go/src/cmd/compile/internal/walk/builtin.go
thepudds 2c9689ab0e cmd/compile/internal/escape: add hash for bisecting stack allocation of variable-sized makeslice
CL 653856 enabled stack allocation of variable-sized makeslice results.

This CL adds debug hashing of that change, plus a debug flag
to control the byte threshold used.

The debug hashing machinery means we also now have a way to disable just
the CL 653856 optimization by doing -gcflags='all=-d=variablemakehash=n'
or similar, though the stderr output will then typically have many
lines of debug hash output.

Using this CL plus the bisect command, I was able to retroactively
find one of the lines of code responsible for #73199:

  $ bisect -compile=variablemake go test -skip TestListWireGuardDrivers
  [...]
  bisect: FOUND failing change set
  --- change set #1 (enabling changes causes failure)
  ./security_windows.go:1321:38 (variablemake)
  ./security_windows.go:1321:38 (variablemake)
  ---

Previously, I had tracked down those lines by diffing '-gcflags=-m=1'
output and brief code inspection, but seeing the bisect was very nice.

This CL also adds a compiler debug flag to control the threshold for
stack allocation of variably sized make results. This can help
us identify more code that is relying on certain stack allocations.
This might be a temporary flag that we delete prior to Go 1.25
(given we would not want people to rely on it), or maybe it
might make sense to keep it for some period of time beyond the release
of Go 1.25 to help the ecosystem shake out other bugs.

Using these two flags together (and picking a threshold of 64 rather
than the default of 32), it looks for example like this
x/sys/windows code might be relying on stack allocation of
a byte slice:

  $ bisect -compile=variablemake go test -gcflags=-d=variablemakethreshold=64 -skip TestListWireGuardDrivers
  [...]
  bisect: FOUND failing change set
  --- change set #1 (enabling changes causes failure)
  ./syscall_windows_test.go:1178:16 (variablemake)

Updates #73199
Fixes #73253

Change-Id: I160179a0e3c148c3ea86be5c9b6cea8a52c3e5b7
Reviewed-on: https://go-review.googlesource.com/c/go/+/663795
Auto-Submit: Keith Randall <khr@golang.org>
Reviewed-by: Dmitri Shuralyov <dmitshur@google.com>
Reviewed-by: Keith Randall <khr@golang.org>
Reviewed-by: Keith Randall <khr@google.com>
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
2025-04-15 20:19:42 -07:00

1067 lines
38 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.walk/bui
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package walk
import (
"fmt"
"go/constant"
"go/token"
"internal/abi"
"internal/buildcfg"
"strings"
"cmd/compile/internal/base"
"cmd/compile/internal/escape"
"cmd/compile/internal/ir"
"cmd/compile/internal/reflectdata"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
)
// Rewrite append(src, x, y, z) so that any side effects in
// x, y, z (including runtime panics) are evaluated in
// initialization statements before the append.
// For normal code generation, stop there and leave the
// rest to ssagen.
//
// For race detector, expand append(src, a [, b]* ) to
//
// init {
// s := src
// const argc = len(args) - 1
// newLen := s.len + argc
// if uint(newLen) <= uint(s.cap) {
// s = s[:newLen]
// } else {
// s = growslice(s.ptr, newLen, s.cap, argc, elemType)
// }
// s[s.len - argc] = a
// s[s.len - argc + 1] = b
// ...
// }
// s
func walkAppend(n *ir.CallExpr, init *ir.Nodes, dst ir.Node) ir.Node {
if !ir.SameSafeExpr(dst, n.Args[0]) {
n.Args[0] = safeExpr(n.Args[0], init)
n.Args[0] = walkExpr(n.Args[0], init)
}
walkExprListSafe(n.Args[1:], init)
nsrc := n.Args[0]
// walkExprListSafe will leave OINDEX (s[n]) alone if both s
// and n are name or literal, but those may index the slice we're
// modifying here. Fix explicitly.
// Using cheapExpr also makes sure that the evaluation
// of all arguments (and especially any panics) happen
// before we begin to modify the slice in a visible way.
ls := n.Args[1:]
for i, n := range ls {
n = cheapExpr(n, init)
if !types.Identical(n.Type(), nsrc.Type().Elem()) {
n = typecheck.AssignConv(n, nsrc.Type().Elem(), "append")
n = walkExpr(n, init)
}
ls[i] = n
}
argc := len(n.Args) - 1
if argc < 1 {
return nsrc
}
// General case, with no function calls left as arguments.
// Leave for ssagen, except that instrumentation requires the old form.
if !base.Flag.Cfg.Instrumenting || base.Flag.CompilingRuntime {
return n
}
var l []ir.Node
// s = slice to append to
s := typecheck.TempAt(base.Pos, ir.CurFunc, nsrc.Type())
l = append(l, ir.NewAssignStmt(base.Pos, s, nsrc))
// num = number of things to append
num := ir.NewInt(base.Pos, int64(argc))
// newLen := s.len + num
newLen := typecheck.TempAt(base.Pos, ir.CurFunc, types.Types[types.TINT])
l = append(l, ir.NewAssignStmt(base.Pos, newLen, ir.NewBinaryExpr(base.Pos, ir.OADD, ir.NewUnaryExpr(base.Pos, ir.OLEN, s), num)))
// if uint(newLen) <= uint(s.cap)
nif := ir.NewIfStmt(base.Pos, nil, nil, nil)
nif.Cond = ir.NewBinaryExpr(base.Pos, ir.OLE, typecheck.Conv(newLen, types.Types[types.TUINT]), typecheck.Conv(ir.NewUnaryExpr(base.Pos, ir.OCAP, s), types.Types[types.TUINT]))
nif.Likely = true
// then { s = s[:n] }
slice := ir.NewSliceExpr(base.Pos, ir.OSLICE, s, nil, newLen, nil)
slice.SetBounded(true)
nif.Body = []ir.Node{
ir.NewAssignStmt(base.Pos, s, slice),
}
// else { s = growslice(s.ptr, n, s.cap, a, T) }
nif.Else = []ir.Node{
ir.NewAssignStmt(base.Pos, s, walkGrowslice(s, nif.PtrInit(),
ir.NewUnaryExpr(base.Pos, ir.OSPTR, s),
newLen,
ir.NewUnaryExpr(base.Pos, ir.OCAP, s),
num)),
}
l = append(l, nif)
ls = n.Args[1:]
for i, n := range ls {
// s[s.len-argc+i] = arg
ix := ir.NewIndexExpr(base.Pos, s, ir.NewBinaryExpr(base.Pos, ir.OSUB, newLen, ir.NewInt(base.Pos, int64(argc-i))))
ix.SetBounded(true)
l = append(l, ir.NewAssignStmt(base.Pos, ix, n))
}
typecheck.Stmts(l)
walkStmtList(l)
init.Append(l...)
