mirror of
https://github.com/golang/go.git
synced 2025-05-25 01:11:23 +00:00
While we're at it, move some misplaced comment blocks around. Change-Id: I1847d7f1ca1dbb8e5de737203c4ed6c66e112508 Reviewed-on: https://go-review.googlesource.com/10188 Reviewed-by: Rob Pike <r@golang.org> Reviewed-by: Russ Cox <rsc@golang.org>
659 lines
16 KiB
Go
659 lines
16 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Fork, exec, wait, etc.
|
|
|
|
package syscall
|
|
|
|
import (
|
|
"runtime"
|
|
"sync"
|
|
"unsafe"
|
|
)
|
|
|
|
// Lock synchronizing creation of new file descriptors with fork.
|
|
//
|
|
// We want the child in a fork/exec sequence to inherit only the
|
|
// file descriptors we intend. To do that, we mark all file
|
|
// descriptors close-on-exec and then, in the child, explicitly
|
|
// unmark the ones we want the exec'ed program to keep.
|
|
// Unix doesn't make this easy: there is, in general, no way to
|
|
// allocate a new file descriptor close-on-exec. Instead you
|
|
// have to allocate the descriptor and then mark it close-on-exec.
|
|
// If a fork happens between those two events, the child's exec
|
|
// will inherit an unwanted file descriptor.
|
|
//
|
|
// This lock solves that race: the create new fd/mark close-on-exec
|
|
// operation is done holding ForkLock for reading, and the fork itself
|
|
// is done holding ForkLock for writing. At least, that's the idea.
|
|
// There are some complications.
|
|
//
|
|
// Some system calls that create new file descriptors can block
|
|
// for arbitrarily long times: open on a hung NFS server or named
|
|
// pipe, accept on a socket, and so on. We can't reasonably grab
|
|
// the lock across those operations.
|
|
//
|
|
// It is worse to inherit some file descriptors than others.
|
|
// If a non-malicious child accidentally inherits an open ordinary file,
|
|
// that's not a big deal. On the other hand, if a long-lived child
|
|
// accidentally inherits the write end of a pipe, then the reader
|
|
// of that pipe will not see EOF until that child exits, potentially
|
|
// causing the parent program to hang. This is a common problem
|
|
// in threaded C programs that use popen.
|
|
//
|
|
// Luckily, the file descriptors that are most important not to
|
|
// inherit are not the ones that can take an arbitrarily long time
|
|
// to create: pipe returns instantly, and the net package uses
|
|
// non-blocking I/O to accept on a listening socket.
|
|
// The rules for which file descriptor-creating operations use the
|
|
// ForkLock are as follows:
|
|
//
|
|
// 1) Pipe. Does not block. Use the ForkLock.
|
|
// 2) Socket. Does not block. Use the ForkLock.
|
|
// 3) Accept. If using non-blocking mode, use the ForkLock.
|
|
// Otherwise, live with the race.
|
|
// 4) Open. Can block. Use O_CLOEXEC if available (Linux).
|
|
// Otherwise, live with the race.
|
|
// 5) Dup. Does not block. Use the ForkLock.
|
|
// On Linux, could use fcntl F_DUPFD_CLOEXEC
|
|
// instead of the ForkLock, but only for dup(fd, -1).
|
|
|
|
var ForkLock sync.RWMutex
|
|
|
|
// StringSlicePtr converts a slice of strings to a slice of pointers
|
|
// to NUL-terminated byte arrays. If any string contains a NUL byte
|
|
// this function panics instead of returning an error.
|
|
//
|
|
// Deprecated: Use SlicePtrFromStrings instead.
|
|
func StringSlicePtr(ss []string) []*byte {
|
|
bb := make([]*byte, len(ss)+1)
|
|
for i := 0; i < len(ss); i++ {
|
|
bb[i] = StringBytePtr(ss[i])
|
|
}
|
|
bb[len(ss)] = nil
|
|
return bb
|
|
}
|
|
|
|
// SlicePtrFromStrings converts a slice of strings to a slice of
|
|
// pointers to NUL-terminated byte arrays. If any string contains
|
|
// a NUL byte, it returns (nil, EINVAL).
