if fn := inlCallee(n.X); fn != nil && fn.Inl != nil {
|
|
v.budget -= fn.Inl.Cost
|
|
break
|
|
}
|
|
|
|
// Call cost for non-leaf inlining.
|
|
v.budget -= v.extraCallCost
|
|
|
|
// Call is okay if inlinable and we have the budget for the body.
|
|
case ir.OCALLMETH:
|
|
n := n.(*ir.CallExpr)
|
|
t := n.X.Type()
|
|
if t == nil {
|
|
base.Fatalf("no function type for [%p] %+v\n", n.X, n.X)
|
|
}
|
|
fn := ir.MethodExprName(n.X).Func
|
|
if types.IsRuntimePkg(fn.Sym().Pkg) && fn.Sym().Name == "heapBits.nextArena" {
|
|
// Special case: explicitly allow
|
|
// mid-stack inlining of
|
|
// runtime.heapBits.next even though
|
|
// it calls slow-path
|
|
// runtime.heapBits.nextArena.
|
|
break
|
|
}
|
|
if fn.Inl != nil {
|
|
v.budget -= fn.Inl.Cost
|
|
break
|
|
}
|
|
// Call cost for non-leaf inlining.
|
|
v.budget -= v.extraCallCost
|
|
|
|
// Things that are too hairy, irrespective of the budget
|
|
case ir.OCALL, ir.OCALLINTER:
|
|
// Call cost for non-leaf inlining.
|
|
v.budget -= v.extraCallCost
|
|
|
|
case ir.OPANIC:
|
|
n := n.(*ir.UnaryExpr)
|
|
if n.X.Op() == ir.OCONVIFACE && n.X.(*ir.ConvExpr).Implicit() {
|
|
// Hack to keep reflect.flag.mustBe inlinable for TestIntendedInlining.
|
|
// Before CL 284412, these conversions were introduced later in the
|
|
// compiler, so they didn't count against inlining budget.
|
|
v.budget++
|
|
}
|
|
v.budget -= inlineExtraPanicCost
|
|
|
|
case ir.ORECOVER:
|
|
// recover matches the argument frame pointer to find
|
|
// the right panic value, so it needs an argument frame.
|
|
v.reason = "call to recover"
|
|
return true
|
|
|
|
case ir.OCLOSURE:
|
|
if base.Debug.InlFuncsWithClosures == 0 {
|
|
v.reason = "not inlining functions with closures"
|
|
return true
|
|
}
|
|
|
|
// TODO(danscales): Maybe make budget proportional to number of closure
|
|
// variables, e.g.:
|
|
//v.budget -= int32(len(n.(*ir.ClosureExpr).Func.ClosureVars) * 3)
|
|
v.budget -= 15
|
|
// Scan body of closure (which DoChildren doesn't automatically
|
|
// do) to check for disallowed ops in the body and include the
|
|
// body in the budget.
|
|
if doList(n.(*ir.ClosureExpr).Func.Body, v.do) {
|
|
return true
|
|
}
|
|
|
|
case ir.ORANGE,
|
|
ir.OSELECT,
|
|
ir.OGO,
|
|
ir.ODEFER,
|
|
ir.ODCLTYPE, // can't print yet
|
|
ir.OTAILCALL:
|
|
v.reason = "unhandled op " + n.Op().String()
|
|
return true
|
|
|
|
case ir.OAPPEND:
|
|
v.budget -= inlineExtraAppendCost
|
|
|
|
case ir.ODEREF:
|
|
// *(*X)(unsafe.Pointer(&x)) is low-cost
|
|
n := n.(*ir.StarExpr)
|
|
|
|
ptr := n.X
|
|
for ptr.Op() == ir.OCONVNOP {
|
|
ptr = ptr.(*ir.ConvExpr).X
|
|
}
|
|
if ptr.Op() == ir.OADDR {
|
|
v.budget += 1 // undo half of default cost of ir.ODEREF+ir.OADDR
|
|
}
|
|
|
|
case ir.OCONVNOP:
|
|
// This doesn't produce code, but the children might.
|
|
v.budget++ // undo default cost
|
|
|
|
case ir.ODCLCONST, ir.OFALL:
|
|
// These nodes don't produce code; omit from inlining budget.
|
|
return false
|
|
|
|
case ir.OFOR, ir.OFORUNTIL:
|
|
n := n.(*ir.ForStmt)
|
|
if n.Label != nil {
|
|
v.reason = "labeled control"
|
|
return true
|
|
}
|
|
case ir.OSWITCH:
|
|
n := n.(*ir.SwitchStmt)
|
|
if n.Label != nil {
|
|
v.reason = "labeled control"
|
|
return true
|
|
}
|
|
// case ir.ORANGE, ir.OSELECT in "unhandled" above
|
|
|
|
case ir.OBREAK, ir.OCONTINUE:
|
|
n := n.(*ir.BranchStmt)
|
|
if n.Label != nil {
|
|
// Should have short-circuited due to labeled control error above.
|
|
base.Fatalf("unexpected labeled break/continue: %v", n)
|
|
}
|
|
|
|
case ir.OIF:
|
|
n := n.(*ir.IfStmt)
|
|
if ir.IsConst(n.Cond, constant.Bool) {
|
|
// This if and the condition cost nothing.
|
|
// TODO(rsc): It seems strange that we visit the dead branch.
|
|
return doList(n.Init(), v.do) ||
|
|
doList(n.Body, v.do) ||
|
|
doList(n.Else, v.do)
|
|
}
|
|
|
|
case ir.ONAME:
|
|
n := n.(*ir.Name)
|
|
if n.Class == ir.PAUTO {
|
|
v.usedLocals.Add(n)
|
|
}
|
|
|
|
case ir.OBLOCK:
|
|
// The only OBLOCK we should see at this point is an empty one.
|
|
// In any event, let the visitList(n.List()) below take care of the statements,
|
|
// and don't charge for the OBLOCK itself. The ++ undoes the -- below.
|
|
v.budget++
|
|
|
|
case ir.OCALLPART, ir.OSLICELIT:
|
|
v.budget-- // Hack for toolstash -cmp.
|
|
|
|
case ir.OMETHEXPR:
|
|
v.budget++ // Hack for toolstash -cmp.