return s
}
// growslice(ptr *T, newLen, oldCap, num int, <type>) (ret []T)
func walkGrowslice(slice *ir.Name, init *ir.Nodes, oldPtr, newLen, oldCap, num ir.Node) *ir.CallExpr {
elemtype := slice.Type().Elem()
fn := typecheck.LookupRuntime("growslice", elemtype, elemtype)
elemtypeptr := reflectdata.TypePtrAt(base.Pos, elemtype)
return mkcall1(fn, slice.Type(), init, oldPtr, newLen, oldCap, num, elemtypeptr)
}
// walkClear walks an OCLEAR node.
func walkClear(n *ir.UnaryExpr) ir.Node {
typ := n.X.Type()
switch {
case typ.IsSlice():
if n := arrayClear(n.X.Pos(), n.X, nil); n != nil {
return n
}
// If n == nil, we are clearing an array which takes zero memory, do nothing.
return ir.NewBlockStmt(n.Pos(), nil)
case typ.IsMap():
return mapClear(n.X, reflectdata.TypePtrAt(n.X.Pos(), n.X.Type()))
}
panic("unreachable")
}
// walkClose walks an OCLOSE node.
func walkClose(n *ir.UnaryExpr, init *ir.Nodes) ir.Node {
return mkcall1(chanfn("closechan", 1, n.X.Type()), nil, init, n.X)
}
// Lower copy(a, b) to a memmove call or a runtime call.
//
// init {
// n := len(a)
// if n > len(b) { n = len(b) }
// if a.ptr != b.ptr { memmove(a.ptr, b.ptr, n*sizeof(elem(a))) }
// }
// n;
//
// Also works if b is a string.
func walkCopy(n *ir.BinaryExpr, init *ir.Nodes, runtimecall bool) ir.Node {
if n.X.Type().Elem().HasPointers() {
ir.CurFunc.SetWBPos(n.Pos())
fn := writebarrierfn("typedslicecopy", n.X.Type().Elem(), n.Y.Type().Elem())
n.X = cheapExpr(n.X, init)
ptrL, lenL := backingArrayPtrLen(n.X)
n.Y = cheapExpr(n.Y, init)
ptrR, lenR := backingArrayPtrLen(n.Y)
return mkcall1(fn, n.Type(), init, reflectdata.CopyElemRType(base.Pos, n), ptrL, lenL, ptrR, lenR)
}
if runtimecall {
// rely on runtime to instrument:
// copy(n.Left, n.Right)
// n.Right can be a slice or string.
n.X = cheapExpr(n.X, init)
ptrL, lenL := backingArrayPtrLen(n.X)
n.Y = cheapExpr(n.Y, init)
ptrR, lenR := backingArrayPtrLen(n.Y)
fn := typecheck.LookupRuntime("slicecopy", ptrL.Type().Elem(), ptrR.Type().Elem())
return mkcall1(fn, n.Type(), init, ptrL, lenL, ptrR, lenR, ir.NewInt(base.Pos, n.X.Type().Elem().Size()))
}
n.X = walkExpr(n.X, init)
n.Y = walkExpr(n.Y, init)
nl := typecheck.TempAt(base.Pos, ir.CurFunc, n.X.Type())
nr := typecheck.TempAt(base.Pos, ir.CurFunc, n.Y.Type())
var l []ir.Node
l = append(l, ir.NewAssignStmt(base.Pos, nl, n.X))
l = append(l, ir.NewAssignStmt(base.Pos, nr, n.Y))
nfrm := ir.NewUnaryExpr(base.Pos, ir.OSPTR, nr)
nto := ir.NewUnaryExpr(base.Pos, ir.OSPTR, nl)
nlen := typecheck.TempAt(base.Pos, ir.CurFunc, types.Types[types.TINT])
// n = len(to)
l = append(l, ir.NewAssignStmt(base.Pos, nlen, ir.NewUnaryExpr(base.Pos, ir.OLEN, nl)))
// if n > len(frm) { n = len(frm) }
nif := ir.NewIfStmt(base.Pos, nil, nil, nil)
nif.Cond = ir.NewBinaryExpr(base.Pos, ir.OGT, nlen, ir.NewUnaryExpr(base.Pos, ir.OLEN, nr))
nif.Body.Append(ir.NewAssignStmt(base.Pos, nlen, ir.NewUnaryExpr(base.Pos, ir.OLEN, nr)))
l = append(l, nif)
// if to.ptr != frm.ptr { memmove( ... ) }
ne := ir.NewIfStmt(base.Pos, ir.NewBinaryExpr(base.Pos, ir.ONE, nto, nfrm), nil, nil)
ne.Likely = true
l = append(l, ne)
fn := typecheck.LookupRuntime("memmove", nl.Type().Elem(), nl.Type().Elem())
nwid := ir.Node(typecheck.TempAt(base.Pos, ir.CurFunc, types.Types[types.TUINTPTR]))
setwid := ir.NewAssignStmt(base.Pos, nwid, typecheck.Conv(nlen, types.Types[types.TUINTPTR]))
ne.Body.Append(setwid)
nwid = ir.NewBinaryExpr(base.Pos, ir.OMUL, nwid, ir.NewInt(base.Pos, nl.Type().Elem().Size()))
call := mkcall1(fn, nil, init, nto, nfrm, nwid)
ne.Body.Append(call)
typecheck.Stmts(l)
walkStmtList(l)
init.Append(l...)
return nlen
}
// walkDelete walks an ODELETE node.
func walkDelete(init *ir.Nodes, n *ir.CallExpr) ir.Node {
init.Append(ir.TakeInit(n)...)
map_ := n.Args[0]
key := n.Args[1]
map_ = walkExpr(map_, init)
key = walkExpr(key, init)
t := map_.Type()
fast := mapfast(t)
key = mapKeyArg(fast, n, key, false)
return mkcall1(mapfndel(mapdelete[fast], t), nil, init, reflectdata.DeleteMapRType(base.Pos, n), map_, key)
}
// walkLenCap walks an OLEN or OCAP node.
func walkLenCap(n *ir.UnaryExpr, init *ir.Nodes) ir.Node {
if isRuneCount(n) {
// Replace len([]rune(string)) with runtime.countrunes(string).
return mkcall("countrunes", n.Type(), init, typecheck.Conv(n.X.(*ir.ConvExpr).X, types.Types[types.TSTRING]))
}
if isByteCount(n) {
conv := n.X.(*ir.ConvExpr)
walkStmtList(conv.Init())
init.Append(ir.TakeInit(conv)...)
