mirror of
https://github.com/golang/go.git
synced 2025-05-29 19:35:42 +00:00
Updates #21352 Change-Id: If21342f30be32e25840b4072b932a6d4257b420d Reviewed-on: https://go-review.googlesource.com/54091 Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Avelino <t@avelino.xxx> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
1861 lines
47 KiB
Go
1861 lines
47 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package gc
|
|
|
|
import (
|
|
"cmd/compile/internal/types"
|
|
"cmd/internal/gcprog"
|
|
"cmd/internal/obj"
|
|
"cmd/internal/objabi"
|
|
"cmd/internal/src"
|
|
"fmt"
|
|
"os"
|
|
"sort"
|
|
"strings"
|
|
"sync"
|
|
)
|
|
|
|
type itabEntry struct {
|
|
t, itype *types.Type
|
|
lsym *obj.LSym // symbol of the itab itself
|
|
|
|
// symbols of each method in
|
|
// the itab, sorted by byte offset;
|
|
// filled in by peekitabs
|
|
entries []*obj.LSym
|
|
}
|
|
|
|
type ptabEntry struct {
|
|
s *types.Sym
|
|
t *types.Type
|
|
}
|
|
|
|
// runtime interface and reflection data structures
|
|
var (
|
|
signatsetmu sync.Mutex // protects signatset
|
|
signatset = make(map[*types.Type]struct{})
|
|
|
|
itabs []itabEntry
|
|
ptabs []ptabEntry
|
|
)
|
|
|
|
type Sig struct {
|
|
name string
|
|
pkg *types.Pkg
|
|
isym *types.Sym
|
|
tsym *types.Sym
|
|
type_ *types.Type
|
|
mtype *types.Type
|
|
offset int32
|
|
}
|
|
|
|
// siglt sorts method signatures by name, then package path.
|
|
func siglt(a, b *Sig) bool {
|
|
if a.name != b.name {
|
|
return a.name < b.name
|
|
}
|
|
if a.pkg == b.pkg {
|
|
return false
|
|
}
|
|
if a.pkg == nil {
|
|
return true
|
|
}
|
|
if b.pkg == nil {
|
|
return false
|
|
}
|
|
return a.pkg.Path < b.pkg.Path
|
|
}
|
|
|
|
// Builds a type representing a Bucket structure for
|
|
// the given map type. This type is not visible to users -
|
|
// we include only enough information to generate a correct GC
|
|
// program for it.
|
|
// Make sure this stays in sync with ../../../../runtime/hashmap.go!
|
|
const (
|
|
BUCKETSIZE = 8
|
|
MAXKEYSIZE = 128
|
|
MAXVALSIZE = 128
|
|
)
|
|
|
|
func structfieldSize() int { return 3 * Widthptr } // Sizeof(runtime.structfield{})
|
|
func imethodSize() int { return 4 + 4 } // Sizeof(runtime.imethod{})
|
|
func uncommonSize(t *types.Type) int { // Sizeof(runtime.uncommontype{})
|
|
if t.Sym == nil && len(methods(t)) == 0 {
|
|
return 0
|
|
}
|
|
return 4 + 2 + 2 + 4 + 4
|
|
}
|
|
|
|
func makefield(name string, t *types.Type) *types.Field {
|
|
f := types.NewField()
|
|
f.Type = t
|
|
f.Sym = (*types.Pkg)(nil).Lookup(name)
|
|
return f
|
|
}
|
|
|
|
func mapbucket(t *types.Type) *types.Type {
|
|
if t.MapType().Bucket != nil {
|
|
return t.MapType().Bucket
|
|
}
|
|
|
|
bucket := types.New(TSTRUCT)
|
|
keytype := t.Key()
|
|
valtype := t.Val()
|
|
dowidth(keytype)
|
|
dowidth(valtype)
|
|
if keytype.Width > MAXKEYSIZE {
|
|
keytype = types.NewPtr(keytype)
|
|
}
|
|
if valtype.Width > MAXVALSIZE {
|
|
valtype = types.NewPtr(valtype)
|
|
}
|
|
|
|
field := make([]*types.Field, 0, 5)
|
|
|
|
// The first field is: uint8 topbits[BUCKETSIZE].
|
|
arr := types.NewArray(types.Types[TUINT8], BUCKETSIZE)
|
|
field = append(field, makefield("topbits", arr))
|
|
|
|
arr = types.NewArray(keytype, BUCKETSIZE)
|
|
arr.SetNoalg(true)
|
|
field = append(field, makefield("keys", arr))
|
|
|
|
arr = types.NewArray(valtype, BUCKETSIZE)
|
|
arr.SetNoalg(true)
|
|
field = append(field, makefield("values", arr))
|
|
|
|
// Make sure the overflow pointer is the last memory in the struct,
|
|
// because the runtime assumes it can use size-ptrSize as the
|
|
// offset of the overflow pointer. We double-check that property
|
|
// below once the offsets and size are computed.
|
|
//
|
|
// BUCKETSIZE is 8, so the struct is aligned to 64 bits to this point.
|
|
// On 32-bit systems, the max alignment is 32-bit, and the
|
|
// overflow pointer will add another 32-bit field, and the struct
|
|
// will end with no padding.
|
|
// On 64-bit systems, the max alignment is 64-bit, and the
|
|
// overflow pointer will add another 64-bit field, and the struct
|
|
// will end with no padding.
|
|
// On nacl/amd64p32, however, the max alignment is 64-bit,
|
|
// but the overflow pointer will add only a 32-bit field,
|
|
// so if the struct needs 64-bit padding (because a key or value does)
|
|
// then it would end with an extra 32-bit padding field.
|
|
// Preempt that by emitting the padding here.
|
|
if int(t.Val().Align) > Widthptr || int(t.Key().Align) > Widthptr {
|
|
field = append(field, makefield("pad", types.Types[TUINTPTR]))
|
|
}
|
|
|
|
// If keys and values have no pointers, the map implementation
|
|
// can keep a list of overflow pointers on the side so that
|
|
// buckets can be marked as having no pointers.
|
|
// Arrange for the bucket to have no pointers by changing
|
|
// the type of the overflow field to uintptr in this case.
|
|
// See comment on hmap.overflow in ../../../../runtime/hashmap.go.
|
|
otyp := types.NewPtr(bucket)
|
|
if !types.Haspointers(t.Val()) && !types.Haspointers(t.Key()) && t.Val().Width <= MAXVALSIZE && t.Key().Width <= MAXKEYSIZE {
|
|
otyp = types.Types[TUINTPTR]
|
|
}
|
|
ovf := makefield("overflow", otyp)
|
|
field = append(field, ovf)
|
|
|
|
// link up fields
|
|
bucket.SetNoalg(true)
|
|
bucket.SetLocal(t.Local())
|
|
bucket.SetFields(field[:])
|
|
dowidth(bucket)
|
|
|
|
// Double-check that overflow field is final memory in struct,
|
|
// with no padding at end. See comment above.
|
|
if ovf.Offset != bucket.Width-int64(Widthptr) {
|
|
Fatalf("bad math in mapbucket for %v", t)
|
|
}
|
|
|
|
t.MapType().Bucket = bucket
|
|
|
|
bucket.StructType().Map = t
|
|
return bucket
|
|
}
|
|
|
|
// Builds a type representing a Hmap structure for the given map type.
|
|
// Make sure this stays in sync with ../../../../runtime/hashmap.go!
|
|
func hmap(t *types.Type) *types.Type {
|
|
if t.MapType().Hmap != nil {
|
|
return t.MapType().Hmap
|
|
}
|
|
|
|
bucket := mapbucket(t)
|
|
fields := []*types.Field{
|
|
makefield("count", types.Types[TINT]),
|
|
makefield("flags", types.Types[TUINT8]),
|
|
makefield("B", types.Types[TUINT8]),
|
|
makefield("noverflow", types.Types[TUINT16]),
|
|
makefield("hash0", types.Types[TUINT32]),
|
|
makefield("buckets", types.NewPtr(bucket)),
|
|
makefield("oldbuckets", types.NewPtr(bucket)),
|
|
makefield("nevacuate", types.Types[TUINTPTR]),
|
|
makefield("overflow", types.Types[TUNSAFEPTR]),
|
|
}
|
|
|
|
h := types.New(TSTRUCT)
|
|
h.SetNoalg(true)
|
|
h.SetLocal(t.Local())
|
|
h.SetFields(fields)
|
|
dowidth(h)
|
|
t.MapType().Hmap = h
|
|
h.StructType().Map = t
|
|
return h
|
|
}
|
|
|
|
func hiter(t *types.Type) *types.Type {
|
|
if t.MapType().Hiter != nil {
|
|
return t.MapType().Hiter
|
|
}
|
|
|
|
// build a struct:
|
|
// hiter {
|
|
// key *Key
|
|
// val *Value
|
|
// t *MapType
|
|
// h *Hmap
|
|
// buckets *Bucket
|
|
// bptr *Bucket
|
|
// overflow0 unsafe.Pointer
|
|
// overflow1 unsafe.Pointer
|
|
// startBucket uintptr
|
|
// stuff uintptr
|
|
// bucket uintptr
|
|
// checkBucket uintptr
|
|
// }
|
|
// must match ../../../../runtime/hashmap.go:hiter.