|
|
}
|
|
|
|
v.budget--
|
|
|
|
// When debugging, don't stop early, to get full cost of inlining this function
|
|
if v.budget < 0 && base.Flag.LowerM < 2 && !logopt.Enabled() {
|
|
v.reason = "too expensive"
|
|
return true
|
|
}
|
|
|
|
return ir.DoChildren(n, v.do)
|
|
}
|
|
|
|
func isBigFunc(fn *ir.Func) bool {
|
|
budget := inlineBigFunctionNodes
|
|
return ir.Any(fn, func(n ir.Node) bool {
|
|
budget--
|
|
return budget <= 0
|
|
})
|
|
}
|
|
|
|
// inlcopylist (together with inlcopy) recursively copies a list of nodes, except
|
|
// that it keeps the same ONAME, OTYPE, and OLITERAL nodes. It is used for copying
|
|
// the body and dcls of an inlineable function.
|
|
func inlcopylist(ll []ir.Node) []ir.Node {
|
|
s := make([]ir.Node, len(ll))
|
|
for i, n := range ll {
|
|
s[i] = inlcopy(n)
|
|
}
|
|
return s
|
|
}
|
|
|
|
// inlcopy is like DeepCopy(), but does extra work to copy closures.
|
|
func inlcopy(n ir.Node) ir.Node {
|
|
var edit func(ir.Node) ir.Node
|
|
edit = func(x ir.Node) ir.Node {
|
|
switch x.Op() {
|
|
case ir.ONAME, ir.OTYPE, ir.OLITERAL, ir.ONIL:
|
|
return x
|
|
}
|
|
m := ir.Copy(x)
|
|
ir.EditChildren(m, edit)
|
|
if x.Op() == ir.OCLOSURE {
|
|
x := x.(*ir.ClosureExpr)
|
|
// Need to save/duplicate x.Func.Nname,
|
|
// x.Func.Nname.Ntype, x.Func.Dcl, x.Func.ClosureVars, and
|
|
// x.Func.Body for iexport and local inlining.
|
|
oldfn := x.Func
|
|
newfn := ir.NewFunc(oldfn.Pos())
|
|
if oldfn.ClosureCalled() {
|
|
newfn.SetClosureCalled(true)
|
|
}
|
|
m.(*ir.ClosureExpr).Func = newfn
|
|
newfn.Nname = ir.NewNameAt(oldfn.Nname.Pos(), oldfn.Nname.Sym())
|
|
// XXX OK to share fn.Type() ??
|
|
newfn.Nname.SetType(oldfn.Nname.Type())
|
|
// Ntype can be nil for -G=3 mode.
|
|
if oldfn.Nname.Ntype != nil {
|
|
newfn.Nname.Ntype = inlcopy(oldfn.Nname.Ntype).(ir.Ntype)
|
|
}
|
|
newfn.Body = inlcopylist(oldfn.Body)
|
|
// Make shallow copy of the Dcl and ClosureVar slices
|
|
newfn.Dcl = append([]*ir.Name(nil), oldfn.Dcl...)
|
|
newfn.ClosureVars = append([]*ir.Name(nil), oldfn.ClosureVars...)
|
|
}
|
|
return m
|
|
}
|
|
return edit(n)
|
|
}
|
|
|
|
// Inlcalls/nodelist/node walks fn's statements and expressions and substitutes any
|
|
// calls made to inlineable functions. This is the external entry point.
|
|
func InlineCalls(fn *ir.Func) {
|
|
savefn := ir.CurFunc
|
|
ir.CurFunc = fn
|
|
maxCost := int32(inlineMaxBudget)
|
|
if isBigFunc(fn) {
|
|
maxCost = inlineBigFunctionMaxCost
|
|
}
|
|
// Map to keep track of functions that have been inlined at a particular
|
|
// call site, in order to stop inlining when we reach the beginning of a
|
|
// recursion cycle again. We don't inline immediately recursive functions,
|
|
// but allow inlining if there is a recursion cycle of many functions.
|
|
// Most likely, the inlining will stop before we even hit the beginning of
|
|
// the cycle again, but the map catches the unusual case.
|
|
inlMap := make(map[*ir.Func]bool)
|
|
var edit func(ir.Node) ir.Node
|
|
edit = func(n ir.Node) ir.Node {
|
|
return inlnode(n, maxCost, inlMap, edit)
|
|
}
|
|
ir.EditChildren(fn, edit)
|
|
ir.CurFunc = savefn
|
|
}
|
|
|
|
// Turn an OINLCALL into a statement.
|
|
func inlconv2stmt(inlcall *ir.InlinedCallExpr) ir.Node {
|
|
n := ir.NewBlockStmt(inlcall.Pos(), nil)
|
|
n.List = inlcall.Init()
|
|
n.List.Append(inlcall.Body.Take()...)
|
|
return n
|
|
}
|
|
|
|
// Turn an OINLCALL into a single valued expression.
|
|
// The result of inlconv2expr MUST be assigned back to n, e.g.
|
|
// n.Left = inlconv2expr(n.Left)
|
|
func inlconv2expr(n *ir.InlinedCallExpr) ir.Node {
|
|
r := n.ReturnVars[0]
|
|
return ir.InitExpr(append(n.Init(), n.Body...), r)
|
|
}
|
|
|
|
// Turn the rlist (with the return values) of the OINLCALL in
|
|
// n into an expression list lumping the ninit and body
|
|
// containing the inlined statements on the first list element so
|
|
// order will be preserved. Used in return, oas2func and call
|
|
// statements.
|
|
func inlconv2list(n *ir.InlinedCallExpr) []ir.Node {
|
|
if n.Op() != ir.OINLCALL || len(n.ReturnVars) == 0 {
|
|
base.Fatalf("inlconv2list %+v\n", n)
|
|
}
|
|
|
|
s := n.ReturnVars
|
|
s[0] = ir.InitExpr(append(n.Init(), n.Body...), s[0])
|
|
return s
|
|
}
|
|
|
|
// inlnode recurses over the tree to find inlineable calls, which will
|
|
// be turned into OINLCALLs by mkinlcall. When the recursion comes
|
|
// back up will examine left, right, list, rlist, ninit, ntest, nincr,
|
|
// nbody and nelse and use one of the 4 inlconv/glue functions above
|
|
// to turn the OINLCALL into an expression, a statement, or patch it
|
|
// in to this nodes list or rlist as appropriate.