_, len := backingArrayPtrLen(cheapExpr(conv.X, init))
return len
}
if isChanLenCap(n) {
name := "chanlen"
if n.Op() == ir.OCAP {
name = "chancap"
}
// cannot use chanfn - closechan takes any, not chan any,
// because it accepts both send-only and recv-only channels.
fn := typecheck.LookupRuntime(name, n.X.Type())
return mkcall1(fn, n.Type(), init, n.X)
}
n.X = walkExpr(n.X, init)
// replace len(*[10]int) with 10.
// delayed until now to preserve side effects.
t := n.X.Type()
if t.IsPtr() {
t = t.Elem()
}
if t.IsArray() {
safeExpr(n.X, init)
con := ir.NewConstExpr(constant.MakeInt64(t.NumElem()), n)
con.SetTypecheck(1)
return con
}
return n
}
// walkMakeChan walks an OMAKECHAN node.
func walkMakeChan(n *ir.MakeExpr, init *ir.Nodes) ir.Node {
// When size fits into int, use makechan instead of
// makechan64, which is faster and shorter on 32 bit platforms.
size := n.Len
fnname := "makechan64"
argtype := types.Types[types.TINT64]
// Type checking guarantees that TIDEAL size is positive and fits in an int.
// The case of size overflow when converting TUINT or TUINTPTR to TINT
// will be handled by the negative range checks in makechan during runtime.
if size.Type().IsKind(types.TIDEAL) || size.Type().Size() <= types.Types[types.TUINT].Size() {
fnname = "makechan"
argtype = types.Types[types.TINT]
}
return mkcall1(chanfn(fnname, 1, n.Type()), n.Type(), init, reflectdata.MakeChanRType(base.Pos, n), typecheck.Conv(size, argtype))
}
// walkMakeMap walks an OMAKEMAP node.
func walkMakeMap(n *ir.MakeExpr, init *ir.Nodes) ir.Node {
if buildcfg.Experiment.SwissMap {
return walkMakeSwissMap(n, init)
}
return walkMakeOldMap(n, init)
}
func walkMakeSwissMap(n *ir.MakeExpr, init *ir.Nodes) ir.Node {
t := n.Type()
mapType := reflectdata.SwissMapType()
hint := n.Len
// var m *Map
var m ir.Node
if n.Esc() == ir.EscNone {
// Allocate hmap on stack.
// var mv Map
// m = &mv
m = stackTempAddr(init, mapType)
// Allocate one group pointed to by m.dirPtr on stack if hint
// is not larger than SwissMapGroupSlots. In case hint is
// larger, runtime.makemap will allocate on the heap.
// Maximum key and elem size is 128 bytes, larger objects
// are stored with an indirection. So max bucket size is 2048+eps.
if !ir.IsConst(hint, constant.Int) ||
constant.Compare(hint.Val(), token.LEQ, constant.MakeInt64(abi.SwissMapGroupSlots)) {
// In case hint is larger than SwissMapGroupSlots
// runtime.makemap will allocate on the heap, see
// #20184
//
// if hint <= abi.SwissMapGroupSlots {
// var gv group
// g = &gv
// g.ctrl = abi.SwissMapCtrlEmpty
// m.dirPtr = g
// }
nif := ir.NewIfStmt(base.Pos, ir.NewBinaryExpr(base.Pos, ir.OLE, hint, ir.NewInt(base.Pos, abi.SwissMapGroupSlots)), nil, nil)
nif.Likely = true
groupType := reflectdata.SwissMapGroupType(t)
// var gv group
// g = &gv
g := stackTempAddr(&nif.Body, groupType)
// Can't use ir.NewInt because bit 63 is set, which
// makes conversion to uint64 upset.
empty := ir.NewBasicLit(base.Pos, types.UntypedInt, constant.MakeUint64(abi.SwissMapCtrlEmpty))
// g.ctrl = abi.SwissMapCtrlEmpty
csym := groupType.Field(0).Sym // g.ctrl see reflectdata/map_swiss.go
ca := ir.NewAssignStmt(base.Pos, ir.NewSelectorExpr(base.Pos, ir.ODOT, g, csym), empty)
nif.Body.Append(ca)
// m.dirPtr = g
dsym := mapType.Field(2).Sym // m.dirPtr see reflectdata/map_swiss.go
na := ir.NewAssignStmt(base.Pos, ir.NewSelectorExpr(base.Pos, ir.ODOT, m, dsym), typecheck.ConvNop(g, types.Types[types.TUNSAFEPTR]))
nif.Body.Append(na)
appendWalkStmt(init, nif)
}
}
if ir.IsConst(hint, constant.Int) && constant.Compare(hint.Val(), token.LEQ, constant.MakeInt64(abi.SwissMapGroupSlots)) {
// Handling make(map[any]any) and
// make(map[any]any, hint) where hint <= abi.SwissMapGroupSlots
// specially allows for faster map initialization and
// improves binary size by using calls with fewer arguments.
// For hint <= abi.SwissMapGroupSlots no groups will be
// allocated by makemap. Therefore, no groups need to be
// allocated in this code path.
if n.Esc() == ir.EscNone {
// Only need to initialize m.seed since
// m map has been allocated on the stack already.
// m.seed = uintptr(rand())
rand := mkcall("rand", types.Types[types.TUINT64], init)
seedSym := mapType.Field(1).Sym // m.seed see reflectdata/map_swiss.go
appendWalkStmt(init, ir.NewAssignStmt(base.Pos, ir.NewSelectorExpr(base.Pos, ir.ODOT, m, seedSym), typecheck.Conv(rand, types.Types[types.TUINTPTR])))
return typecheck.ConvNop(m, t)
}
// Call runtime.makemap_small to allocate a
// map on the heap and initialize the map's seed field.
fn := typecheck.LookupRuntime("makemap_small", t.Key(), t.Elem())
return mkcall1(fn, n.Type(), init)
}
if n.Esc() != ir.EscNone {
m = typecheck.NodNil()
}
// Map initialization with a variable or large hint is
// more complicated. We therefore generate a call to
// runtime.makemap to initialize hmap and allocate the
// map buckets.