|
|
var field [12]*types.Field
|
|
field[0] = makefield("key", types.NewPtr(t.Key()))
|
|
field[1] = makefield("val", types.NewPtr(t.Val()))
|
|
field[2] = makefield("t", types.NewPtr(types.Types[TUINT8]))
|
|
field[3] = makefield("h", types.NewPtr(hmap(t)))
|
|
field[4] = makefield("buckets", types.NewPtr(mapbucket(t)))
|
|
field[5] = makefield("bptr", types.NewPtr(mapbucket(t)))
|
|
field[6] = makefield("overflow0", types.Types[TUNSAFEPTR])
|
|
field[7] = makefield("overflow1", types.Types[TUNSAFEPTR])
|
|
field[8] = makefield("startBucket", types.Types[TUINTPTR])
|
|
field[9] = makefield("stuff", types.Types[TUINTPTR]) // offset+wrapped+B+I
|
|
field[10] = makefield("bucket", types.Types[TUINTPTR])
|
|
field[11] = makefield("checkBucket", types.Types[TUINTPTR])
|
|
|
|
// build iterator struct holding the above fields
|
|
i := types.New(TSTRUCT)
|
|
i.SetNoalg(true)
|
|
i.SetFields(field[:])
|
|
dowidth(i)
|
|
if i.Width != int64(12*Widthptr) {
|
|
Fatalf("hash_iter size not correct %d %d", i.Width, 12*Widthptr)
|
|
}
|
|
t.MapType().Hiter = i
|
|
i.StructType().Map = t
|
|
return i
|
|
}
|
|
|
|
// f is method type, with receiver.
|
|
// return function type, receiver as first argument (or not).
|
|
func methodfunc(f *types.Type, receiver *types.Type) *types.Type {
|
|
var in []*Node
|
|
if receiver != nil {
|
|
d := nod(ODCLFIELD, nil, nil)
|
|
d.Type = receiver
|
|
in = append(in, d)
|
|
}
|
|
|
|
var d *Node
|
|
for _, t := range f.Params().Fields().Slice() {
|
|
d = nod(ODCLFIELD, nil, nil)
|
|
d.Type = t.Type
|
|
d.SetIsddd(t.Isddd())
|
|
in = append(in, d)
|
|
}
|
|
|
|
var out []*Node
|
|
for _, t := range f.Results().Fields().Slice() {
|
|
d = nod(ODCLFIELD, nil, nil)
|
|
d.Type = t.Type
|
|
out = append(out, d)
|
|
}
|
|
|
|
t := functype(nil, in, out)
|
|
if f.Nname() != nil {
|
|
// Link to name of original method function.
|
|
t.SetNname(f.Nname())
|
|
}
|
|
|
|
return t
|
|
}
|
|
|
|
// methods returns the methods of the non-interface type t, sorted by name.
|
|
// Generates stub functions as needed.
|
|
func methods(t *types.Type) []*Sig {
|
|
// method type
|
|
mt := methtype(t)
|
|
|
|
if mt == nil {
|
|
return nil
|
|
}
|
|
expandmeth(mt)
|
|
|
|
// type stored in interface word
|
|
it := t
|
|
|
|
if !isdirectiface(it) {
|
|
it = types.NewPtr(t)
|
|
}
|
|
|
|
// make list of methods for t,
|
|
// generating code if necessary.
|
|
var ms []*Sig
|
|
for _, f := range mt.AllMethods().Slice() {
|
|
if f.Type.Etype != TFUNC || f.Type.Recv() == nil {
|
|
Fatalf("non-method on %v method %v %v\n", mt, f.Sym, f)
|
|
}
|
|
if f.Type.Recv() == nil {
|
|
Fatalf("receiver with no type on %v method %v %v\n", mt, f.Sym, f)
|
|
}
|
|
if f.Nointerface() {
|
|
continue
|
|
}
|
|
|
|
method := f.Sym
|
|
if method == nil {
|
|
continue
|
|
}
|
|
|
|
// get receiver type for this particular method.
|
|
// if pointer receiver but non-pointer t and
|
|
// this is not an embedded pointer inside a struct,
|
|
// method does not apply.
|
|
this := f.Type.Recv().Type
|
|
|
|
if this.IsPtr() && this.Elem() == t {
|
|
continue
|
|
}
|
|
if this.IsPtr() && !t.IsPtr() && f.Embedded != 2 && !isifacemethod(f.Type) {
|
|
continue
|
|
}
|
|
|
|
var sig Sig
|
|
ms = append(ms, &sig)
|
|
|
|
sig.name = method.Name
|
|
if !exportname(method.Name) {
|
|
if method.Pkg == nil {
|
|
Fatalf("methods: missing package")
|
|
}
|
|
sig.pkg = method.Pkg
|
|
}
|
|
|
|
sig.isym = methodsym(method, it, true)
|
|
sig.tsym = methodsym(method, t, false)
|
|
sig.type_ = methodfunc(f.Type, t)
|
|
sig.mtype = methodfunc(f.Type, nil)
|
|
|
|
if !sig.isym.Siggen() {
|
|
sig.isym.SetSiggen(true)
|
|
if !eqtype(this, it) || this.Width < int64(Widthptr) {
|
|
compiling_wrappers = 1
|
|
genwrapper(it, f, sig.isym, 1)
|
|
compiling_wrappers = 0
|
|
}
|
|
}
|
|
|
|
if !sig.tsym.Siggen() {
|
|
sig.tsym.SetSiggen(true)
|
|
if !eqtype(this, t) {
|
|
compiling_wrappers = 1
|
|
genwrapper(t, f, sig.tsym, 0)
|
|
compiling_wrappers = 0
|
|
}
|
|
}
|
|
}
|
|
|
|
obj.SortSlice(ms, func(i, j int) bool { return siglt(ms[i], ms[j]) })
|
|
return ms
|
|
}
|
|
|
|
// imethods returns the methods of the interface type t, sorted by name.
|
|
func imethods(t *types.Type) []*Sig {
|
|
var methods []*Sig
|
|
for _, f := range t.Fields().Slice() {
|
|
if f.Type.Etype != TFUNC || f.Sym == nil {
|
|
continue
|
|
}
|
|
method := f.Sym
|
|
var sig = Sig{
|
|
name: method.Name,
|
|
}
|
|
if !exportname(method.Name) {
|
|
if method.Pkg == nil {
|
|
Fatalf("imethods: missing package")
|
|
}
|
|
sig.pkg = method.Pkg
|
|
}
|
|
|
|
sig.mtype = f.Type
|
|
sig.offset = 0
|
|
sig.type_ = methodfunc(f.Type, nil)
|
|
|
|
if n := len(methods); n > 0 {
|
|
last := methods[n-1]
|
|
if !(siglt(last, &sig)) {
|
|
Fatalf("sigcmp vs sortinter %s %s", last.name, sig.name)
|
|
}
|
|
}
|
|
methods = append(methods, &sig)
|
|
|
|
// Compiler can only refer to wrappers for non-blank methods.
|
|
if method.IsBlank() {
|
|
continue
|
|
}
|
|
|
|
// NOTE(rsc): Perhaps an oversight that
|
|
// IfaceType.Method is not in the reflect data.
|
|
// Generate the method body, so that compiled
|
|
// code can refer to it.
|
|
isym := methodsym(method, t, false)
|
|
if !isym.Siggen() {
|
|
isym.SetSiggen(true)
|
|
genwrapper(t, f, isym, 0)
|
|
}
|
|
}
|
|
|
|
return methods
|
|
}
|
|
|
|
func dimportpath(p *types.Pkg) {
|
|
if p.Pathsym != nil {
|
|
return
|
|
}
|
|
|
|
// If we are compiling the runtime package, there are two runtime packages around
|
|
// -- localpkg and Runtimepkg. We don't want to produce import path symbols for
|
|
// both of them, so just produce one for localpkg.