|
|
func SlicePtrFromStrings(ss []string) ([]*byte, error) {
|
|
var err error
|
|
bb := make([]*byte, len(ss)+1)
|
|
for i := 0; i < len(ss); i++ {
|
|
bb[i], err = BytePtrFromString(ss[i])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
bb[len(ss)] = nil
|
|
return bb, nil
|
|
}
|
|
|
|
// readdirnames returns the names of files inside the directory represented by dirfd.
|
|
func readdirnames(dirfd int) (names []string, err error) {
|
|
names = make([]string, 0, 100)
|
|
var buf [STATMAX]byte
|
|
|
|
for {
|
|
n, e := Read(dirfd, buf[:])
|
|
if e != nil {
|
|
return nil, e
|
|
}
|
|
if n == 0 {
|
|
break
|
|
}
|
|
for i := 0; i < n; {
|
|
m, _ := gbit16(buf[i:])
|
|
m += 2
|
|
|
|
if m < STATFIXLEN {
|
|
return nil, ErrBadStat
|
|
}
|
|
|
|
s, _, ok := gstring(buf[i+41:])
|
|
if !ok {
|
|
return nil, ErrBadStat
|
|
}
|
|
names = append(names, s)
|
|
i += int(m)
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
// readdupdevice returns a list of currently opened fds (excluding stdin, stdout, stderr) from the dup device #d.
|
|
// ForkLock should be write locked before calling, so that no new fds would be created while the fd list is being read.
|
|
func readdupdevice() (fds []int, err error) {
|
|
dupdevfd, err := Open("#d", O_RDONLY)
|
|
if err != nil {
|
|
return
|
|
}
|
|
defer Close(dupdevfd)
|
|
|
|
names, err := readdirnames(dupdevfd)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
fds = make([]int, 0, len(names)/2)
|
|
for _, name := range names {
|
|
if n := len(name); n > 3 && name[n-3:n] == "ctl" {
|
|
continue
|
|
}
|
|
fd := int(atoi([]byte(name)))
|
|
switch fd {
|
|
case 0, 1, 2, dupdevfd:
|
|
continue
|
|
}
|
|
fds = append(fds, fd)
|
|
}
|
|
return
|
|
}
|
|
|
|
var startupFds []int
|
|
|
|
// Plan 9 does not allow clearing the OCEXEC flag
|
|
// from the underlying channel backing an open file descriptor,
|
|
// therefore we store a list of already opened file descriptors
|
|
// inside startupFds and skip them when manually closing descriptors
|
|
// not meant to be passed to a child exec.
|
|
func init() {
|
|
startupFds, _ = readdupdevice()
|
|
}
|
|
|
|
// forkAndExecInChild forks the process, calling dup onto 0..len(fd)
|
|
// and finally invoking exec(argv0, argvv, envv) in the child.
|
|
// If a dup or exec fails, it writes the error string to pipe.
|
|
// (The pipe write end is close-on-exec so if exec succeeds, it will be closed.)
|
|
//
|
|
// In the child, this function must not acquire any locks, because
|
|
// they might have been locked at the time of the fork. This means
|
|
// no rescheduling, no malloc calls, and no new stack segments.
|
|
// The calls to RawSyscall are okay because they are assembly
|
|
// functions that do not grow the stack.
|
|
func forkAndExecInChild(argv0 *byte, argv []*byte, envv []envItem, dir *byte, attr *ProcAttr, fdsToClose []int, pipe int, rflag int) (pid int, err error) {
|
|
// Declare all variables at top in case any
|
|
// declarations require heap allocation (e.g., errbuf).
|
|
var (
|
|
r1 uintptr
|
|
nextfd int
|
|
i int
|
|
clearenv int
|
|
envfd int
|
|
errbuf [ERRMAX]byte
|
|
)
|
|
|
|
// Guard against side effects of shuffling fds below.
|
|
// Make sure that nextfd is beyond any currently open files so
|
|
// that we can't run the risk of overwriting any of them.