|
|
// NOTE it makes no sense to pass the glue functions down the
|
|
// recursion to the level where the OINLCALL gets created because they
|
|
// have to edit /this/ n, so you'd have to push that one down as well,
|
|
// but then you may as well do it here. so this is cleaner and
|
|
// shorter and less complicated.
|
|
// The result of inlnode MUST be assigned back to n, e.g.
|
|
// n.Left = inlnode(n.Left)
|
|
func inlnode(n ir.Node, maxCost int32, inlMap map[*ir.Func]bool, edit func(ir.Node) ir.Node) ir.Node {
|
|
if n == nil {
|
|
return n
|
|
}
|
|
|
|
switch n.Op() {
|
|
case ir.ODEFER, ir.OGO:
|
|
n := n.(*ir.GoDeferStmt)
|
|
switch call := n.Call; call.Op() {
|
|
case ir.OCALLFUNC, ir.OCALLMETH:
|
|
call := call.(*ir.CallExpr)
|
|
call.NoInline = true
|
|
}
|
|
|
|
// TODO do them here (or earlier),
|
|
// so escape analysis can avoid more heapmoves.
|
|
case ir.OCLOSURE:
|
|
return n
|
|
case ir.OCALLMETH:
|
|
// Prevent inlining some reflect.Value methods when using checkptr,
|
|
// even when package reflect was compiled without it (#35073).
|
|
n := n.(*ir.CallExpr)
|
|
if s := ir.MethodExprName(n.X).Sym(); base.Debug.Checkptr != 0 && types.IsReflectPkg(s.Pkg) && (s.Name == "Value.UnsafeAddr" || s.Name == "Value.Pointer") {
|
|
return n
|
|
}
|
|
}
|
|
|
|
lno := ir.SetPos(n)
|
|
|
|
ir.EditChildren(n, edit)
|
|
|
|
if as := n; as.Op() == ir.OAS2FUNC {
|
|
as := as.(*ir.AssignListStmt)
|
|
if as.Rhs[0].Op() == ir.OINLCALL {
|
|
as.Rhs = inlconv2list(as.Rhs[0].(*ir.InlinedCallExpr))
|
|
as.SetOp(ir.OAS2)
|
|
as.SetTypecheck(0)
|
|
n = typecheck.Stmt(as)
|
|
}
|
|
}
|
|
|
|
// with all the branches out of the way, it is now time to
|
|
// transmogrify this node itself unless inhibited by the
|
|
// switch at the top of this function.
|
|
switch n.Op() {
|
|
case ir.OCALLFUNC, ir.OCALLMETH:
|
|
n := n.(*ir.CallExpr)
|
|
if n.NoInline {
|
|
return n
|
|
}
|
|
}
|
|
|
|
var call *ir.CallExpr
|
|
switch n.Op() {
|
|
case ir.OCALLFUNC:
|
|
call = n.(*ir.CallExpr)
|
|
if base.Flag.LowerM > 3 {
|
|
fmt.Printf("%v:call to func %+v\n", ir.Line(n), call.X)
|
|
}
|
|
if ir.IsIntrinsicCall(call) {
|
|
break
|
|
}
|
|
if fn := inlCallee(call.X); fn != nil && fn.Inl != nil {
|
|
n = mkinlcall(call, fn, maxCost, inlMap, edit)
|
|
}
|
|
|
|
case ir.OCALLMETH:
|
|
call = n.(*ir.CallExpr)
|
|
if base.Flag.LowerM > 3 {
|
|
fmt.Printf("%v:call to meth %v\n", ir.Line(n), call.X.(*ir.SelectorExpr).Sel)
|
|
}
|
|
|
|
// typecheck should have resolved ODOTMETH->type, whose nname points to the actual function.
|
|
if call.X.Type() == nil {
|
|
base.Fatalf("no function type for [%p] %+v\n", call.X, call.X)
|
|
}
|
|
|
|
n = mkinlcall(call, ir.MethodExprName(call.X).Func, maxCost, inlMap, edit)
|
|
}
|
|
|
|
base.Pos = lno
|
|
|
|
if n.Op() == ir.OINLCALL {
|
|
ic := n.(*ir.InlinedCallExpr)
|
|
switch call.Use {
|
|
default:
|
|
ir.Dump("call", call)
|
|
base.Fatalf("call missing use")
|
|
case ir.CallUseExpr:
|
|
n = inlconv2expr(ic)
|
|
case ir.CallUseStmt:
|
|
n = inlconv2stmt(ic)
|
|
case ir.CallUseList:
|
|
// leave for caller to convert
|
|
}
|
|
}
|
|
|
|
return n
|
|
}
|
|
|
|
// inlCallee takes a function-typed expression and returns the underlying function ONAME
|
|
// that it refers to if statically known. Otherwise, it returns nil.
|
|
func inlCallee(fn ir.Node) *ir.Func {
|
|
fn = ir.StaticValue(fn)
|
|
switch fn.Op() {
|
|
case ir.OMETHEXPR:
|
|
fn := fn.(*ir.SelectorExpr)
|
|
n := ir.MethodExprName(fn)
|
|
// Check that receiver type matches fn.X.
|
|
// TODO(mdempsky): Handle implicit dereference
|
|
// of pointer receiver argument?
|
|
if n == nil || !types.Identical(n.Type().Recv().Type, fn.X.Type()) {
|
|
return nil
|
|
}
|
|
return n.Func
|
|
case ir.ONAME:
|
|
fn := fn.(*ir.Name)
|
|
if fn.Class == ir.PFUNC {
|
|
return fn.Func
|
|
}
|
|
case ir.OCLOSURE:
|
|
fn := fn.(*ir.ClosureExpr)
|
|
c := fn.Func
|
|
CanInline(c)
|
|
return c
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func inlParam(t *types.Field, as ir.InitNode, inlvars map[*ir.Name]*ir.Name) ir.Node {
|
|
if t.Nname == nil {
|
|
return ir.BlankNode
|
|
}
|
|
n := t.Nname.(*ir.Name)
|
|
if ir.IsBlank(n) {
|
|
return ir.BlankNode
|
|
}
|
|
inlvar := inlvars[n]
|
|
if inlvar == nil {
|
|
base.Fatalf("missing inlvar for %v", n)
|
|
}
|
|
as.PtrInit().Append(ir.NewDecl(base.Pos, ir.ODCL, inlvar))
|
|
inlvar.Name().Defn = as
|
|
return inlvar
|
|
}
|
|
|
|
var inlgen int
|
|
|
|
// SSADumpInline gives the SSA back end a chance to dump the function
|
|
// when producing output for debugging the compiler itself.