|
|
if myimportpath == "runtime" && p == Runtimepkg {
|
|
return
|
|
}
|
|
|
|
var str string
|
|
if p == localpkg {
|
|
// Note: myimportpath != "", or else dgopkgpath won't call dimportpath.
|
|
str = myimportpath
|
|
} else {
|
|
str = p.Path
|
|
}
|
|
|
|
s := Ctxt.Lookup("type..importpath." + p.Prefix + ".")
|
|
ot := dnameData(s, 0, str, "", nil, false)
|
|
ggloblsym(s, int32(ot), obj.DUPOK|obj.RODATA)
|
|
p.Pathsym = s
|
|
}
|
|
|
|
func dgopkgpath(s *obj.LSym, ot int, pkg *types.Pkg) int {
|
|
if pkg == nil {
|
|
return duintptr(s, ot, 0)
|
|
}
|
|
|
|
if pkg == localpkg && myimportpath == "" {
|
|
// If we don't know the full import path of the package being compiled
|
|
// (i.e. -p was not passed on the compiler command line), emit a reference to
|
|
// type..importpath.""., which the linker will rewrite using the correct import path.
|
|
// Every package that imports this one directly defines the symbol.
|
|
// See also https://groups.google.com/forum/#!topic/golang-dev/myb9s53HxGQ.
|
|
ns := Ctxt.Lookup(`type..importpath."".`)
|
|
return dsymptr(s, ot, ns, 0)
|
|
}
|
|
|
|
dimportpath(pkg)
|
|
return dsymptr(s, ot, pkg.Pathsym, 0)
|
|
}
|
|
|
|
// dgopkgpathOff writes an offset relocation in s at offset ot to the pkg path symbol.
|
|
func dgopkgpathOff(s *obj.LSym, ot int, pkg *types.Pkg) int {
|
|
if pkg == nil {
|
|
return duint32(s, ot, 0)
|
|
}
|
|
if pkg == localpkg && myimportpath == "" {
|
|
// If we don't know the full import path of the package being compiled
|
|
// (i.e. -p was not passed on the compiler command line), emit a reference to
|
|
// type..importpath.""., which the linker will rewrite using the correct import path.
|
|
// Every package that imports this one directly defines the symbol.
|
|
// See also https://groups.google.com/forum/#!topic/golang-dev/myb9s53HxGQ.
|
|
ns := Ctxt.Lookup(`type..importpath."".`)
|
|
return dsymptrOff(s, ot, ns, 0)
|
|
}
|
|
|
|
dimportpath(pkg)
|
|
return dsymptrOff(s, ot, pkg.Pathsym, 0)
|
|
}
|
|
|
|
// isExportedField reports whether a struct field is exported.
|
|
// It also returns the package to use for PkgPath for an unexported field.
|
|
func isExportedField(ft *types.Field) (bool, *types.Pkg) {
|
|
if ft.Sym != nil && ft.Embedded == 0 {
|
|
return exportname(ft.Sym.Name), ft.Sym.Pkg
|
|
} else {
|
|
if ft.Type.Sym != nil &&
|
|
(ft.Type.Sym.Pkg == builtinpkg || !exportname(ft.Type.Sym.Name)) {
|
|
return false, ft.Type.Sym.Pkg
|
|
} else {
|
|
return true, nil
|
|
}
|
|
}
|
|
}
|
|
|
|
// dnameField dumps a reflect.name for a struct field.
|
|
func dnameField(lsym *obj.LSym, ot int, spkg *types.Pkg, ft *types.Field) int {
|
|
var name string
|
|
if ft.Sym != nil {
|
|
name = ft.Sym.Name
|
|
}
|
|
isExported, fpkg := isExportedField(ft)
|
|
if isExported || fpkg == spkg {
|
|
fpkg = nil
|
|
}
|
|
nsym := dname(name, ft.Note, fpkg, isExported)
|
|
return dsymptr(lsym, ot, nsym, 0)
|
|
}
|
|
|
|
// dnameData writes the contents of a reflect.name into s at offset ot.
|
|
func dnameData(s *obj.LSym, ot int, name, tag string, pkg *types.Pkg, exported bool) int {
|
|
if len(name) > 1<<16-1 {
|
|
Fatalf("name too long: %s", name)
|
|
}
|
|
if len(tag) > 1<<16-1 {
|
|
Fatalf("tag too long: %s", tag)
|
|
}
|
|
|
|
// Encode name and tag. See reflect/type.go for details.
|
|
var bits byte
|
|
l := 1 + 2 + len(name)
|
|
if exported {
|
|
bits |= 1 << 0
|
|
}
|
|
if len(tag) > 0 {
|
|
l += 2 + len(tag)
|
|
bits |= 1 << 1
|
|
}
|
|
if pkg != nil {
|
|
bits |= 1 << 2
|
|
}
|
|
b := make([]byte, l)
|
|
b[0] = bits
|
|
b[1] = uint8(len(name) >> 8)
|
|
b[2] = uint8(len(name))
|
|
copy(b[3:], name)
|
|
if len(tag) > 0 {
|
|
tb := b[3+len(name):]
|
|
tb[0] = uint8(len(tag) >> 8)
|
|
tb[1] = uint8(len(tag))
|
|
copy(tb[2:], tag)
|
|
}
|
|
|
|
ot = int(s.WriteBytes(Ctxt, int64(ot), b))
|
|
|
|
if pkg != nil {
|
|
ot = dgopkgpathOff(s, ot, pkg)
|
|
}
|
|
|
|
return ot
|
|
}
|
|
|
|
var dnameCount int
|
|
|
|
// dname creates a reflect.name for a struct field or method.
|
|
func dname(name, tag string, pkg *types.Pkg, exported bool) *obj.LSym {
|
|
// Write out data as "type.." to signal two things to the
|
|
// linker, first that when dynamically linking, the symbol
|
|
// should be moved to a relro section, and second that the
|
|
// contents should not be decoded as a type.
|
|
sname := "type..namedata."
|
|
if pkg == nil {
|
|
// In the common case, share data with other packages.
|
|
if name == "" {
|
|
if exported {
|
|
sname += "-noname-exported." + tag
|
|
} else {
|
|
sname += "-noname-unexported." + tag
|
|
}
|
|
} else {
|
|
if exported {
|
|
sname += name + "." + tag
|
|
} else {
|
|
sname += name + "-" + tag
|
|
}
|
|
}
|
|
} else {
|
|
sname = fmt.Sprintf(`%s"".%d`, sname, dnameCount)
|
|
dnameCount++
|
|
}
|
|
s := Ctxt.Lookup(sname)
|
|
if len(s.P) > 0 {
|
|
return s
|
|
}
|
|
ot := dnameData(s, 0, name, tag, pkg, exported)
|
|
ggloblsym(s, int32(ot), obj.DUPOK|obj.RODATA)
|
|
return s
|
|
}
|
|
|
|
// dextratype dumps the fields of a runtime.uncommontype.
|
|
// dataAdd is the offset in bytes after the header where the
|
|
// backing array of the []method field is written (by dextratypeData).
|
|
func dextratype(lsym *obj.LSym, ot int, t *types.Type, dataAdd int) int {
|
|
m := methods(t)
|
|
if t.Sym == nil && len(m) == 0 {
|
|
return ot
|
|
}
|
|
noff := int(Rnd(int64(ot), int64(Widthptr)))
|
|
if noff != ot {
|
|
Fatalf("unexpected alignment in dextratype for %v", t)
|
|
}
|
|
|
|
for _, a := range m {
|
|
dtypesym(a.type_)
|
|
}
|
|
|
|
ot = dgopkgpathOff(lsym, ot, typePkg(t))
|
|
|
|
dataAdd += uncommonSize(t)
|
|
mcount := len(m)
|
|
if mcount != int(uint16(mcount)) {
|
|
Fatalf("too many methods on %v: %d", t, mcount)
|
|
}
|
|
if dataAdd != int(uint32(dataAdd)) {
|
|
Fatalf("methods are too far away on %v: %d", t, dataAdd)
|
|
}
|
|
|
|
ot = duint16(lsym, ot, uint16(mcount))
|
|
ot = duint16(lsym, ot, 0)
|
|
ot = duint32(lsym, ot, uint32(dataAdd))
|
|
ot = duint32(lsym, ot, 0)
|
|
return ot
|
|
}
|
|
|
|
func typePkg(t *types.Type) *types.Pkg {
|
|
tsym := t.Sym
|
|
if tsym == nil {
|
|
switch t.Etype {
|
|
case TARRAY, TSLICE, TPTR32, TPTR64, TCHAN:
|
|
if t.Elem() != nil {
|
|
tsym = t.Elem().Sym
|
|
}
|
|
}
|
|
}
|
|
if tsym != nil && t != types.Types[t.Etype] && t != types.Errortype {
|
|
return tsym.Pkg
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// dextratypeData dumps the backing array for the []method field of
|
|
// runtime.uncommontype.