|
|
fd := make([]int, len(attr.Files))
|
|
nextfd = len(attr.Files)
|
|
for i, ufd := range attr.Files {
|
|
if nextfd < int(ufd) {
|
|
nextfd = int(ufd)
|
|
}
|
|
fd[i] = int(ufd)
|
|
}
|
|
nextfd++
|
|
|
|
if envv != nil {
|
|
clearenv = RFCENVG
|
|
}
|
|
|
|
// About to call fork.
|
|
// No more allocation or calls of non-assembly functions.
|
|
r1, _, _ = RawSyscall(SYS_RFORK, uintptr(RFPROC|RFFDG|RFREND|clearenv|rflag), 0, 0)
|
|
|
|
if r1 != 0 {
|
|
if int32(r1) == -1 {
|
|
return 0, NewError(errstr())
|
|
}
|
|
// parent; return PID
|
|
return int(r1), nil
|
|
}
|
|
|
|
// Fork succeeded, now in child.
|
|
|
|
// Close fds we don't need.
|
|
for i = 0; i < len(fdsToClose); i++ {
|
|
r1, _, _ = RawSyscall(SYS_CLOSE, uintptr(fdsToClose[i]), 0, 0)
|
|
if int32(r1) == -1 {
|
|
goto childerror
|
|
}
|
|
}
|
|
|
|
if envv != nil {
|
|
// Write new environment variables.
|
|
for i = 0; i < len(envv); i++ {
|
|
r1, _, _ = RawSyscall(SYS_CREATE, uintptr(unsafe.Pointer(envv[i].name)), uintptr(O_WRONLY), uintptr(0666))
|
|
|
|
if int32(r1) == -1 {
|
|
goto childerror
|
|
}
|
|
|
|
envfd = int(r1)
|
|
|
|
r1, _, _ = RawSyscall6(SYS_PWRITE, uintptr(envfd), uintptr(unsafe.Pointer(envv[i].value)), uintptr(envv[i].nvalue),
|
|
^uintptr(0), ^uintptr(0), 0)
|
|
|
|
if int32(r1) == -1 || int(r1) != envv[i].nvalue {
|
|
goto childerror
|
|
}
|
|
|
|
r1, _, _ = RawSyscall(SYS_CLOSE, uintptr(envfd), 0, 0)
|
|
|
|
if int32(r1) == -1 {
|
|
goto childerror
|
|
}
|
|
}
|
|
}
|
|
|
|
// Chdir
|
|
if dir != nil {
|
|
r1, _, _ = RawSyscall(SYS_CHDIR, uintptr(unsafe.Pointer(dir)), 0, 0)
|
|
if int32(r1) == -1 {
|
|
goto childerror
|
|
}
|
|
}
|
|
|
|
// Pass 1: look for fd[i] < i and move those up above len(fd)
|
|
// so that pass 2 won't stomp on an fd it needs later.
|
|
if pipe < nextfd {
|
|
r1, _, _ = RawSyscall(SYS_DUP, uintptr(pipe), uintptr(nextfd), 0)
|
|
if int32(r1) == -1 {
|
|
goto childerror
|
|
}
|
|
pipe = nextfd
|
|
nextfd++
|
|
}
|
|
for i = 0; i < len(fd); i++ {
|
|
if fd[i] >= 0 && fd[i] < int(i) {
|
|
r1, _, _ = RawSyscall(SYS_DUP, uintptr(fd[i]), uintptr(nextfd), 0)
|
|
if int32(r1) == -1 {
|
|
goto childerror
|
|
}
|
|
|
|
fd[i] = nextfd
|
|
nextfd++
|
|
if nextfd == pipe { // don't stomp on pipe
|
|
nextfd++
|
|
}
|
|
}
|
|
}
|
|
|
|
// Pass 2: dup fd[i] down onto i.