// When hint fits into int, use makemap instead of
// makemap64, which is faster and shorter on 32 bit platforms.
fnname := "makemap64"
argtype := types.Types[types.TINT64]
// Type checking guarantees that TIDEAL hint is positive and fits in an int.
// See checkmake call in TMAP case of OMAKE case in OpSwitch in typecheck1 function.
// The case of hint overflow when converting TUINT or TUINTPTR to TINT
// will be handled by the negative range checks in makemap during runtime.
if hint.Type().IsKind(types.TIDEAL) || hint.Type().Size() <= types.Types[types.TUINT].Size() {
fnname = "makemap"
argtype = types.Types[types.TINT]
}
fn := typecheck.LookupRuntime(fnname, mapType, t.Key(), t.Elem())
return mkcall1(fn, n.Type(), init, reflectdata.MakeMapRType(base.Pos, n), typecheck.Conv(hint, argtype), m)
}
func walkMakeOldMap(n *ir.MakeExpr, init *ir.Nodes) ir.Node {
t := n.Type()
hmapType := reflectdata.OldMapType()
hint := n.Len
// var h *hmap
var h ir.Node
if n.Esc() == ir.EscNone {
// Allocate hmap on stack.
// var hv hmap
// h = &hv
h = stackTempAddr(init, hmapType)
// Allocate one bucket pointed to by hmap.buckets on stack if hint
// is not larger than BUCKETSIZE. In case hint is larger than
// BUCKETSIZE runtime.makemap will allocate the buckets on the heap.
// Maximum key and elem size is 128 bytes, larger objects
// are stored with an indirection. So max bucket size is 2048+eps.
if !ir.IsConst(hint, constant.Int) ||
constant.Compare(hint.Val(), token.LEQ, constant.MakeInt64(abi.OldMapBucketCount)) {
// In case hint is larger than BUCKETSIZE runtime.makemap
// will allocate the buckets on the heap, see #20184
//
// if hint <= BUCKETSIZE {
// var bv bmap
// b = &bv
// h.buckets = b
// }
nif := ir.NewIfStmt(base.Pos, ir.NewBinaryExpr(base.Pos, ir.OLE, hint, ir.NewInt(base.Pos, abi.OldMapBucketCount)), nil, nil)
nif.Likely = true
// var bv bmap
// b = &bv
b := stackTempAddr(&nif.Body, reflectdata.OldMapBucketType(t))
// h.buckets = b
bsym := hmapType.Field(5).Sym // hmap.buckets see reflect.go:hmap
na := ir.NewAssignStmt(base.Pos, ir.NewSelectorExpr(base.Pos, ir.ODOT, h, bsym), typecheck.ConvNop(b, types.Types[types.TUNSAFEPTR]))
nif.Body.Append(na)
appendWalkStmt(init, nif)
}
}
if ir.IsConst(hint, constant.Int) && constant.Compare(hint.Val(), token.LEQ, constant.MakeInt64(abi.OldMapBucketCount)) {
// Handling make(map[any]any) and
// make(map[any]any, hint) where hint <= BUCKETSIZE
// special allows for faster map initialization and
// improves binary size by using calls with fewer arguments.
// For hint <= BUCKETSIZE overLoadFactor(hint, 0) is false
// and no buckets will be allocated by makemap. Therefore,
// no buckets need to be allocated in this code path.
if n.Esc() == ir.EscNone {
// Only need to initialize h.hash0 since
// hmap h has been allocated on the stack already.
// h.hash0 = rand32()
rand := mkcall("rand32", types.Types[types.TUINT32], init)
hashsym := hmapType.Field(4).Sym // hmap.hash0 see reflect.go:hmap
appendWalkStmt(init, ir.NewAssignStmt(base.Pos, ir.NewSelectorExpr(base.Pos, ir.ODOT, h, hashsym), rand))
return typecheck.ConvNop(h, t)
}
// Call runtime.makemap_small to allocate an
// hmap on the heap and initialize hmap's hash0 field.
fn := typecheck.LookupRuntime("makemap_small", t.Key(), t.Elem())
return mkcall1(fn, n.Type(), init)
}
if n.Esc() != ir.EscNone {
h = typecheck.NodNil()
}
// Map initialization with a variable or large hint is
// more complicated. We therefore generate a call to
// runtime.makemap to initialize hmap and allocate the
// map buckets.
// When hint fits into int, use makemap instead of
// makemap64, which is faster and shorter on 32 bit platforms.
fnname := "makemap64"
argtype := types.Types[types.TINT64]
// Type checking guarantees that TIDEAL hint is positive and fits in an int.
// See checkmake call in TMAP case of OMAKE case in OpSwitch in typecheck1 function.
// The case of hint overflow when converting TUINT or TUINTPTR to TINT
// will be handled by the negative range checks in makemap during runtime.
if hint.Type().IsKind(types.TIDEAL) || hint.Type().Size() <= types.Types[types.TUINT].Size() {
fnname = "makemap"
argtype = types.Types[types.TINT]
}
fn := typecheck.LookupRuntime(fnname, hmapType, t.Key(), t.Elem())
return mkcall1(fn, n.Type(), init, reflectdata.MakeMapRType(base.Pos, n), typecheck.Conv(hint, argtype), h)
}
// walkMakeSlice walks an OMAKESLICE node.
func walkMakeSlice(n *ir.MakeExpr, init *ir.Nodes) ir.Node {
len := n.Len
cap := n.Cap
len = safeExpr(len, init)
if cap != nil {
cap = safeExpr(cap, init)
} else {
cap = len
}
t := n.Type()
if t.Elem().NotInHeap() {
base.Errorf("%v can't be allocated in Go; it is incomplete (or unallocatable)", t.Elem())
}
tryStack := false
if n.Esc() == ir.EscNone {
if why := escape.HeapAllocReason(n); why != "" {
base.Fatalf("%v has EscNone, but %v", n, why)
}
if ir.IsSmallIntConst(cap) {
// Constant backing array - allocate it and slice it.
cap := typecheck.IndexConst(cap)
// Note that len might not be constant. If it isn't, check for panics.