|
|
func dextratypeData(lsym *obj.LSym, ot int, t *types.Type) int {
|
|
for _, a := range methods(t) {
|
|
// ../../../../runtime/type.go:/method
|
|
exported := exportname(a.name)
|
|
var pkg *types.Pkg
|
|
if !exported && a.pkg != typePkg(t) {
|
|
pkg = a.pkg
|
|
}
|
|
nsym := dname(a.name, "", pkg, exported)
|
|
|
|
ot = dsymptrOff(lsym, ot, nsym, 0)
|
|
ot = dmethodptrOff(lsym, ot, dtypesym(a.mtype).Linksym())
|
|
ot = dmethodptrOff(lsym, ot, a.isym.Linksym())
|
|
ot = dmethodptrOff(lsym, ot, a.tsym.Linksym())
|
|
}
|
|
return ot
|
|
}
|
|
|
|
func dmethodptrOff(s *obj.LSym, ot int, x *obj.LSym) int {
|
|
duint32(s, ot, 0)
|
|
r := obj.Addrel(s)
|
|
r.Off = int32(ot)
|
|
r.Siz = 4
|
|
r.Sym = x
|
|
r.Type = objabi.R_METHODOFF
|
|
return ot + 4
|
|
}
|
|
|
|
var kinds = []int{
|
|
TINT: objabi.KindInt,
|
|
TUINT: objabi.KindUint,
|
|
TINT8: objabi.KindInt8,
|
|
TUINT8: objabi.KindUint8,
|
|
TINT16: objabi.KindInt16,
|
|
TUINT16: objabi.KindUint16,
|
|
TINT32: objabi.KindInt32,
|
|
TUINT32: objabi.KindUint32,
|
|
TINT64: objabi.KindInt64,
|
|
TUINT64: objabi.KindUint64,
|
|
TUINTPTR: objabi.KindUintptr,
|
|
TFLOAT32: objabi.KindFloat32,
|
|
TFLOAT64: objabi.KindFloat64,
|
|
TBOOL: objabi.KindBool,
|
|
TSTRING: objabi.KindString,
|
|
TPTR32: objabi.KindPtr,
|
|
TPTR64: objabi.KindPtr,
|
|
TSTRUCT: objabi.KindStruct,
|
|
TINTER: objabi.KindInterface,
|
|
TCHAN: objabi.KindChan,
|
|
TMAP: objabi.KindMap,
|
|
TARRAY: objabi.KindArray,
|
|
TSLICE: objabi.KindSlice,
|
|
TFUNC: objabi.KindFunc,
|
|
TCOMPLEX64: objabi.KindComplex64,
|
|
TCOMPLEX128: objabi.KindComplex128,
|
|
TUNSAFEPTR: objabi.KindUnsafePointer,
|
|
}
|
|
|
|
// typeptrdata returns the length in bytes of the prefix of t
|
|
// containing pointer data. Anything after this offset is scalar data.
|
|
func typeptrdata(t *types.Type) int64 {
|
|
if !types.Haspointers(t) {
|
|
return 0
|
|
}
|
|
|
|
switch t.Etype {
|
|
case TPTR32,
|
|
TPTR64,
|
|
TUNSAFEPTR,
|
|
TFUNC,
|
|
TCHAN,
|
|
TMAP:
|
|
return int64(Widthptr)
|
|
|
|
case TSTRING:
|
|
// struct { byte *str; intgo len; }
|
|
return int64(Widthptr)
|
|
|
|
case TINTER:
|
|
// struct { Itab *tab; void *data; } or
|
|
// struct { Type *type; void *data; }
|
|
return 2 * int64(Widthptr)
|
|
|
|
case TSLICE:
|
|
// struct { byte *array; uintgo len; uintgo cap; }
|
|
return int64(Widthptr)
|
|
|
|
case TARRAY:
|
|
// haspointers already eliminated t.NumElem() == 0.
|
|
return (t.NumElem()-1)*t.Elem().Width + typeptrdata(t.Elem())
|
|
|
|
case TSTRUCT:
|
|
// Find the last field that has pointers.
|
|
var lastPtrField *types.Field
|
|
for _, t1 := range t.Fields().Slice() {
|
|
if types.Haspointers(t1.Type) {
|
|
lastPtrField = t1
|
|
}
|
|
}
|
|
return lastPtrField.Offset + typeptrdata(lastPtrField.Type)
|
|
|
|
default:
|
|
Fatalf("typeptrdata: unexpected type, %v", t)
|
|
return 0
|
|
}
|
|
}
|
|
|
|
// tflag is documented in reflect/type.go.
|
|
//
|
|
// tflag values must be kept in sync with copies in:
|
|
// cmd/compile/internal/gc/reflect.go
|
|
// cmd/link/internal/ld/decodesym.go
|
|
// reflect/type.go
|
|
// runtime/type.go
|
|
const (
|
|
tflagUncommon = 1 << 0
|
|
tflagExtraStar = 1 << 1
|
|
tflagNamed = 1 << 2
|
|
)
|
|
|
|
var (
|
|
algarray *obj.LSym
|
|
memhashvarlen *obj.LSym
|
|
memequalvarlen *obj.LSym
|
|
)
|
|
|
|
// dcommontype dumps the contents of a reflect.rtype (runtime._type).
|
|
func dcommontype(lsym *obj.LSym, ot int, t *types.Type) int {
|
|
if ot != 0 {
|
|
Fatalf("dcommontype %d", ot)
|
|
}
|
|
|
|
sizeofAlg := 2 * Widthptr
|
|
if algarray == nil {
|
|
algarray = sysfunc("algarray")
|
|
}
|
|
dowidth(t)
|
|
alg := algtype(t)
|
|
var algsym *obj.LSym
|
|
if alg == ASPECIAL || alg == AMEM {
|
|
algsym = dalgsym(t)
|
|
}
|
|
|
|
sptrWeak := true
|
|
var sptr *obj.LSym
|
|
if !t.IsPtr() || t.PtrBase != nil {
|
|
tptr := types.NewPtr(t)
|
|
if t.Sym != nil || methods(tptr) != nil {
|
|
sptrWeak = false
|
|
}
|
|
sptr = dtypesym(tptr).Linksym()
|
|
}
|
|
|
|
gcsym, useGCProg, ptrdata := dgcsym(t)
|
|
|
|
// ../../../../reflect/type.go:/^type.rtype
|
|
// actual type structure
|
|
// type rtype struct {
|
|
// size uintptr
|
|
// ptrdata uintptr
|
|
// hash uint32
|
|
// tflag tflag
|
|
// align uint8
|
|
// fieldAlign uint8
|
|
// kind uint8
|
|
// alg *typeAlg
|
|
// gcdata *byte
|
|
// str nameOff
|
|
// ptrToThis typeOff
|
|
// }
|
|
ot = duintptr(lsym, ot, uint64(t.Width))
|
|
ot = duintptr(lsym, ot, uint64(ptrdata))
|
|
ot = duint32(lsym, ot, typehash(t))
|
|
|
|
var tflag uint8
|
|
if uncommonSize(t) != 0 {
|
|
tflag |= tflagUncommon
|
|
}
|
|
if t.Sym != nil && t.Sym.Name != "" {
|
|
tflag |= tflagNamed
|
|
}
|
|
|
|
exported := false
|
|
p := t.LongString()
|
|
// If we're writing out type T,
|
|
// we are very likely to write out type *T as well.
|
|
// Use the string "*T"[1:] for "T", so that the two
|
|
// share storage. This is a cheap way to reduce the
|
|
// amount of space taken up by reflect strings.
|
|
if !strings.HasPrefix(p, "*") {
|
|
p = "*" + p
|
|
tflag |= tflagExtraStar
|
|
if t.Sym != nil {
|
|
exported = exportname(t.Sym.Name)
|
|
}
|
|
} else {
|
|
if t.Elem() != nil && t.Elem().Sym != nil {
|
|
exported = exportname(t.Elem().Sym.Name)
|
|
}
|
|
}
|
|
|
|
ot = duint8(lsym, ot, tflag)
|
|
|
|
// runtime (and common sense) expects alignment to be a power of two.