|
|
var SSADumpInline = func(*ir.Func) {}
|
|
|
|
// If n is a call node (OCALLFUNC or OCALLMETH), and fn is an ONAME node for a
|
|
// function with an inlinable body, return an OINLCALL node that can replace n.
|
|
// The returned node's Ninit has the parameter assignments, the Nbody is the
|
|
// inlined function body, and (List, Rlist) contain the (input, output)
|
|
// parameters.
|
|
// The result of mkinlcall MUST be assigned back to n, e.g.
|
|
// n.Left = mkinlcall(n.Left, fn, isddd)
|
|
func mkinlcall(n *ir.CallExpr, fn *ir.Func, maxCost int32, inlMap map[*ir.Func]bool, edit func(ir.Node) ir.Node) ir.Node {
|
|
if fn.Inl == nil {
|
|
if logopt.Enabled() {
|
|
logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(ir.CurFunc),
|
|
fmt.Sprintf("%s cannot be inlined", ir.PkgFuncName(fn)))
|
|
}
|
|
return n
|
|
}
|
|
if fn.Inl.Cost > maxCost {
|
|
// The inlined function body is too big. Typically we use this check to restrict
|
|
// inlining into very big functions. See issue 26546 and 17566.
|
|
if logopt.Enabled() {
|
|
logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(ir.CurFunc),
|
|
fmt.Sprintf("cost %d of %s exceeds max large caller cost %d", fn.Inl.Cost, ir.PkgFuncName(fn), maxCost))
|
|
}
|
|
return n
|
|
}
|
|
|
|
if fn == ir.CurFunc {
|
|
// Can't recursively inline a function into itself.
|
|
if logopt.Enabled() {
|
|
logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", fmt.Sprintf("recursive call to %s", ir.FuncName(ir.CurFunc)))
|
|
}
|
|
return n
|
|
}
|
|
|
|
if base.Flag.Cfg.Instrumenting && types.IsRuntimePkg(fn.Sym().Pkg) {
|
|
// Runtime package must not be instrumented.
|
|
// Instrument skips runtime package. However, some runtime code can be
|
|
// inlined into other packages and instrumented there. To avoid this,
|
|
// we disable inlining of runtime functions when instrumenting.
|
|
// The example that we observed is inlining of LockOSThread,
|
|
// which lead to false race reports on m contents.
|
|
return n
|
|
}
|
|
|
|
if inlMap[fn] {
|
|
if base.Flag.LowerM > 1 {
|
|
fmt.Printf("%v: cannot inline %v into %v: repeated recursive cycle\n", ir.Line(n), fn, ir.FuncName(ir.CurFunc))
|
|
}
|
|
return n
|
|
}
|
|
inlMap[fn] = true
|
|
defer func() {
|
|
inlMap[fn] = false
|
|
}()
|
|
if base.Debug.TypecheckInl == 0 {
|
|
typecheck.ImportedBody(fn)
|
|
}
|
|
|
|
// We have a function node, and it has an inlineable body.
|
|
if base.Flag.LowerM > 1 {
|
|
fmt.Printf("%v: inlining call to %v %v { %v }\n", ir.Line(n), fn.Sym(), fn.Type(), ir.Nodes(fn.Inl.Body))
|
|
} else if base.Flag.LowerM != 0 {
|
|
fmt.Printf("%v: inlining call to %v\n", ir.Line(n), fn)
|
|
}
|
|
if base.Flag.LowerM > 2 {
|
|
fmt.Printf("%v: Before inlining: %+v\n", ir.Line(n), n)
|
|
}
|
|
|
|
SSADumpInline(fn)
|
|
|
|
ninit := n.Init()
|
|
|
|
// For normal function calls, the function callee expression
|
|
// may contain side effects (e.g., added by addinit during
|
|
// inlconv2expr or inlconv2list). Make sure to preserve these,
|
|
// if necessary (#42703).
|
|
if n.Op() == ir.OCALLFUNC {
|
|
callee := n.X
|
|
for callee.Op() == ir.OCONVNOP {
|
|
conv := callee.(*ir.ConvExpr)
|
|
ninit.Append(ir.TakeInit(conv)...)
|
|
callee = conv.X
|
|
}
|
|
if callee.Op() != ir.ONAME && callee.Op() != ir.OCLOSURE && callee.Op() != ir.OMETHEXPR {
|
|
base.Fatalf("unexpected callee expression: %v", callee)
|
|
}
|
|
}
|
|
|
|
// Make temp names to use instead of the originals.
|
|
inlvars := make(map[*ir.Name]*ir.Name)
|
|
|
|
// record formals/locals for later post-processing
|
|
var inlfvars []*ir.Name
|
|
|
|
for _, ln := range fn.Inl.Dcl {
|
|
if ln.Op() != ir.ONAME {
|
|
continue
|
|
}
|
|
if ln.Class == ir.PPARAMOUT { // return values handled below.
|
|
continue
|
|
}
|
|
inlf := typecheck.Expr(inlvar(ln)).(*ir.Name)
|
|
inlvars[ln] = inlf
|
|
if base.Flag.GenDwarfInl > 0 {
|
|
if ln.Class == ir.PPARAM {
|
|
inlf.Name().SetInlFormal(true)
|
|
} else {
|
|
inlf.Name().SetInlLocal(true)
|
|
}
|
|
inlf.SetPos(ln.Pos())
|
|
inlfvars = append(inlfvars, inlf)
|
|
}
|
|
}
|
|
|
|
// We can delay declaring+initializing result parameters if:
|
|
// (1) there's exactly one "return" statement in the inlined function;
|
|
// (2) it's not an empty return statement (#44355); and
|
|
// (3) the result parameters aren't named.