// cap is constrained to [0,2^31) or [0,2^63) depending on whether
// we're in 32-bit or 64-bit systems. So it's safe to do:
//
// if uint64(len) > cap {
// if len < 0 { panicmakeslicelen() }
// panicmakeslicecap()
// }
nif := ir.NewIfStmt(base.Pos, ir.NewBinaryExpr(base.Pos, ir.OGT, typecheck.Conv(len, types.Types[types.TUINT64]), ir.NewInt(base.Pos, cap)), nil, nil)
niflen := ir.NewIfStmt(base.Pos, ir.NewBinaryExpr(base.Pos, ir.OLT, len, ir.NewInt(base.Pos, 0)), nil, nil)
niflen.Body = []ir.Node{mkcall("panicmakeslicelen", nil, init)}
nif.Body.Append(niflen, mkcall("panicmakeslicecap", nil, init))
init.Append(typecheck.Stmt(nif))
// var arr [cap]E
// s = arr[:len]
t := types.NewArray(t.Elem(), cap) // [cap]E
arr := typecheck.TempAt(base.Pos, ir.CurFunc, t)
appendWalkStmt(init, ir.NewAssignStmt(base.Pos, arr, nil)) // zero temp
s := ir.NewSliceExpr(base.Pos, ir.OSLICE, arr, nil, len, nil) // arr[:len]
// The conv is necessary in case n.Type is named.
return walkExpr(typecheck.Expr(typecheck.Conv(s, n.Type())), init)
}
// Check that this optimization is enabled in general and for this node.
tryStack = base.Flag.N == 0 && base.VariableMakeHash.MatchPos(n.Pos(), nil)
}
// The final result is assigned to this variable.
slice := typecheck.TempAt(base.Pos, ir.CurFunc, n.Type()) // []E result (possibly named)
if tryStack {
// K := maxStackSize/sizeof(E)
// if cap <= K {
// var arr [K]E
// slice = arr[:len:cap]
// } else {
// slice = makeslice(elemType, len, cap)
// }
maxStackSize := int64(base.Debug.VariableMakeThreshold)
K := maxStackSize / t.Elem().Size() // rounds down
if K > 0 { // skip if elem size is too big.
nif := ir.NewIfStmt(base.Pos, ir.NewBinaryExpr(base.Pos, ir.OLE, typecheck.Conv(cap, types.Types[types.TUINT64]), ir.NewInt(base.Pos, K)), nil, nil)
// cap is in bounds after the K check, but len might not be.
// (Note that the slicing below would generate a panic for
// the same bad cases, but we want makeslice panics, not
// regular slicing panics.)
lenCap := ir.NewIfStmt(base.Pos, ir.NewBinaryExpr(base.Pos, ir.OGT, typecheck.Conv(len, types.Types[types.TUINT64]), typecheck.Conv(cap, types.Types[types.TUINT64])), nil, nil)
lenZero := ir.NewIfStmt(base.Pos, ir.NewBinaryExpr(base.Pos, ir.OLT, len, ir.NewInt(base.Pos, 0)), nil, nil)
lenZero.Body.Append(mkcall("panicmakeslicelen", nil, &lenZero.Body))
lenCap.Body.Append(lenZero)
lenCap.Body.Append(mkcall("panicmakeslicecap", nil, &lenCap.Body))
nif.Body.Append(lenCap)
t := types.NewArray(t.Elem(), K) // [K]E
arr := typecheck.TempAt(base.Pos, ir.CurFunc, t) // var arr [K]E
nif.Body.Append(ir.NewAssignStmt(base.Pos, arr, nil)) // arr = {} (zero it)
s := ir.NewSliceExpr(base.Pos, ir.OSLICE, arr, nil, len, cap) // arr[:len:cap]
nif.Body.Append(ir.NewAssignStmt(base.Pos, slice, s)) // slice = arr[:len:cap]
appendWalkStmt(init, typecheck.Stmt(nif))
// Put makeslice call below in the else branch.
init = &nif.Else
}
}
// Set up a call to makeslice.
// When len and cap can fit into int, use makeslice instead of
// makeslice64, which is faster and shorter on 32 bit platforms.
fnname := "makeslice64"
argtype := types.Types[types.TINT64]
// Type checking guarantees that TIDEAL len/cap are positive and fit in an int.
// The case of len or cap overflow when converting TUINT or TUINTPTR to TINT
// will be handled by the negative range checks in makeslice during runtime.
if (len.Type().IsKind(types.TIDEAL) || len.Type().Size() <= types.Types[types.TUINT].Size()) &&
(cap.Type().IsKind(types.TIDEAL) || cap.Type().Size() <= types.Types[types.TUINT].Size()) {
fnname = "makeslice"
argtype = types.Types[types.TINT]
}
fn := typecheck.LookupRuntime(fnname)
ptr := mkcall1(fn, types.Types[types.TUNSAFEPTR], init, reflectdata.MakeSliceElemRType(base.Pos, n), typecheck.Conv(len, argtype), typecheck.Conv(cap, argtype))
ptr.MarkNonNil()
len = typecheck.Conv(len, types.Types[types.TINT])
cap = typecheck.Conv(cap, types.Types[types.TINT])
s := ir.NewSliceHeaderExpr(base.Pos, t, ptr, len, cap)
appendWalkStmt(init, ir.NewAssignStmt(base.Pos, slice, s))
return slice
}
// walkMakeSliceCopy walks an OMAKESLICECOPY node.
func walkMakeSliceCopy(n *ir.MakeExpr, init *ir.Nodes) ir.Node {
if n.Esc() == ir.EscNone {
base.Fatalf("OMAKESLICECOPY with EscNone: %v", n)
}
t := n.Type()
if t.Elem().NotInHeap() {
base.Errorf("%v can't be allocated in Go; it is incomplete (or unallocatable)", t.Elem())
}
length := typecheck.Conv(n.Len, types.Types[types.TINT])
copylen := ir.NewUnaryExpr(base.Pos, ir.OLEN, n.Cap)
copyptr := ir.NewUnaryExpr(base.Pos, ir.OSPTR, n.Cap)
if !t.Elem().HasPointers() && n.Bounded() {
// When len(to)==len(from) and elements have no pointers:
// replace make+copy with runtime.mallocgc+runtime.memmove.