|
|
i := int(t.Align)
|
|
|
|
if i == 0 {
|
|
i = 1
|
|
}
|
|
if i&(i-1) != 0 {
|
|
Fatalf("invalid alignment %d for %v", t.Align, t)
|
|
}
|
|
ot = duint8(lsym, ot, t.Align) // align
|
|
ot = duint8(lsym, ot, t.Align) // fieldAlign
|
|
|
|
i = kinds[t.Etype]
|
|
if !types.Haspointers(t) {
|
|
i |= objabi.KindNoPointers
|
|
}
|
|
if isdirectiface(t) {
|
|
i |= objabi.KindDirectIface
|
|
}
|
|
if useGCProg {
|
|
i |= objabi.KindGCProg
|
|
}
|
|
ot = duint8(lsym, ot, uint8(i)) // kind
|
|
if algsym == nil {
|
|
ot = dsymptr(lsym, ot, algarray, int(alg)*sizeofAlg)
|
|
} else {
|
|
ot = dsymptr(lsym, ot, algsym, 0)
|
|
}
|
|
ot = dsymptr(lsym, ot, gcsym, 0) // gcdata
|
|
|
|
nsym := dname(p, "", nil, exported)
|
|
ot = dsymptrOff(lsym, ot, nsym, 0) // str
|
|
// ptrToThis
|
|
if sptr == nil {
|
|
ot = duint32(lsym, ot, 0)
|
|
} else if sptrWeak {
|
|
ot = dsymptrWeakOff(lsym, ot, sptr)
|
|
} else {
|
|
ot = dsymptrOff(lsym, ot, sptr, 0)
|
|
}
|
|
|
|
return ot
|
|
}
|
|
|
|
func typesymname(t *types.Type) string {
|
|
name := t.ShortString()
|
|
// Use a separate symbol name for Noalg types for #17752.
|
|
if a, bad := algtype1(t); a == ANOEQ && bad.Noalg() {
|
|
name = "noalg." + name
|
|
}
|
|
return name
|
|
}
|
|
|
|
// Fake package for runtime type info (headers)
|
|
// Don't access directly, use typeLookup below.
|
|
var (
|
|
typepkgmu sync.Mutex // protects typepkg lookups
|
|
typepkg = types.NewPkg("type", "type")
|
|
)
|
|
|
|
func typeLookup(name string) *types.Sym {
|
|
typepkgmu.Lock()
|
|
s := typepkg.Lookup(name)
|
|
typepkgmu.Unlock()
|
|
return s
|
|
}
|
|
|
|
func typesym(t *types.Type) *types.Sym {
|
|
return typeLookup(typesymname(t))
|
|
}
|
|
|
|
// tracksym returns the symbol for tracking use of field/method f, assumed
|
|
// to be a member of struct/interface type t.
|
|
func tracksym(t *types.Type, f *types.Field) *types.Sym {
|
|
return trackpkg.Lookup(t.ShortString() + "." + f.Sym.Name)
|
|
}
|
|
|
|
func typesymprefix(prefix string, t *types.Type) *types.Sym {
|
|
p := prefix + "." + t.ShortString()
|
|
s := typeLookup(p)
|
|
|
|
//print("algsym: %s -> %+S\n", p, s);
|
|
|
|
return s
|
|
}
|
|
|
|
func typenamesym(t *types.Type) *types.Sym {
|
|
if t == nil || (t.IsPtr() && t.Elem() == nil) || t.IsUntyped() {
|
|
Fatalf("typenamesym %v", t)
|
|
}
|
|
s := typesym(t)
|
|
signatsetmu.Lock()
|
|
addsignat(t)
|
|
signatsetmu.Unlock()
|
|
return s
|
|
}
|
|
|
|
func typename(t *types.Type) *Node {
|
|
s := typenamesym(t)
|
|
if s.Def == nil {
|
|
n := newnamel(src.NoXPos, s)
|
|
n.Type = types.Types[TUINT8]
|
|
n.SetClass(PEXTERN)
|
|
n.SetTypecheck(1)
|
|
s.Def = asTypesNode(n)
|
|
}
|
|
|
|
n := nod(OADDR, asNode(s.Def), nil)
|
|
n.Type = types.NewPtr(asNode(s.Def).Type)
|
|
n.SetAddable(true)
|
|
n.SetTypecheck(1)
|
|
return n
|
|
}
|
|
|
|
func itabname(t, itype *types.Type) *Node {
|
|
if t == nil || (t.IsPtr() && t.Elem() == nil) || t.IsUntyped() || !itype.IsInterface() || itype.IsEmptyInterface() {
|
|
Fatalf("itabname(%v, %v)", t, itype)
|
|
}
|
|
s := itabpkg.Lookup(t.ShortString() + "," + itype.ShortString())
|
|
if s.Def == nil {
|
|
n := newname(s)
|
|
n.Type = types.Types[TUINT8]
|
|
n.SetClass(PEXTERN)
|
|
n.SetTypecheck(1)
|
|
s.Def = asTypesNode(n)
|
|
itabs = append(itabs, itabEntry{t: t, itype: itype, lsym: s.Linksym()})
|
|
}
|
|
|
|
n := nod(OADDR, asNode(s.Def), nil)
|
|
n.Type = types.NewPtr(asNode(s.Def).Type)
|
|
n.SetAddable(true)
|
|
n.SetTypecheck(1)
|
|
return n
|
|
}
|
|
|
|
// isreflexive reports whether t has a reflexive equality operator.
|
|
// That is, if x==x for all x of type t.
|
|
func isreflexive(t *types.Type) bool {
|
|
switch t.Etype {
|
|
case TBOOL,
|
|
TINT,
|
|
TUINT,
|
|
TINT8,
|
|
TUINT8,
|
|
TINT16,
|
|
TUINT16,
|
|
TINT32,
|
|
TUINT32,
|
|
TINT64,
|
|
TUINT64,
|
|
TUINTPTR,
|
|
TPTR32,
|
|
TPTR64,
|
|
TUNSAFEPTR,
|
|
TSTRING,
|
|
TCHAN:
|
|
return true
|
|
|
|
case TFLOAT32,
|
|
TFLOAT64,
|
|
TCOMPLEX64,
|
|
TCOMPLEX128,
|
|
TINTER:
|
|
return false
|
|
|
|
case TARRAY:
|
|
return isreflexive(t.Elem())
|
|
|
|
case TSTRUCT:
|
|
for _, t1 := range t.Fields().Slice() {
|
|
if !isreflexive(t1.Type) {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
|
|
default:
|
|
Fatalf("bad type for map key: %v", t)
|
|
return false
|
|
}
|
|
}
|
|
|
|
// needkeyupdate reports whether map updates with t as a key
|
|
// need the key to be updated.
|
|
func needkeyupdate(t *types.Type) bool {
|
|
switch t.Etype {
|
|
case TBOOL, TINT, TUINT, TINT8, TUINT8, TINT16, TUINT16, TINT32, TUINT32,
|
|
TINT64, TUINT64, TUINTPTR, TPTR32, TPTR64, TUNSAFEPTR, TCHAN:
|
|
return false
|
|
|
|
case TFLOAT32, TFLOAT64, TCOMPLEX64, TCOMPLEX128, // floats and complex can be +0/-0
|
|
TINTER,
|
|
TSTRING: // strings might have smaller backing stores
|
|
return true
|
|
|
|
case TARRAY:
|
|
return needkeyupdate(t.Elem())
|
|
|
|
case TSTRUCT:
|
|
for _, t1 := range t.Fields().Slice() {
|
|
if needkeyupdate(t1.Type) {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
|
|
default:
|
|
Fatalf("bad type for map key: %v", t)
|
|
return true
|
|
}
|
|
}
|
|
|
|
// formalType replaces byte and rune aliases with real types.
|
|
// They've been separate internally to make error messages
|
|
// better, but we have to merge them in the reflect tables.
|
|
func formalType(t *types.Type) *types.Type {
|
|
if t == types.Bytetype || t == types.Runetype {
|
|
return types.Types[t.Etype]
|
|
}
|
|
return t
|
|
}
|
|
|
|
func dtypesym(t *types.Type) *types.Sym {
|
|
t = formalType(t)
|
|
if t.IsUntyped() {
|
|
Fatalf("dtypesym %v", t)
|
|
}
|
|
|
|
s := typesym(t)
|
|
if s.Siggen() {
|
|
return s
|
|
}
|
|
s.SetSiggen(true)
|
|
|
|
// special case (look for runtime below):
|
|
// when compiling package runtime,
|
|
// emit the type structures for int, float, etc.