|
|
delayretvars := true
|
|
|
|
nreturns := 0
|
|
ir.VisitList(ir.Nodes(fn.Inl.Body), func(n ir.Node) {
|
|
if n, ok := n.(*ir.ReturnStmt); ok {
|
|
nreturns++
|
|
if len(n.Results) == 0 {
|
|
delayretvars = false // empty return statement (case 2)
|
|
}
|
|
}
|
|
})
|
|
|
|
if nreturns != 1 {
|
|
delayretvars = false // not exactly one return statement (case 1)
|
|
}
|
|
|
|
// temporaries for return values.
|
|
var retvars []ir.Node
|
|
for i, t := range fn.Type().Results().Fields().Slice() {
|
|
var m *ir.Name
|
|
if nn := t.Nname; nn != nil && !ir.IsBlank(nn.(*ir.Name)) && !strings.HasPrefix(nn.Sym().Name, "~r") {
|
|
n := nn.(*ir.Name)
|
|
m = inlvar(n)
|
|
m = typecheck.Expr(m).(*ir.Name)
|
|
inlvars[n] = m
|
|
delayretvars = false // found a named result parameter (case 3)
|
|
} else {
|
|
// anonymous return values, synthesize names for use in assignment that replaces return
|
|
m = retvar(t, i)
|
|
}
|
|
|
|
if base.Flag.GenDwarfInl > 0 {
|
|
// Don't update the src.Pos on a return variable if it
|
|
// was manufactured by the inliner (e.g. "~R2"); such vars
|
|
// were not part of the original callee.
|
|
if !strings.HasPrefix(m.Sym().Name, "~R") {
|
|
m.Name().SetInlFormal(true)
|
|
m.SetPos(t.Pos)
|
|
inlfvars = append(inlfvars, m)
|
|
}
|
|
}
|
|
|
|
retvars = append(retvars, m)
|
|
}
|
|
|
|
// Assign arguments to the parameters' temp names.
|
|
as := ir.NewAssignListStmt(base.Pos, ir.OAS2, nil, nil)
|
|
as.Def = true
|
|
if n.Op() == ir.OCALLMETH {
|
|
sel := n.X.(*ir.SelectorExpr)
|
|
if sel.X == nil {
|
|
base.Fatalf("method call without receiver: %+v", n)
|
|
}
|
|
as.Rhs.Append(sel.X)
|
|
}
|
|
as.Rhs.Append(n.Args...)
|
|
|
|
// For non-dotted calls to variadic functions, we assign the
|
|
// variadic parameter's temp name separately.
|
|
var vas *ir.AssignStmt
|
|
|
|
if recv := fn.Type().Recv(); recv != nil {
|
|
as.Lhs.Append(inlParam(recv, as, inlvars))
|
|
}
|
|
for _, param := range fn.Type().Params().Fields().Slice() {
|
|
// For ordinary parameters or variadic parameters in
|
|
// dotted calls, just add the variable to the
|
|
// assignment list, and we're done.
|
|
if !param.IsDDD() || n.IsDDD {
|
|
as.Lhs.Append(inlParam(param, as, inlvars))
|
|
continue
|
|
}
|
|
|
|
// Otherwise, we need to collect the remaining values
|
|
// to pass as a slice.
|
|
|
|
x := len(as.Lhs)
|
|
for len(as.Lhs) < len(as.Rhs) {
|
|
as.Lhs.Append(argvar(param.Type, len(as.Lhs)))
|
|
}
|
|
varargs := as.Lhs[x:]
|
|
|
|
vas = ir.NewAssignStmt(base.Pos, nil, nil)
|
|
vas.X = inlParam(param, vas, inlvars)
|
|
if len(varargs) == 0 {
|
|
vas.Y = typecheck.NodNil()
|
|
vas.Y.SetType(param.Type)
|
|
} else {
|
|
lit := ir.NewCompLitExpr(base.Pos, ir.OCOMPLIT, ir.TypeNode(param.Type), nil)
|
|
lit.List = varargs
|
|
vas.Y = lit
|
|
}
|
|
}
|
|
|
|
if len(as.Rhs) != 0 {
|
|
ninit.Append(typecheck.Stmt(as))
|
|
}
|
|
|
|
if vas != nil {
|
|
ninit.Append(typecheck.Stmt(vas))
|
|
}
|
|
|
|
if !delayretvars {
|
|
// Zero the return parameters.
|
|
for _, n := range retvars {
|
|
ninit.Append(ir.NewDecl(base.Pos, ir.ODCL, n.(*ir.Name)))
|
|
ras := ir.NewAssignStmt(base.Pos, n, nil)
|
|
ninit.Append(typecheck.Stmt(ras))
|
|
}
|
|
}
|
|
|
|
retlabel := typecheck.AutoLabel(".i")
|
|
|
|
inlgen++
|
|
|
|
parent := -1
|
|
if b := base.Ctxt.PosTable.Pos(n.Pos()).Base(); b != nil {
|
|
parent = b.InliningIndex()
|
|
}
|
|
|
|
sym := fn.Linksym()
|
|
newIndex := base.Ctxt.InlTree.Add(parent, n.Pos(), sym)
|
|
|
|
// Add an inline mark just before the inlined body.
|
|
// This mark is inline in the code so that it's a reasonable spot
|
|
// to put a breakpoint. Not sure if that's really necessary or not
|
|
// (in which case it could go at the end of the function instead).
|
|
// Note issue 28603.