|
|
for i = 0; i < len(fd); i++ {
|
|
if fd[i] == -1 {
|
|
RawSyscall(SYS_CLOSE, uintptr(i), 0, 0)
|
|
continue
|
|
}
|
|
if fd[i] == int(i) {
|
|
continue
|
|
}
|
|
r1, _, _ = RawSyscall(SYS_DUP, uintptr(fd[i]), uintptr(i), 0)
|
|
if int32(r1) == -1 {
|
|
goto childerror
|
|
}
|
|
}
|
|
|
|
// Pass 3: close fd[i] if it was moved in the previous pass.
|
|
for i = 0; i < len(fd); i++ {
|
|
if fd[i] >= 0 && fd[i] != int(i) {
|
|
RawSyscall(SYS_CLOSE, uintptr(fd[i]), 0, 0)
|
|
}
|
|
}
|
|
|
|
// Time to exec.
|
|
r1, _, _ = RawSyscall(SYS_EXEC,
|
|
uintptr(unsafe.Pointer(argv0)),
|
|
uintptr(unsafe.Pointer(&argv[0])), 0)
|
|
|
|
childerror:
|
|
// send error string on pipe
|
|
RawSyscall(SYS_ERRSTR, uintptr(unsafe.Pointer(&errbuf[0])), uintptr(len(errbuf)), 0)
|
|
errbuf[len(errbuf)-1] = 0
|
|
i = 0
|
|
for i < len(errbuf) && errbuf[i] != 0 {
|
|
i++
|
|
}
|
|
|
|
RawSyscall6(SYS_PWRITE, uintptr(pipe), uintptr(unsafe.Pointer(&errbuf[0])), uintptr(i),
|
|
^uintptr(0), ^uintptr(0), 0)
|
|
|
|
for {
|
|
RawSyscall(SYS_EXITS, 0, 0, 0)
|
|
}
|
|
|
|
// Calling panic is not actually safe,
|
|
// but the for loop above won't break
|
|
// and this shuts up the compiler.
|
|
panic("unreached")
|
|
}
|
|
|
|
func cexecPipe(p []int) error {
|
|
e := Pipe(p)
|
|
if e != nil {
|
|
return e
|
|
}
|
|
|
|
fd, e := Open("#d/"+itoa(p[1]), O_CLOEXEC)
|
|
if e != nil {
|
|
Close(p[0])
|
|
Close(p[1])
|
|
return e
|
|
}
|
|
|
|
Close(fd)
|
|
return nil
|
|
}
|
|
|
|
type envItem struct {
|
|
name *byte
|
|
value *byte
|
|
nvalue int
|
|
}
|
|
|
|
type ProcAttr struct {
|
|
Dir string // Current working directory.
|
|
Env []string // Environment.
|
|
Files []uintptr // File descriptors.
|
|
Sys *SysProcAttr
|
|
}
|
|
|
|
type SysProcAttr struct {
|
|
Rfork int // additional flags to pass to rfork
|
|
}
|
|
|
|
var zeroProcAttr ProcAttr
|
|
var zeroSysProcAttr SysProcAttr
|
|
|
|
func forkExec(argv0 string, argv []string, attr *ProcAttr) (pid int, err error) {
|
|
var (
|
|
p [2]int
|
|
n int
|
|
errbuf [ERRMAX]byte
|
|
wmsg Waitmsg
|
|
)
|
|
|
|
if attr == nil {
|
|
attr = &zeroProcAttr
|
|
}
|
|
sys := attr.Sys
|
|
if sys == nil {
|
|
sys = &zeroSysProcAttr
|
|
}
|
|
|
|
p[0] = -1
|
|
p[1] = -1
|
|
|
|
// Convert args to C form.