|
|
tbase := t
|
|
|
|
if t.IsPtr() && t.Sym == nil && t.Elem().Sym != nil {
|
|
tbase = t.Elem()
|
|
}
|
|
dupok := 0
|
|
if tbase.Sym == nil {
|
|
dupok = obj.DUPOK
|
|
}
|
|
|
|
if myimportpath == "runtime" && (tbase == types.Types[tbase.Etype] || tbase == types.Bytetype || tbase == types.Runetype || tbase == types.Errortype) { // int, float, etc
|
|
goto ok
|
|
}
|
|
|
|
// named types from other files are defined only by those files
|
|
if tbase.Sym != nil && !tbase.Local() {
|
|
return s
|
|
}
|
|
if isforw[tbase.Etype] {
|
|
return s
|
|
}
|
|
|
|
ok:
|
|
ot := 0
|
|
lsym := s.Linksym()
|
|
switch t.Etype {
|
|
default:
|
|
ot = dcommontype(lsym, ot, t)
|
|
ot = dextratype(lsym, ot, t, 0)
|
|
|
|
case TARRAY:
|
|
// ../../../../runtime/type.go:/arrayType
|
|
s1 := dtypesym(t.Elem())
|
|
t2 := types.NewSlice(t.Elem())
|
|
s2 := dtypesym(t2)
|
|
ot = dcommontype(lsym, ot, t)
|
|
ot = dsymptr(lsym, ot, s1.Linksym(), 0)
|
|
ot = dsymptr(lsym, ot, s2.Linksym(), 0)
|
|
ot = duintptr(lsym, ot, uint64(t.NumElem()))
|
|
ot = dextratype(lsym, ot, t, 0)
|
|
|
|
case TSLICE:
|
|
// ../../../../runtime/type.go:/sliceType
|
|
s1 := dtypesym(t.Elem())
|
|
ot = dcommontype(lsym, ot, t)
|
|
ot = dsymptr(lsym, ot, s1.Linksym(), 0)
|
|
ot = dextratype(lsym, ot, t, 0)
|
|
|
|
case TCHAN:
|
|
// ../../../../runtime/type.go:/chanType
|
|
s1 := dtypesym(t.Elem())
|
|
ot = dcommontype(lsym, ot, t)
|
|
ot = dsymptr(lsym, ot, s1.Linksym(), 0)
|
|
ot = duintptr(lsym, ot, uint64(t.ChanDir()))
|
|
ot = dextratype(lsym, ot, t, 0)
|
|
|
|
case TFUNC:
|
|
for _, t1 := range t.Recvs().Fields().Slice() {
|
|
dtypesym(t1.Type)
|
|
}
|
|
isddd := false
|
|
for _, t1 := range t.Params().Fields().Slice() {
|
|
isddd = t1.Isddd()
|
|
dtypesym(t1.Type)
|
|
}
|
|
for _, t1 := range t.Results().Fields().Slice() {
|
|
dtypesym(t1.Type)
|
|
}
|
|
|
|
ot = dcommontype(lsym, ot, t)
|
|
inCount := t.Recvs().NumFields() + t.Params().NumFields()
|
|
outCount := t.Results().NumFields()
|
|
if isddd {
|
|
outCount |= 1 << 15
|
|
}
|
|
ot = duint16(lsym, ot, uint16(inCount))
|
|
ot = duint16(lsym, ot, uint16(outCount))
|
|
if Widthptr == 8 {
|
|
ot += 4 // align for *rtype
|
|
}
|
|
|
|
dataAdd := (inCount + t.Results().NumFields()) * Widthptr
|
|
ot = dextratype(lsym, ot, t, dataAdd)
|
|
|
|
// Array of rtype pointers follows funcType.
|
|
for _, t1 := range t.Recvs().Fields().Slice() {
|
|
ot = dsymptr(lsym, ot, dtypesym(t1.Type).Linksym(), 0)
|
|
}
|
|
for _, t1 := range t.Params().Fields().Slice() {
|
|
ot = dsymptr(lsym, ot, dtypesym(t1.Type).Linksym(), 0)
|
|
}
|
|
for _, t1 := range t.Results().Fields().Slice() {
|
|
ot = dsymptr(lsym, ot, dtypesym(t1.Type).Linksym(), 0)
|
|
}
|
|
|
|
case TINTER:
|
|
m := imethods(t)
|
|
n := len(m)
|
|
for _, a := range m {
|
|
dtypesym(a.type_)
|
|
}
|
|
|
|
// ../../../../runtime/type.go:/interfaceType
|
|
ot = dcommontype(lsym, ot, t)
|
|
|
|
var tpkg *types.Pkg
|
|
if t.Sym != nil && t != types.Types[t.Etype] && t != types.Errortype {
|
|
tpkg = t.Sym.Pkg
|
|
}
|
|
ot = dgopkgpath(lsym, ot, tpkg)
|
|
|
|
ot = dsymptr(lsym, ot, lsym, ot+3*Widthptr+uncommonSize(t))
|
|
ot = duintptr(lsym, ot, uint64(n))
|
|
ot = duintptr(lsym, ot, uint64(n))
|
|
dataAdd := imethodSize() * n
|
|
ot = dextratype(lsym, ot, t, dataAdd)
|
|
|
|
for _, a := range m {
|
|
// ../../../../runtime/type.go:/imethod
|
|
exported := exportname(a.name)
|
|
var pkg *types.Pkg
|
|
if !exported && a.pkg != tpkg {
|
|
pkg = a.pkg
|
|
}
|
|
nsym := dname(a.name, "", pkg, exported)
|
|
|
|
ot = dsymptrOff(lsym, ot, nsym, 0)
|
|
ot = dsymptrOff(lsym, ot, dtypesym(a.type_).Linksym(), 0)
|
|
}
|
|
|
|
// ../../../../runtime/type.go:/mapType
|
|
case TMAP:
|
|
s1 := dtypesym(t.Key())
|
|
s2 := dtypesym(t.Val())
|
|
s3 := dtypesym(mapbucket(t))
|
|
s4 := dtypesym(hmap(t))
|
|
ot = dcommontype(lsym, ot, t)
|
|
ot = dsymptr(lsym, ot, s1.Linksym(), 0)
|
|
ot = dsymptr(lsym, ot, s2.Linksym(), 0)
|
|
ot = dsymptr(lsym, ot, s3.Linksym(), 0)
|
|
ot = dsymptr(lsym, ot, s4.Linksym(), 0)
|
|
if t.Key().Width > MAXKEYSIZE {
|
|
ot = duint8(lsym, ot, uint8(Widthptr))
|
|
ot = duint8(lsym, ot, 1) // indirect
|
|
} else {
|
|
ot = duint8(lsym, ot, uint8(t.Key().Width))
|
|
ot = duint8(lsym, ot, 0) // not indirect
|
|
}
|
|
|
|
if t.Val().Width > MAXVALSIZE {
|
|
ot = duint8(lsym, ot, uint8(Widthptr))
|
|
ot = duint8(lsym, ot, 1) // indirect
|
|
} else {
|
|
ot = duint8(lsym, ot, uint8(t.Val().Width))
|
|
ot = duint8(lsym, ot, 0) // not indirect
|
|
}
|
|
|
|
ot = duint16(lsym, ot, uint16(mapbucket(t).Width))
|
|
ot = duint8(lsym, ot, uint8(obj.Bool2int(isreflexive(t.Key()))))
|
|
ot = duint8(lsym, ot, uint8(obj.Bool2int(needkeyupdate(t.Key()))))
|
|
ot = dextratype(lsym, ot, t, 0)
|
|
|
|
case TPTR32, TPTR64:
|
|
if t.Elem().Etype == TANY {
|
|
// ../../../../runtime/type.go:/UnsafePointerType
|
|
ot = dcommontype(lsym, ot, t)
|
|
ot = dextratype(lsym, ot, t, 0)
|
|
|
|
break
|
|
}
|
|
|
|
// ../../../../runtime/type.go:/ptrType
|
|
s1 := dtypesym(t.Elem())
|
|
|
|
ot = dcommontype(lsym, ot, t)
|
|
ot = dsymptr(lsym, ot, s1.Linksym(), 0)
|
|
ot = dextratype(lsym, ot, t, 0)
|
|
|
|
// ../../../../runtime/type.go:/structType
|
|
// for security, only the exported fields.