|
|
inlMark := ir.NewInlineMarkStmt(base.Pos, types.BADWIDTH)
|
|
inlMark.SetPos(n.Pos().WithIsStmt())
|
|
inlMark.Index = int64(newIndex)
|
|
ninit.Append(inlMark)
|
|
|
|
if base.Flag.GenDwarfInl > 0 {
|
|
if !sym.WasInlined() {
|
|
base.Ctxt.DwFixups.SetPrecursorFunc(sym, fn)
|
|
sym.Set(obj.AttrWasInlined, true)
|
|
}
|
|
}
|
|
|
|
subst := inlsubst{
|
|
retlabel: retlabel,
|
|
retvars: retvars,
|
|
delayretvars: delayretvars,
|
|
inlvars: inlvars,
|
|
bases: make(map[*src.PosBase]*src.PosBase),
|
|
newInlIndex: newIndex,
|
|
fn: fn,
|
|
}
|
|
subst.edit = subst.node
|
|
|
|
body := subst.list(ir.Nodes(fn.Inl.Body))
|
|
|
|
lab := ir.NewLabelStmt(base.Pos, retlabel)
|
|
body = append(body, lab)
|
|
|
|
typecheck.Stmts(body)
|
|
|
|
if base.Flag.GenDwarfInl > 0 {
|
|
for _, v := range inlfvars {
|
|
v.SetPos(subst.updatedPos(v.Pos()))
|
|
}
|
|
}
|
|
|
|
//dumplist("ninit post", ninit);
|
|
|
|
call := ir.NewInlinedCallExpr(base.Pos, nil, nil)
|
|
*call.PtrInit() = ninit
|
|
call.Body = body
|
|
call.ReturnVars = retvars
|
|
call.SetType(n.Type())
|
|
call.SetTypecheck(1)
|
|
|
|
// transitive inlining
|
|
// might be nice to do this before exporting the body,
|
|
// but can't emit the body with inlining expanded.
|
|
// instead we emit the things that the body needs
|
|
// and each use must redo the inlining.
|
|
// luckily these are small.
|
|
ir.EditChildren(call, edit)
|
|
|
|
if base.Flag.LowerM > 2 {
|
|
fmt.Printf("%v: After inlining %+v\n\n", ir.Line(call), call)
|
|
}
|
|
|
|
return call
|
|
}
|
|
|
|
// Every time we expand a function we generate a new set of tmpnames,
|
|
// PAUTO's in the calling functions, and link them off of the
|
|
// PPARAM's, PAUTOS and PPARAMOUTs of the called function.
|
|
func inlvar(var_ *ir.Name) *ir.Name {
|
|
if base.Flag.LowerM > 3 {
|
|
fmt.Printf("inlvar %+v\n", var_)
|
|
}
|
|
|
|
n := typecheck.NewName(var_.Sym())
|
|
n.SetType(var_.Type())
|
|
n.Class = ir.PAUTO
|
|
n.SetUsed(true)
|
|
n.Curfn = ir.CurFunc // the calling function, not the called one
|
|
n.SetAddrtaken(var_.Addrtaken())
|
|
|
|
ir.CurFunc.Dcl = append(ir.CurFunc.Dcl, n)
|
|
return n
|
|
}
|
|
|
|
// Synthesize a variable to store the inlined function's results in.
|
|
func retvar(t *types.Field, i int) *ir.Name {
|
|
n := typecheck.NewName(typecheck.LookupNum("~R", i))
|
|
n.SetType(t.Type)
|
|
n.Class = ir.PAUTO
|
|
n.SetUsed(true)
|
|
n.Curfn = ir.CurFunc // the calling function, not the called one
|
|
ir.CurFunc.Dcl = append(ir.CurFunc.Dcl, n)
|
|
return n
|
|
}
|
|
|
|
// Synthesize a variable to store the inlined function's arguments
|
|
// when they come from a multiple return call.
|
|
func argvar(t *types.Type, i int) ir.Node {
|
|
n := typecheck.NewName(typecheck.LookupNum("~arg", i))
|
|
n.SetType(t.Elem())
|
|
n.Class = ir.PAUTO
|
|
n.SetUsed(true)
|
|
n.Curfn = ir.CurFunc // the calling function, not the called one
|
|
ir.CurFunc.Dcl = append(ir.CurFunc.Dcl, n)
|
|
return n
|
|
}
|
|
|
|
// The inlsubst type implements the actual inlining of a single
|
|
// function call.
|
|
type inlsubst struct {
|
|
// Target of the goto substituted in place of a return.
|
|
retlabel *types.Sym
|
|
|
|
// Temporary result variables.
|
|
retvars []ir.Node
|
|
|
|
// Whether result variables should be initialized at the
|
|
// "return" statement.
|
|
delayretvars bool
|
|
|
|
inlvars map[*ir.Name]*ir.Name
|
|
|
|
// bases maps from original PosBase to PosBase with an extra
|
|
// inlined call frame.
|
|
bases map[*src.PosBase]*src.PosBase
|
|
|
|
// newInlIndex is the index of the inlined call frame to
|
|
// insert for inlined nodes.
|
|
newInlIndex int
|
|
|
|
edit func(ir.Node) ir.Node // cached copy of subst.node method value closure
|
|
|
|
// If non-nil, we are inside a closure inside the inlined function, and
|
|
// newclofn is the Func of the new inlined closure.
|
|
newclofn *ir.Func
|
|
|
|
fn *ir.Func // For debug -- the func that is being inlined
|
|
}
|
|
|
|
// list inlines a list of nodes.
|
|
func (subst *inlsubst) list(ll ir.Nodes) []ir.Node {
|
|
s := make([]ir.Node, 0, len(ll))
|
|
for _, n := range ll {
|
|
s = append(s, subst.node(n))
|
|
}
|
|
return s
|
|
}
|
|
|
|
// fields returns a list of the fields of a struct type representing receiver,
|
|
// params, or results, after duplicating the field nodes and substituting the
|
|
// Nname nodes inside the field nodes.
|
|
func (subst *inlsubst) fields(oldt *types.Type) []*types.Field {
|
|
oldfields := oldt.FieldSlice()
|
|
newfields := make([]*types.Field, len(oldfields))
|
|
for i := range oldfields {
|
|
newfields[i] = oldfields[i].Copy()
|
|
if oldfields[i].Nname != nil {
|
|
newfields[i].Nname = subst.node(oldfields[i].Nname.(*ir.Name))
|
|
}
|
|
}
|
|
return newfields
|
|
}
|
|
|
|
// clovar creates a new ONAME node for a local variable or param of a closure
|
|
// inside a function being inlined.
|
|
func (subst *inlsubst) clovar(n *ir.Name) *ir.Name {
|
|
// TODO(danscales): want to get rid of this shallow copy, with code like the
|
|
// following, but it is hard to copy all the necessary flags in a maintainable way.