|
|
argv0p, err := BytePtrFromString(argv0)
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
argvp, err := SlicePtrFromStrings(argv)
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
|
|
destDir := attr.Dir
|
|
if destDir == "" {
|
|
wdmu.Lock()
|
|
destDir = wdStr
|
|
wdmu.Unlock()
|
|
}
|
|
var dir *byte
|
|
if destDir != "" {
|
|
dir, err = BytePtrFromString(destDir)
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
}
|
|
var envvParsed []envItem
|
|
if attr.Env != nil {
|
|
envvParsed = make([]envItem, 0, len(attr.Env))
|
|
for _, v := range attr.Env {
|
|
i := 0
|
|
for i < len(v) && v[i] != '=' {
|
|
i++
|
|
}
|
|
|
|
envname, err := BytePtrFromString("/env/" + v[:i])
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
envvalue := make([]byte, len(v)-i)
|
|
copy(envvalue, v[i+1:])
|
|
envvParsed = append(envvParsed, envItem{envname, &envvalue[0], len(v) - i})
|
|
}
|
|
}
|
|
|
|
// Acquire the fork lock to prevent other threads from creating new fds before we fork.
|
|
ForkLock.Lock()
|
|
|
|
// get a list of open fds, excluding stdin,stdout and stderr that need to be closed in the child.
|
|
// no new fds can be created while we hold the ForkLock for writing.
|
|
openFds, e := readdupdevice()
|
|
if e != nil {
|
|
ForkLock.Unlock()
|
|
return 0, e
|
|
}
|
|
|
|
fdsToClose := make([]int, 0, len(openFds))
|
|
for _, fd := range openFds {
|
|
doClose := true
|
|
|
|
// exclude files opened at startup.
|
|
for _, sfd := range startupFds {
|
|
if fd == sfd {
|
|
doClose = false
|
|
break
|
|
}
|
|
}
|
|
|
|
// exclude files explicitly requested by the caller.
|
|
for _, rfd := range attr.Files {
|
|
if fd == int(rfd) {
|
|
doClose = false
|
|
break
|
|
}
|
|
}
|
|
|
|
if doClose {
|
|
fdsToClose = append(fdsToClose, fd)
|
|
}
|
|
}
|
|
|
|
// Allocate child status pipe close on exec.
|
|
e = cexecPipe(p[:])
|
|
|
|
if e != nil {
|
|
return 0, e
|
|
}
|
|
fdsToClose = append(fdsToClose, p[0])
|
|
|
|
// Kick off child.
|
|
pid, err = forkAndExecInChild(argv0p, argvp, envvParsed, dir, attr, fdsToClose, p[1], sys.Rfork)
|
|
|
|
if err != nil {
|
|
if p[0] >= 0 {
|
|
Close(p[0])
|
|
Close(p[1])
|
|
}
|
|
ForkLock.Unlock()
|
|
return 0, err
|
|
}
|
|
ForkLock.Unlock()
|
|
|
|
// Read child error status from pipe.
|
|
Close(p[1])
|
|
n, err = Read(p[0], errbuf[:])
|
|
Close(p[0])
|
|
|
|
if err != nil || n != 0 {
|
|
if n != 0 {
|
|
err = NewError(string(errbuf[:n]))
|
|
}
|
|
|
|
// Child failed; wait for it to exit, to make sure
|
|
// the zombies don't accumulate.
|
|
for wmsg.Pid != pid {
|
|
Await(&wmsg)
|
|
}
|
|
return 0, err
|
|
}
|
|
|
|
// Read got EOF, so pipe closed on exec, so exec succeeded.
|
|
return pid, nil
|
|
}
|
|
|
|
type waitErr struct {
|
|
Waitmsg
|
|
err error
|
|
}
|
|
|
|
var procs struct {
|
|
sync.Mutex
|
|
waits map[int]chan *waitErr
|
|
}
|
|
|
|
// startProcess starts a new goroutine, tied to the OS
|
|
// thread, which runs the process and subsequently waits
|
|
// for it to finish, communicating the process stats back
|
|
// to any goroutines that may have been waiting on it.
|
|
//
|
|
// Such a dedicated goroutine is needed because on
|
|
// Plan 9, only the parent thread can wait for a child,
|
|
// whereas goroutines tend to jump OS threads (e.g.,
|
|
// between starting a process and running Wait(), the
|
|
// goroutine may have been rescheduled).