// We do not check for overflow of len(to)*elem.Width here
// since len(from) is an existing checked slice capacity
// with same elem.Width for the from slice.
size := ir.NewBinaryExpr(base.Pos, ir.OMUL, typecheck.Conv(length, types.Types[types.TUINTPTR]), typecheck.Conv(ir.NewInt(base.Pos, t.Elem().Size()), types.Types[types.TUINTPTR]))
// instantiate mallocgc(size uintptr, typ *byte, needszero bool) unsafe.Pointer
fn := typecheck.LookupRuntime("mallocgc")
ptr := mkcall1(fn, types.Types[types.TUNSAFEPTR], init, size, typecheck.NodNil(), ir.NewBool(base.Pos, false))
ptr.MarkNonNil()
sh := ir.NewSliceHeaderExpr(base.Pos, t, ptr, length, length)
s := typecheck.TempAt(base.Pos, ir.CurFunc, t)
r := typecheck.Stmt(ir.NewAssignStmt(base.Pos, s, sh))
r = walkExpr(r, init)
init.Append(r)
// instantiate memmove(to *any, frm *any, size uintptr)
fn = typecheck.LookupRuntime("memmove", t.Elem(), t.Elem())
ncopy := mkcall1(fn, nil, init, ir.NewUnaryExpr(base.Pos, ir.OSPTR, s), copyptr, size)
init.Append(walkExpr(typecheck.Stmt(ncopy), init))
return s
}
// Replace make+copy with runtime.makeslicecopy.
// instantiate makeslicecopy(typ *byte, tolen int, fromlen int, from unsafe.Pointer) unsafe.Pointer
fn := typecheck.LookupRuntime("makeslicecopy")
ptr := mkcall1(fn, types.Types[types.TUNSAFEPTR], init, reflectdata.MakeSliceElemRType(base.Pos, n), length, copylen, typecheck.Conv(copyptr, types.Types[types.TUNSAFEPTR]))
ptr.MarkNonNil()
sh := ir.NewSliceHeaderExpr(base.Pos, t, ptr, length, length)
return walkExpr(typecheck.Expr(sh), init)
}
// walkNew walks an ONEW node.
func walkNew(n *ir.UnaryExpr, init *ir.Nodes) ir.Node {
t := n.Type().Elem()
if t.NotInHeap() {
base.Errorf("%v can't be allocated in Go; it is incomplete (or unallocatable)", n.Type().Elem())
}
if n.Esc() == ir.EscNone {
if t.Size() > ir.MaxImplicitStackVarSize {
base.Fatalf("large ONEW with EscNone: %v", n)
}
return stackTempAddr(init, t)
}
types.CalcSize(t)
n.MarkNonNil()
return n
}
func walkMinMax(n *ir.CallExpr, init *ir.Nodes) ir.Node {
init.Append(ir.TakeInit(n)...)
walkExprList(n.Args, init)
return n
}
// generate code for print.
func walkPrint(nn *ir.CallExpr, init *ir.Nodes) ir.Node {
// Hoist all the argument evaluation up before the lock.
walkExprListCheap(nn.Args, init)
// For println, add " " between elements and "\n" at the end.
if nn.Op() == ir.OPRINTLN {
s := nn.Args
t := make([]ir.Node, 0, len(s)*2)
for i, n := range s {
if i != 0 {
t = append(t, ir.NewString(base.Pos, " "))
}
t = append(t, n)
}
t = append(t, ir.NewString(base.Pos, "\n"))
nn.Args = t
}
// Collapse runs of constant strings.
s := nn.Args
t := make([]ir.Node, 0, len(s))
for i := 0; i < len(s); {
var strs []string
for i < len(s) && ir.IsConst(s[i], constant.String) {
strs = append(strs, ir.StringVal(s[i]))
i++
}
if len(strs) > 0 {
t = append(t, ir.NewString(base.Pos, strings.Join(strs, "")))
}
if i < len(s) {
t = append(t, s[i])
i++
}
}
nn.Args = t
calls := []ir.Node{mkcall("printlock", nil, init)}
for i, n := range nn.Args {
if n.Op() == ir.OLITERAL {
if n.Type() == types.UntypedRune {
n = typecheck.DefaultLit(n, types.RuneType)
}
switch n.Val().Kind() {
case constant.Int:
n = typecheck.DefaultLit(n, types.Types[types.TINT64])
case constant.Float:
n = typecheck.DefaultLit(n, types.Types[types.TFLOAT64])
}
}
if n.Op() != ir.OLITERAL && n.Type() != nil && n.Type().Kind() == types.TIDEAL {
n = typecheck.DefaultLit(n, types.Types[types.TINT64])
}
n = typecheck.DefaultLit(n, nil)
nn.Args[i] = n
if n.Type() == nil || n.Type().Kind() == types.TFORW {
continue
}
var on *ir.Name
switch n.Type().Kind() {
case types.TINTER:
if n.Type().IsEmptyInterface() {
on = typecheck.LookupRuntime("printeface", n.Type())
} else {
on = typecheck.LookupRuntime("printiface", n.Type())
}
case types.TPTR:
if n.Type().Elem().NotInHeap() {
on = typecheck.LookupRuntime("printuintptr")
n = ir.NewConvExpr(base.Pos, ir.OCONV, nil, n)
n.SetType(types.Types[types.TUNSAFEPTR])
n = ir.NewConvExpr(base.Pos, ir.OCONV, nil, n)
n.SetType(types.Types[types.TUINTPTR])
break
}
fallthrough
case types.TCHAN, types.TMAP, types.TFUNC, types.TUNSAFEPTR:
on = typecheck.LookupRuntime("printpointer", n.Type())
case types.TSLICE:
on = typecheck.LookupRuntime("printslice", n.Type())
case types.TUINT, types.TUINT8, types.TUINT16, types.TUINT32, types.TUINT64, types.TUINTPTR:
if types.RuntimeSymName(n.Type().Sym()) == "hex" {
on = typecheck.LookupRuntime("printhex")
} else {
on = typecheck.LookupRuntime("printuint")
}
case types.TINT, types.TINT8, types.TINT16, types.TINT32, types.TINT64:
on = typecheck.LookupRuntime("printint")
case types.TFLOAT32, types.TFLOAT64:
on = typecheck.LookupRuntime("printfloat")
case types.TCOMPLEX64, types.TCOMPLEX128:
on = typecheck.LookupRuntime("printcomplex")
case types.TBOOL:
on = typecheck.LookupRuntime("printbool")
case types.TSTRING:
cs := ""
if ir.IsConst(n, constant.String) {
cs = ir.StringVal(n)
}
switch cs {
case " ":
on = typecheck.LookupRuntime("printsp")
case "\n":
on = typecheck.LookupRuntime("printnl")
default:
on = typecheck.LookupRuntime("printstring")
}
default:
badtype(ir.OPRINT, n.Type(), nil)
continue
}
r := ir.NewCallExpr(base.Pos, ir.OCALL, on, nil)
if params := on.Type().Params(); len(params) > 0 {
t := params[0].Type
n = typecheck.Conv(n, t)
r.Args.Append(n)
}
calls = append(calls, r)
}
calls = append(calls, mkcall("printunlock", nil, init))
typecheck.Stmts(calls)
walkExprList(calls, init)
r := ir.NewBlockStmt(base.Pos, nil)
r.List = calls
return walkStmt(typecheck.Stmt(r))
}
// walkRecoverFP walks an ORECOVERFP node.