|
|
// m := ir.NewNameAt(n.Pos(), n.Sym())
|
|
// m.Class = n.Class
|
|
// m.SetType(n.Type())
|
|
// m.SetTypecheck(1)
|
|
//if n.IsClosureVar() {
|
|
// m.SetIsClosureVar(true)
|
|
//}
|
|
m := &ir.Name{}
|
|
*m = *n
|
|
m.Curfn = subst.newclofn
|
|
if n.Defn != nil && n.Defn.Op() == ir.ONAME {
|
|
if !n.IsClosureVar() {
|
|
base.FatalfAt(n.Pos(), "want closure variable, got: %+v", n)
|
|
}
|
|
if n.Sym().Pkg != types.LocalPkg {
|
|
// If the closure came from inlining a function from
|
|
// another package, must change package of captured
|
|
// variable to localpkg, so that the fields of the closure
|
|
// struct are local package and can be accessed even if
|
|
// name is not exported. If you disable this code, you can
|
|
// reproduce the problem by running 'go test
|
|
// go/internal/srcimporter'. TODO(mdempsky) - maybe change
|
|
// how we create closure structs?
|
|
m.SetSym(types.LocalPkg.Lookup(n.Sym().Name))
|
|
}
|
|
// Make sure any inlvar which is the Defn
|
|
// of an ONAME closure var is rewritten
|
|
// during inlining. Don't substitute
|
|
// if Defn node is outside inlined function.
|
|
if subst.inlvars[n.Defn.(*ir.Name)] != nil {
|
|
m.Defn = subst.node(n.Defn)
|
|
}
|
|
}
|
|
if n.Outer != nil {
|
|
// Either the outer variable is defined in function being inlined,
|
|
// and we will replace it with the substituted variable, or it is
|
|
// defined outside the function being inlined, and we should just
|
|
// skip the outer variable (the closure variable of the function
|
|
// being inlined).
|
|
s := subst.node(n.Outer).(*ir.Name)
|
|
if s == n.Outer {
|
|
s = n.Outer.Outer
|
|
}
|
|
m.Outer = s
|
|
}
|
|
return m
|
|
}
|
|
|
|
// closure does the necessary substitions for a ClosureExpr n and returns the new
|
|
// closure node.
|
|
func (subst *inlsubst) closure(n *ir.ClosureExpr) ir.Node {
|
|
m := ir.Copy(n)
|
|
m.SetPos(subst.updatedPos(m.Pos()))
|
|
ir.EditChildren(m, subst.edit)
|
|
|
|
//fmt.Printf("Inlining func %v with closure into %v\n", subst.fn, ir.FuncName(ir.CurFunc))
|
|
|
|
// The following is similar to funcLit
|
|
oldfn := n.Func
|
|
newfn := ir.NewFunc(oldfn.Pos())
|
|
// These three lines are not strictly necessary, but just to be clear
|
|
// that new function needs to redo typechecking and inlinability.
|
|
newfn.SetTypecheck(0)
|
|
newfn.SetInlinabilityChecked(false)
|
|
newfn.Inl = nil
|
|
newfn.SetIsHiddenClosure(true)
|
|
newfn.Nname = ir.NewNameAt(n.Pos(), ir.BlankNode.Sym())
|
|
newfn.Nname.Func = newfn
|
|
// Ntype can be nil for -G=3 mode.
|
|
if oldfn.Nname.Ntype != nil {
|
|
newfn.Nname.Ntype = subst.node(oldfn.Nname.Ntype).(ir.Ntype)
|
|
}
|
|
newfn.Nname.Defn = newfn
|
|
|
|
m.(*ir.ClosureExpr).Func = newfn
|
|
newfn.OClosure = m.(*ir.ClosureExpr)
|
|
|
|
if subst.newclofn != nil {
|
|
//fmt.Printf("Inlining a closure with a nested closure\n")
|
|
}
|
|
prevxfunc := subst.newclofn
|
|
|
|
// Mark that we are now substituting within a closure (within the
|
|
// inlined function), and create new nodes for all the local
|
|
// vars/params inside this closure.
|
|
subst.newclofn = newfn
|
|
newfn.Dcl = nil
|
|
newfn.ClosureVars = nil
|
|
for _, oldv := range oldfn.Dcl {
|
|
newv := subst.clovar(oldv)
|
|
subst.inlvars[oldv] = newv
|
|
newfn.Dcl = append(newfn.Dcl, newv)
|
|
}
|
|
for _, oldv := range oldfn.ClosureVars {
|
|
newv := subst.clovar(oldv)
|
|
subst.inlvars[oldv] = newv
|
|
newfn.ClosureVars = append(newfn.ClosureVars, newv)
|
|
}
|
|
|
|
// Need to replace ONAME nodes in
|
|
// newfn.Type().FuncType().Receiver/Params/Results.FieldSlice().Nname
|
|
oldt := oldfn.Type()
|
|
newrecvs := subst.fields(oldt.Recvs())
|
|
var newrecv *types.Field
|
|
if len(newrecvs) > 0 {
|
|
newrecv = newrecvs[0]
|
|
}
|
|
newt := types.NewSignature(oldt.Pkg(), newrecv,
|
|
nil, subst.fields(oldt.Params()), subst.fields(oldt.Results()))
|
|
|
|
newfn.Nname.SetType(newt)
|
|
newfn.Body = subst.list(oldfn.Body)
|
|
|
|
// Remove the nodes for the current closure from subst.inlvars
|
|
for _, oldv := range oldfn.Dcl {
|
|
delete(subst.inlvars, oldv)
|
|
}
|
|
for _, oldv := range oldfn.ClosureVars {
|
|
delete(subst.inlvars, oldv)
|
|
}
|
|
// Go back to previous closure func
|
|
subst.newclofn = prevxfunc
|
|
|
|
// Actually create the named function for the closure, now that
|
|
// the closure is inlined in a specific function.
|
|
m.SetTypecheck(0)
|
|
if oldfn.ClosureCalled() {
|
|
typecheck.Callee(m)
|
|
} else {
|
|
typecheck.Expr(m)
|
|
}
|
|
return m
|
|
}
|
|
|
|
// node recursively copies a node from the saved pristine body of the
|
|
// inlined function, substituting references to input/output
|
|
// parameters with ones to the tmpnames, and substituting returns with
|
|
// assignments to the output.
|
|
func (subst *inlsubst) node(n ir.Node) ir.Node {
|
|
if n == nil {
|
|
return nil
|
|
}
|
|
|
|
switch n.Op() {
|
|
case ir.ONAME:
|
|
n := n.(*ir.Name)
|
|
|
|
// Handle captured variables when inlining closures.