|
|
case TSTRUCT:
|
|
n := 0
|
|
|
|
for _, t1 := range t.Fields().Slice() {
|
|
dtypesym(t1.Type)
|
|
n++
|
|
}
|
|
|
|
ot = dcommontype(lsym, ot, t)
|
|
pkg := localpkg
|
|
if t.Sym != nil {
|
|
pkg = t.Sym.Pkg
|
|
} else {
|
|
// Unnamed type. Grab the package from the first field, if any.
|
|
for _, f := range t.Fields().Slice() {
|
|
if f.Embedded != 0 {
|
|
continue
|
|
}
|
|
pkg = f.Sym.Pkg
|
|
break
|
|
}
|
|
}
|
|
ot = dgopkgpath(lsym, ot, pkg)
|
|
ot = dsymptr(lsym, ot, lsym, ot+3*Widthptr+uncommonSize(t))
|
|
ot = duintptr(lsym, ot, uint64(n))
|
|
ot = duintptr(lsym, ot, uint64(n))
|
|
|
|
dataAdd := n * structfieldSize()
|
|
ot = dextratype(lsym, ot, t, dataAdd)
|
|
|
|
for _, f := range t.Fields().Slice() {
|
|
// ../../../../runtime/type.go:/structField
|
|
ot = dnameField(lsym, ot, pkg, f)
|
|
ot = dsymptr(lsym, ot, dtypesym(f.Type).Linksym(), 0)
|
|
offsetAnon := uint64(f.Offset) << 1
|
|
if offsetAnon>>1 != uint64(f.Offset) {
|
|
Fatalf("%v: bad field offset for %s", t, f.Sym.Name)
|
|
}
|
|
if f.Embedded != 0 {
|
|
offsetAnon |= 1
|
|
}
|
|
ot = duintptr(lsym, ot, offsetAnon)
|
|
}
|
|
}
|
|
|
|
ot = dextratypeData(lsym, ot, t)
|
|
ggloblsym(lsym, int32(ot), int16(dupok|obj.RODATA))
|
|
|
|
// The linker will leave a table of all the typelinks for
|
|
// types in the binary, so the runtime can find them.
|
|
//
|
|
// When buildmode=shared, all types are in typelinks so the
|
|
// runtime can deduplicate type pointers.
|
|
keep := Ctxt.Flag_dynlink
|
|
if !keep && t.Sym == nil {
|
|
// For an unnamed type, we only need the link if the type can
|
|
// be created at run time by reflect.PtrTo and similar
|
|
// functions. If the type exists in the program, those
|
|
// functions must return the existing type structure rather
|
|
// than creating a new one.
|
|
switch t.Etype {
|
|
case TPTR32, TPTR64, TARRAY, TCHAN, TFUNC, TMAP, TSLICE, TSTRUCT:
|
|
keep = true
|
|
}
|
|
}
|
|
lsym.Set(obj.AttrMakeTypelink, keep)
|
|
|
|
return s
|
|
}
|
|
|
|
// for each itabEntry, gather the methods on
|
|
// the concrete type that implement the interface
|
|
func peekitabs() {
|
|
for i := range itabs {
|
|
tab := &itabs[i]
|
|
methods := genfun(tab.t, tab.itype)
|
|
if len(methods) == 0 {
|
|
continue
|
|
}
|
|
tab.entries = methods
|
|
}
|
|
}
|
|
|
|
// for the given concrete type and interface
|
|
// type, return the (sorted) set of methods
|
|
// on the concrete type that implement the interface
|
|
func genfun(t, it *types.Type) []*obj.LSym {
|
|
if t == nil || it == nil {
|
|
return nil
|
|
}
|
|
sigs := imethods(it)
|
|
methods := methods(t)
|
|
out := make([]*obj.LSym, 0, len(sigs))
|
|
if len(sigs) == 0 {
|
|
return nil
|
|
}
|
|
|
|
// both sigs and methods are sorted by name,
|
|
// so we can find the intersect in a single pass
|
|
for _, m := range methods {
|
|
if m.name == sigs[0].name {
|
|
out = append(out, m.isym.Linksym())
|
|
sigs = sigs[1:]
|
|
if len(sigs) == 0 {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
return out
|
|
}
|
|
|
|
// itabsym uses the information gathered in
|
|
// peekitabs to de-virtualize interface methods.
|
|
// Since this is called by the SSA backend, it shouldn't
|
|
// generate additional Nodes, Syms, etc.
|
|
func itabsym(it *obj.LSym, offset int64) *obj.LSym {
|
|
var syms []*obj.LSym
|
|
if it == nil {
|
|
return nil
|
|
}
|
|
|
|
for i := range itabs {
|
|
e := &itabs[i]
|
|
if e.lsym == it {
|
|
syms = e.entries
|
|
break
|
|
}
|
|
}
|
|
if syms == nil {
|
|
return nil
|
|
}
|
|
|
|
// keep this arithmetic in sync with *itab layout
|
|
methodnum := int((offset - 3*int64(Widthptr) - 8) / int64(Widthptr))
|
|
if methodnum >= len(syms) {
|
|
return nil
|
|
}
|
|
return syms[methodnum]
|
|
}
|
|
|
|
func addsignat(t *types.Type) {
|
|
signatset[t] = struct{}{}
|
|
}
|
|
|
|
func addsignats(dcls []*Node) {
|
|
// copy types from dcl list to signatset
|
|
for _, n := range dcls {
|
|
if n.Op == OTYPE {
|
|
addsignat(n.Type)
|
|
}
|
|
}
|
|
}
|
|
|
|
func dumpsignats() {
|
|
// Process signatset. Use a loop, as dtypesym adds
|
|
// entries to signatset while it is being processed.
|
|
signats := make([]typeAndStr, len(signatset))
|
|
for len(signatset) > 0 {
|
|
signats = signats[:0]
|
|
// Transfer entries to a slice and sort, for reproducible builds.
|
|
for t := range signatset {
|
|
signats = append(signats, typeAndStr{t: t, short: typesymname(t), regular: t.String()})
|
|
delete(signatset, t)
|
|
}
|
|
sort.Sort(typesByString(signats))
|
|
for _, ts := range signats {
|
|
t := ts.t
|
|
dtypesym(t)
|
|
if t.Sym != nil {
|
|
dtypesym(types.NewPtr(t))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func dumptabs() {
|
|
// process itabs
|
|
for _, i := range itabs {
|
|
// dump empty itab symbol into i.sym
|
|
// type itab struct {
|
|
// inter *interfacetype
|
|
// _type *_type
|
|
// link *itab
|
|
// hash uint32
|
|
// bad bool
|
|
// inhash bool
|
|
// unused [2]byte
|
|
// fun [1]uintptr // variable sized
|
|
// }
|
|
o := dsymptr(i.lsym, 0, dtypesym(i.itype).Linksym(), 0)
|
|
o = dsymptr(i.lsym, o, dtypesym(i.t).Linksym(), 0)
|
|
o += Widthptr // skip link field
|
|
o = duint32(i.lsym, o, typehash(i.t)) // copy of type hash
|
|
o += 4 // skip bad/inhash/unused fields
|
|
o += len(imethods(i.itype)) * Widthptr // skip fun method pointers
|
|
// at runtime the itab will contain pointers to types, other itabs and
|
|
// method functions. None are allocated on heap, so we can use obj.NOPTR.
|
|
ggloblsym(i.lsym, int32(o), int16(obj.DUPOK|obj.NOPTR))
|
|
|
|
ilink := itablinkpkg.Lookup(i.t.ShortString() + "," + i.itype.ShortString()).Linksym()
|
|
dsymptr(ilink, 0, i.lsym, 0)
|
|
ggloblsym(ilink, int32(Widthptr), int16(obj.DUPOK|obj.RODATA))
|
|
}
|
|
|
|
// process ptabs
|
|
if localpkg.Name == "main" && len(ptabs) > 0 {
|
|
ot := 0
|
|
s := Ctxt.Lookup("go.plugin.tabs")
|
|
for _, p := range ptabs {
|
|
// Dump ptab symbol into go.pluginsym package.