func walkRecoverFP(nn *ir.CallExpr, init *ir.Nodes) ir.Node {
return mkcall("gorecover", nn.Type(), init, walkExpr(nn.Args[0], init))
}
// walkUnsafeData walks an OUNSAFESLICEDATA or OUNSAFESTRINGDATA expression.
func walkUnsafeData(n *ir.UnaryExpr, init *ir.Nodes) ir.Node {
slice := walkExpr(n.X, init)
res := typecheck.Expr(ir.NewUnaryExpr(n.Pos(), ir.OSPTR, slice))
res.SetType(n.Type())
return walkExpr(res, init)
}
func walkUnsafeSlice(n *ir.BinaryExpr, init *ir.Nodes) ir.Node {
ptr := safeExpr(n.X, init)
len := safeExpr(n.Y, init)
sliceType := n.Type()
lenType := types.Types[types.TINT64]
unsafePtr := typecheck.Conv(ptr, types.Types[types.TUNSAFEPTR])
// If checkptr enabled, call runtime.unsafeslicecheckptr to check ptr and len.
// for simplicity, unsafeslicecheckptr always uses int64.
// Type checking guarantees that TIDEAL len/cap are positive and fit in an int.
// The case of len or cap overflow when converting TUINT or TUINTPTR to TINT
// will be handled by the negative range checks in unsafeslice during runtime.
if ir.ShouldCheckPtr(ir.CurFunc, 1) {
fnname := "unsafeslicecheckptr"
fn := typecheck.LookupRuntime(fnname)
init.Append(mkcall1(fn, nil, init, reflectdata.UnsafeSliceElemRType(base.Pos, n), unsafePtr, typecheck.Conv(len, lenType)))
} else {
// Otherwise, open code unsafe.Slice to prevent runtime call overhead.
// Keep this code in sync with runtime.unsafeslice{,64}
if len.Type().IsKind(types.TIDEAL) || len.Type().Size() <= types.Types[types.TUINT].Size() {
lenType = types.Types[types.TINT]
} else {
// len64 := int64(len)
// if int64(int(len64)) != len64 {
// panicunsafeslicelen()
// }
len64 := typecheck.Conv(len, lenType)
nif := ir.NewIfStmt(base.Pos, nil, nil, nil)
nif.Cond = ir.NewBinaryExpr(base.Pos, ir.ONE, typecheck.Conv(typecheck.Conv(len64, types.Types[types.TINT]), lenType), len64)
nif.Body.Append(mkcall("panicunsafeslicelen", nil, &nif.Body))
appendWalkStmt(init, nif)
}
// if len < 0 { panicunsafeslicelen() }
nif := ir.NewIfStmt(base.Pos, nil, nil, nil)
nif.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, typecheck.Conv(len, lenType), ir.NewInt(base.Pos, 0))
nif.Body.Append(mkcall("panicunsafeslicelen", nil, &nif.Body))
appendWalkStmt(init, nif)
if sliceType.Elem().Size() == 0 {
// if ptr == nil && len > 0 {
// panicunsafesliceptrnil()
// }
nifPtr := ir.NewIfStmt(base.Pos, nil, nil, nil)
isNil := ir.NewBinaryExpr(base.Pos, ir.OEQ, unsafePtr, typecheck.NodNil())
gtZero := ir.NewBinaryExpr(base.Pos, ir.OGT, typecheck.Conv(len, lenType), ir.NewInt(base.Pos, 0))
nifPtr.Cond =
ir.NewLogicalExpr(base.Pos, ir.OANDAND, isNil, gtZero)
nifPtr.Body.Append(mkcall("panicunsafeslicenilptr", nil, &nifPtr.Body))
appendWalkStmt(init, nifPtr)
h := ir.NewSliceHeaderExpr(n.Pos(), sliceType,
typecheck.Conv(ptr, types.Types[types.TUNSAFEPTR]),
typecheck.Conv(len, types.Types[types.TINT]),
typecheck.Conv(len, types.Types[types.TINT]))
return walkExpr(typecheck.Expr(h), init)
}
// mem, overflow := math.mulUintptr(et.size, len)
mem := typecheck.TempAt(base.Pos, ir.CurFunc, types.Types[types.TUINTPTR])
overflow := typecheck.TempAt(base.Pos, ir.CurFunc, types.Types[types.TBOOL])
decl := types.NewSignature(nil,
[]*types.Field{
types.NewField(base.Pos, nil, types.Types[types.TUINTPTR]),
types.NewField(base.Pos, nil, types.Types[types.TUINTPTR]),
},
[]*types.Field{
types.NewField(base.Pos, nil, types.Types[types.TUINTPTR]),
types.NewField(base.Pos, nil, types.Types[types.TBOOL]),
})
fn := ir.NewFunc(n.Pos(), n.Pos(), math_MulUintptr, decl)
call := mkcall1(fn.Nname, fn.Type().ResultsTuple(), init, ir.NewInt(base.Pos, sliceType.Elem().Size()), typecheck.Conv(typecheck.Conv(len, lenType), types.Types[types.TUINTPTR]))
appendWalkStmt(init, ir.NewAssignListStmt(base.Pos, ir.OAS2, []ir.Node{mem, overflow}, []ir.Node{call}))
// if overflow || mem > -uintptr(ptr) {
// if ptr == nil {
// panicunsafesliceptrnil()
// }
// panicunsafeslicelen()
// }
nif = ir.NewIfStmt(base.Pos, nil, nil, nil)
memCond := ir.NewBinaryExpr(base.Pos, ir.OGT, mem, ir.NewUnaryExpr(base.Pos, ir.ONEG, typecheck.Conv(unsafePtr, types.Types[types.TUINTPTR])))
nif.Cond = ir.NewLogicalExpr(base.Pos, ir.OOROR, overflow, memCond)
nifPtr := ir.NewIfStmt(base.Pos, nil, nil, nil)
nifPtr.Cond = ir.NewBinaryExpr(base.Pos, ir.OEQ, unsafePtr, typecheck.NodNil())
nifPtr.Body.Append(mkcall("panicunsafeslicenilptr", nil, &nifPtr.Body))
nif.Body.Append(nifPtr, mkcall("panicunsafeslicelen", nil, &nif.Body))
appendWalkStmt(init, nif)
}
h := ir.NewSliceHeaderExpr(n.Pos(), sliceType,
typecheck.Conv(ptr, types.Types[types.TUNSAFEPTR]),
typecheck.Conv(len, types.Types[types.TINT]),
typecheck.Conv(len, types.Types[types.TINT]))
return walkExpr(typecheck.Expr(h), init)
}
var math_MulUintptr = &types.Sym{Pkg: types.NewPkg("internal/runtime/math", "math"), Name: "MulUintptr"}
func walkUnsafeString(n *ir.BinaryExpr, init *ir.Nodes) ir.Node {
ptr := safeExpr(n.X, init)
len := safeExpr(n.Y, init)
lenType := types.Types[types.TINT64]
unsafePtr := typecheck.Conv(ptr, types.Types[types.TUNSAFEPTR])
// If checkptr enabled, call runtime.unsafestringcheckptr to check ptr and len.