|
|
if n.IsClosureVar() && subst.newclofn == nil {
|
|
o := n.Outer
|
|
|
|
// Deal with case where sequence of closures are inlined.
|
|
// TODO(danscales) - write test case to see if we need to
|
|
// go up multiple levels.
|
|
if o.Curfn != ir.CurFunc {
|
|
o = o.Outer
|
|
}
|
|
|
|
// make sure the outer param matches the inlining location
|
|
if o == nil || o.Curfn != ir.CurFunc {
|
|
base.Fatalf("%v: unresolvable capture %v\n", ir.Line(n), n)
|
|
}
|
|
|
|
if base.Flag.LowerM > 2 {
|
|
fmt.Printf("substituting captured name %+v -> %+v\n", n, o)
|
|
}
|
|
return o
|
|
}
|
|
|
|
if inlvar := subst.inlvars[n]; inlvar != nil { // These will be set during inlnode
|
|
if base.Flag.LowerM > 2 {
|
|
fmt.Printf("substituting name %+v -> %+v\n", n, inlvar)
|
|
}
|
|
return inlvar
|
|
}
|
|
|
|
if base.Flag.LowerM > 2 {
|
|
fmt.Printf("not substituting name %+v\n", n)
|
|
}
|
|
return n
|
|
|
|
case ir.OMETHEXPR:
|
|
n := n.(*ir.SelectorExpr)
|
|
return n
|
|
|
|
case ir.OLITERAL, ir.ONIL, ir.OTYPE:
|
|
// If n is a named constant or type, we can continue
|
|
// using it in the inline copy. Otherwise, make a copy
|
|
// so we can update the line number.
|
|
if n.Sym() != nil {
|
|
return n
|
|
}
|
|
|
|
case ir.ORETURN:
|
|
if subst.newclofn != nil {
|
|
// Don't do special substitutions if inside a closure
|
|
break
|
|
}
|
|
// Since we don't handle bodies with closures,
|
|
// this return is guaranteed to belong to the current inlined function.
|
|
n := n.(*ir.ReturnStmt)
|
|
init := subst.list(n.Init())
|
|
if len(subst.retvars) != 0 && len(n.Results) != 0 {
|
|
as := ir.NewAssignListStmt(base.Pos, ir.OAS2, nil, nil)
|
|
|
|
// Make a shallow copy of retvars.
|
|
// Otherwise OINLCALL.Rlist will be the same list,
|
|
// and later walk and typecheck may clobber it.
|
|
for _, n := range subst.retvars {
|
|
as.Lhs.Append(n)
|
|
}
|
|
as.Rhs = subst.list(n.Results)
|
|
|
|
if subst.delayretvars {
|
|
for _, n := range as.Lhs {
|
|
as.PtrInit().Append(ir.NewDecl(base.Pos, ir.ODCL, n.(*ir.Name)))
|
|
n.Name().Defn = as
|
|
}
|
|
}
|
|
|
|
init = append(init, typecheck.Stmt(as))
|
|
}
|
|
init = append(init, ir.NewBranchStmt(base.Pos, ir.OGOTO, subst.retlabel))
|
|
typecheck.Stmts(init)
|
|
return ir.NewBlockStmt(base.Pos, init)
|
|
|
|
case ir.OGOTO:
|
|
n := n.(*ir.BranchStmt)
|
|
m := ir.Copy(n).(*ir.BranchStmt)
|
|
m.SetPos(subst.updatedPos(m.Pos()))
|
|
*m.PtrInit() = nil
|
|
p := fmt.Sprintf("%s·%d", n.Label.Name, inlgen)
|
|
m.Label = typecheck.Lookup(p)
|
|
return m
|
|
|
|
case ir.OLABEL:
|
|
if subst.newclofn != nil {
|
|
// Don't do special substitutions if inside a closure
|
|
break
|
|
}
|
|
n := n.(*ir.LabelStmt)
|
|
m := ir.Copy(n).(*ir.LabelStmt)
|
|
m.SetPos(subst.updatedPos(m.Pos()))
|
|
*m.PtrInit() = nil
|
|
p := fmt.Sprintf("%s·%d", n.Label.Name, inlgen)
|
|
m.Label = typecheck.Lookup(p)
|
|
return m
|
|
|
|
case ir.OCLOSURE:
|
|
return subst.closure(n.(*ir.ClosureExpr))
|
|
|
|
}
|
|
|
|
m := ir.Copy(n)
|
|
m.SetPos(subst.updatedPos(m.Pos()))
|
|
ir.EditChildren(m, subst.edit)
|
|
return m
|
|
}
|
|
|
|
func (subst *inlsubst) updatedPos(xpos src.XPos) src.XPos {
|
|
pos := base.Ctxt.PosTable.Pos(xpos)
|
|
oldbase := pos.Base() // can be nil
|
|
newbase := subst.bases[oldbase]
|
|
if newbase == nil {
|
|
newbase = src.NewInliningBase(oldbase, subst.newInlIndex)
|
|
subst.bases[oldbase] = newbase
|
|
}
|
|
pos.SetBase(newbase)
|
|
return base.Ctxt.PosTable.XPos(pos)
|
|
}
|
|
|
|
func pruneUnusedAutos(ll []*ir.Name, vis *hairyVisitor) []*ir.Name {
|
|
s := make([]*ir.Name, 0, len(ll))
|
|
for _, n := range ll {
|
|
if n.Class == ir.PAUTO {
|
|
if !vis.usedLocals.Has(n) {
|
|
continue
|
|
}
|
|
}
|
|
s = append(s, n)
|
|
}
|
|
return s
|
|
}
|
|
|
|
// numNonClosures returns the number of functions in list which are not closures.
|
|
func numNonClosures(list []*ir.Func) int {
|
|
count := 0
|
|
for _, fn := range list {
|
|
if fn.OClosure == nil {
|
|
count++
|
|
}
|
|
}
|
|
return count
|
|
}
|
|
|
|
func doList(list []ir.Node, do func(ir.Node) bool) bool {
|
|
for _, x := range list {
|
|
if x != nil {
|
|
if do(x) {
|
|
return true
|
|
}
|
|
}
|
|
}
|
|
return false
|
|
}
|