|
|
func startProcess(argv0 string, argv []string, attr *ProcAttr) (pid int, err error) {
|
|
type forkRet struct {
|
|
pid int
|
|
err error
|
|
}
|
|
|
|
forkc := make(chan forkRet, 1)
|
|
go func() {
|
|
runtime.LockOSThread()
|
|
var ret forkRet
|
|
|
|
ret.pid, ret.err = forkExec(argv0, argv, attr)
|
|
// If fork fails there is nothing to wait for.
|
|
if ret.err != nil || ret.pid == 0 {
|
|
forkc <- ret
|
|
return
|
|
}
|
|
|
|
waitc := make(chan *waitErr, 1)
|
|
|
|
// Mark that the process is running.
|
|
procs.Lock()
|
|
if procs.waits == nil {
|
|
procs.waits = make(map[int]chan *waitErr)
|
|
}
|
|
procs.waits[ret.pid] = waitc
|
|
procs.Unlock()
|
|
|
|
forkc <- ret
|
|
|
|
var w waitErr
|
|
for w.err == nil && w.Pid != ret.pid {
|
|
w.err = Await(&w.Waitmsg)
|
|
}
|
|
waitc <- &w
|
|
close(waitc)
|
|
}()
|
|
ret := <-forkc
|
|
return ret.pid, ret.err
|
|
}
|
|
|
|
// Combination of fork and exec, careful to be thread safe.
|
|
func ForkExec(argv0 string, argv []string, attr *ProcAttr) (pid int, err error) {
|
|
return startProcess(argv0, argv, attr)
|
|
}
|
|
|
|
// StartProcess wraps ForkExec for package os.
|
|
func StartProcess(argv0 string, argv []string, attr *ProcAttr) (pid int, handle uintptr, err error) {
|
|
pid, err = startProcess(argv0, argv, attr)
|
|
return pid, 0, err
|
|
}
|
|
|
|
// Ordinary exec.
|
|
func Exec(argv0 string, argv []string, envv []string) (err error) {
|
|
if envv != nil {
|
|
r1, _, _ := RawSyscall(SYS_RFORK, RFCENVG, 0, 0)
|
|
if int32(r1) == -1 {
|
|
return NewError(errstr())
|
|
}
|
|
|
|
for _, v := range envv {
|
|
i := 0
|
|
for i < len(v) && v[i] != '=' {
|
|
i++
|
|
}
|
|
|
|
fd, e := Create("/env/"+v[:i], O_WRONLY, 0666)
|
|
if e != nil {
|
|
return e
|
|
}
|
|
|
|
_, e = Write(fd, []byte(v[i+1:]))
|
|
if e != nil {
|
|
Close(fd)
|
|
return e
|
|
}
|
|
Close(fd)
|
|
}
|
|
}
|
|
|
|
argv0p, err := BytePtrFromString(argv0)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
argvp, err := SlicePtrFromStrings(argv)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
_, _, e1 := Syscall(SYS_EXEC,
|
|
uintptr(unsafe.Pointer(argv0p)),
|
|
uintptr(unsafe.Pointer(&argvp[0])),
|
|
0)
|
|
|
|
return e1
|
|
}
|
|
|
|
// WaitProcess waits until the pid of a
|
|
// running process is found in the queue of
|
|
// wait messages. It is used in conjunction
|
|
// with ForkExec/StartProcess to wait for a
|
|
// running process to exit.
|
|
func WaitProcess(pid int, w *Waitmsg) (err error) {
|
|
procs.Lock()
|
|
ch := procs.waits[pid]
|
|
procs.Unlock()
|
|
|
|
var wmsg *waitErr
|
|
if ch != nil {
|
|
wmsg = <-ch
|
|
procs.Lock()
|
|
if procs.waits[pid] == ch {
|
|
delete(procs.waits, pid)
|
|
}
|
|
procs.Unlock()
|
|
}
|
|
if wmsg == nil {
|
|
// ch was missing or ch is closed
|
|
return NewError("process not found")
|
|
}
|
|
if wmsg.err != nil {
|
|
return wmsg.err
|
|
}
|
|
if w != nil {
|
|
*w = wmsg.Waitmsg
|
|
}
|
|
return nil
|
|
}
|