// for simplicity, unsafestringcheckptr always uses int64.
// Type checking guarantees that TIDEAL len are positive and fit in an int.
if ir.ShouldCheckPtr(ir.CurFunc, 1) {
fnname := "unsafestringcheckptr"
fn := typecheck.LookupRuntime(fnname)
init.Append(mkcall1(fn, nil, init, unsafePtr, typecheck.Conv(len, lenType)))
} else {
// Otherwise, open code unsafe.String to prevent runtime call overhead.
// Keep this code in sync with runtime.unsafestring{,64}
if len.Type().IsKind(types.TIDEAL) || len.Type().Size() <= types.Types[types.TUINT].Size() {
lenType = types.Types[types.TINT]
} else {
// len64 := int64(len)
// if int64(int(len64)) != len64 {
// panicunsafestringlen()
// }
len64 := typecheck.Conv(len, lenType)
nif := ir.NewIfStmt(base.Pos, nil, nil, nil)
nif.Cond = ir.NewBinaryExpr(base.Pos, ir.ONE, typecheck.Conv(typecheck.Conv(len64, types.Types[types.TINT]), lenType), len64)
nif.Body.Append(mkcall("panicunsafestringlen", nil, &nif.Body))
appendWalkStmt(init, nif)
}
// if len < 0 { panicunsafestringlen() }
nif := ir.NewIfStmt(base.Pos, nil, nil, nil)
nif.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, typecheck.Conv(len, lenType), ir.NewInt(base.Pos, 0))
nif.Body.Append(mkcall("panicunsafestringlen", nil, &nif.Body))
appendWalkStmt(init, nif)
// if uintpr(len) > -uintptr(ptr) {
// if ptr == nil {
// panicunsafestringnilptr()
// }
// panicunsafeslicelen()
// }
nifLen := ir.NewIfStmt(base.Pos, nil, nil, nil)
nifLen.Cond = ir.NewBinaryExpr(base.Pos, ir.OGT, typecheck.Conv(len, types.Types[types.TUINTPTR]), ir.NewUnaryExpr(base.Pos, ir.ONEG, typecheck.Conv(unsafePtr, types.Types[types.TUINTPTR])))
nifPtr := ir.NewIfStmt(base.Pos, nil, nil, nil)
nifPtr.Cond = ir.NewBinaryExpr(base.Pos, ir.OEQ, unsafePtr, typecheck.NodNil())
nifPtr.Body.Append(mkcall("panicunsafestringnilptr", nil, &nifPtr.Body))
nifLen.Body.Append(nifPtr, mkcall("panicunsafestringlen", nil, &nifLen.Body))
appendWalkStmt(init, nifLen)
}
h := ir.NewStringHeaderExpr(n.Pos(),
typecheck.Conv(ptr, types.Types[types.TUNSAFEPTR]),
typecheck.Conv(len, types.Types[types.TINT]),
)
return walkExpr(typecheck.Expr(h), init)
}
func badtype(op ir.Op, tl, tr *types.Type) {
var s string
if tl != nil {
s += fmt.Sprintf("\n\t%v", tl)
}
if tr != nil {
s += fmt.Sprintf("\n\t%v", tr)
}
// common mistake: *struct and *interface.
if tl != nil && tr != nil && tl.IsPtr() && tr.IsPtr() {
if tl.Elem().IsStruct() && tr.Elem().IsInterface() {
s += "\n\t(*struct vs *interface)"
} else if tl.Elem().IsInterface() && tr.Elem().IsStruct() {
s += "\n\t(*interface vs *struct)"
}
}
base.Errorf("illegal types for operand: %v%s", op, s)
}
func writebarrierfn(name string, l *types.Type, r *types.Type) ir.Node {
return typecheck.LookupRuntime(name, l, r)
}
// isRuneCount reports whether n is of the form len([]rune(string)).
// These are optimized into a call to runtime.countrunes.
func isRuneCount(n ir.Node) bool {
return base.Flag.N == 0 && !base.Flag.Cfg.Instrumenting && n.Op() == ir.OLEN && n.(*ir.UnaryExpr).X.Op() == ir.OSTR2RUNES
}
// isByteCount reports whether n is of the form len(string([]byte)).
func isByteCount(n ir.Node) bool {
return base.Flag.N == 0 && !base.Flag.Cfg.Instrumenting && n.Op() == ir.OLEN &&
(n.(*ir.UnaryExpr).X.Op() == ir.OBYTES2STR || n.(*ir.UnaryExpr).X.Op() == ir.OBYTES2STRTMP)
}
// isChanLenCap reports whether n is of the form len(c) or cap(c) for a channel c.
// Note that this does not check for -n or instrumenting because this
// is a correctness rewrite, not an optimization.
func isChanLenCap(n ir.Node) bool {
return (n.Op() == ir.OLEN || n.Op() == ir.OCAP) && n.(*ir.UnaryExpr).X.Type().IsChan()
}