|
|
//
|
|
// type ptab struct {
|
|
// name nameOff
|
|
// typ typeOff // pointer to symbol
|
|
// }
|
|
nsym := dname(p.s.Name, "", nil, true)
|
|
ot = dsymptrOff(s, ot, nsym, 0)
|
|
ot = dsymptrOff(s, ot, dtypesym(p.t).Linksym(), 0)
|
|
}
|
|
ggloblsym(s, int32(ot), int16(obj.RODATA))
|
|
|
|
ot = 0
|
|
s = Ctxt.Lookup("go.plugin.exports")
|
|
for _, p := range ptabs {
|
|
ot = dsymptr(s, ot, p.s.Linksym(), 0)
|
|
}
|
|
ggloblsym(s, int32(ot), int16(obj.RODATA))
|
|
}
|
|
}
|
|
|
|
func dumpimportstrings() {
|
|
// generate import strings for imported packages
|
|
for _, p := range types.ImportedPkgList() {
|
|
dimportpath(p)
|
|
}
|
|
}
|
|
|
|
func dumpbasictypes() {
|
|
// do basic types if compiling package runtime.
|
|
// they have to be in at least one package,
|
|
// and runtime is always loaded implicitly,
|
|
// so this is as good as any.
|
|
// another possible choice would be package main,
|
|
// but using runtime means fewer copies in object files.
|
|
if myimportpath == "runtime" {
|
|
for i := types.EType(1); i <= TBOOL; i++ {
|
|
dtypesym(types.NewPtr(types.Types[i]))
|
|
}
|
|
dtypesym(types.NewPtr(types.Types[TSTRING]))
|
|
dtypesym(types.NewPtr(types.Types[TUNSAFEPTR]))
|
|
|
|
// emit type structs for error and func(error) string.
|
|
// The latter is the type of an auto-generated wrapper.
|
|
dtypesym(types.NewPtr(types.Errortype))
|
|
|
|
dtypesym(functype(nil, []*Node{anonfield(types.Errortype)}, []*Node{anonfield(types.Types[TSTRING])}))
|
|
|
|
// add paths for runtime and main, which 6l imports implicitly.
|
|
dimportpath(Runtimepkg)
|
|
|
|
if flag_race {
|
|
dimportpath(racepkg)
|
|
}
|
|
if flag_msan {
|
|
dimportpath(msanpkg)
|
|
}
|
|
dimportpath(types.NewPkg("main", ""))
|
|
}
|
|
}
|
|
|
|
type typeAndStr struct {
|
|
t *types.Type
|
|
short string
|
|
regular string
|
|
}
|
|
|
|
type typesByString []typeAndStr
|
|
|
|
func (a typesByString) Len() int { return len(a) }
|
|
func (a typesByString) Less(i, j int) bool {
|
|
if a[i].short != a[j].short {
|
|
return a[i].short < a[j].short
|
|
}
|
|
// When the only difference between the types is whether
|
|
// they refer to byte or uint8, such as **byte vs **uint8,
|
|
// the types' ShortStrings can be identical.
|
|
// To preserve deterministic sort ordering, sort these by String().
|
|
return a[i].regular < a[j].regular
|
|
}
|
|
func (a typesByString) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
|
|
|
|
func dalgsym(t *types.Type) *obj.LSym {
|
|
var lsym *obj.LSym
|
|
var hashfunc *obj.LSym
|
|
var eqfunc *obj.LSym
|
|
|
|
// dalgsym is only called for a type that needs an algorithm table,
|
|
// which implies that the type is comparable (or else it would use ANOEQ).
|
|
|
|
if algtype(t) == AMEM {
|
|
// we use one algorithm table for all AMEM types of a given size
|
|
p := fmt.Sprintf(".alg%d", t.Width)
|
|
|
|
s := typeLookup(p)
|
|
lsym = s.Linksym()
|
|
if s.AlgGen() {
|
|
return lsym
|
|
}
|
|
s.SetAlgGen(true)
|
|
|
|
if memhashvarlen == nil {
|
|
memhashvarlen = sysfunc("memhash_varlen")
|
|
memequalvarlen = sysfunc("memequal_varlen")
|
|
}
|
|
|
|
// make hash closure
|
|
p = fmt.Sprintf(".hashfunc%d", t.Width)
|
|
|
|
hashfunc = typeLookup(p).Linksym()
|
|
|
|
ot := 0
|
|
ot = dsymptr(hashfunc, ot, memhashvarlen, 0)
|
|
ot = duintptr(hashfunc, ot, uint64(t.Width)) // size encoded in closure
|
|
ggloblsym(hashfunc, int32(ot), obj.DUPOK|obj.RODATA)
|
|
|
|
// make equality closure
|
|
p = fmt.Sprintf(".eqfunc%d", t.Width)
|
|
|
|
eqfunc = typeLookup(p).Linksym()
|
|
|
|
ot = 0
|
|
ot = dsymptr(eqfunc, ot, memequalvarlen, 0)
|
|
ot = duintptr(eqfunc, ot, uint64(t.Width))
|
|
ggloblsym(eqfunc, int32(ot), obj.DUPOK|obj.RODATA)
|
|
} else {
|
|
// generate an alg table specific to this type
|
|
s := typesymprefix(".alg", t)
|
|
lsym = s.Linksym()
|
|
|
|
hash := typesymprefix(".hash", t)
|
|
eq := typesymprefix(".eq", t)
|
|
hashfunc = typesymprefix(".hashfunc", t).Linksym()
|
|
eqfunc = typesymprefix(".eqfunc", t).Linksym()
|
|
|
|
genhash(hash, t)
|
|
geneq(eq, t)
|
|
|
|
// make Go funcs (closures) for calling hash and equal from Go
|
|
dsymptr(hashfunc, 0, hash.Linksym(), 0)
|
|
ggloblsym(hashfunc, int32(Widthptr), obj.DUPOK|obj.RODATA)
|
|
dsymptr(eqfunc, 0, eq.Linksym(), 0)
|
|
ggloblsym(eqfunc, int32(Widthptr), obj.DUPOK|obj.RODATA)
|
|
}
|
|
|
|
// ../../../../runtime/alg.go:/typeAlg
|
|
ot := 0
|
|
|
|
ot = dsymptr(lsym, ot, hashfunc, 0)
|
|
ot = dsymptr(lsym, ot, eqfunc, 0)
|
|
ggloblsym(lsym, int32(ot), obj.DUPOK|obj.RODATA)
|
|
return lsym
|
|
}
|
|
|
|
// maxPtrmaskBytes is the maximum length of a GC ptrmask bitmap,
|
|
// which holds 1-bit entries describing where pointers are in a given type.
|
|
// Above this length, the GC information is recorded as a GC program,
|
|
// which can express repetition compactly. In either form, the
|
|
// information is used by the runtime to initialize the heap bitmap,
|
|
// and for large types (like 128 or more words), they are roughly the
|
|
// same speed. GC programs are never much larger and often more
|
|
// compact. (If large arrays are involved, they can be arbitrarily
|
|
// more compact.)
|
|
//
|
|
// The cutoff must be large enough that any allocation large enough to
|
|
// use a GC program is large enough that it does not share heap bitmap
|
|
// bytes with any other objects, allowing the GC program execution to
|
|
// assume an aligned start and not use atomic operations. In the current
|
|
// runtime, this means all malloc size classes larger than the cutoff must
|
|
// be multiples of four words. On 32-bit systems that's 16 bytes, and
|
|
// all size classes >= 16 bytes are 16-byte aligned, so no real constraint.
|
|
// On 64-bit systems, that's 32 bytes, and 32-byte alignment is guaranteed
|
|
// for size classes >= 256 bytes. On a 64-bit system, 256 bytes allocated
|
|
// is 32 pointers, the bits for which fit in 4 bytes. So maxPtrmaskBytes
|
|
// must be >= 4.
|
|
//
|
|
// We used to use 16 because the GC programs do have some constant overhead
|
|
// to get started, and processing 128 pointers seems to be enough to
|
|
// amortize that overhead well.
|
|
//
|
|
// To make sure that the runtime's chansend can call typeBitsBulkBarrier,
|
|
// we raised the limit to 2048, so that even 32-bit systems are guaranteed to
|
|
// use bitmaps for objects up to 64 kB in size.
|
|
//
|
|
// Also known to reflect/type.go.
|
|
//
|
|
const maxPtrmaskBytes = 2048
|
|
|
|
// dgcsym emits and returns a data symbol containing GC information for type t,
|
|
// along with a boolean reporting whether the UseGCProg bit should be set in
|
|
// the type kind, and the ptrdata field to record in the reflect type information.
|
|
func dgcsym(t *types.Type) (lsym *obj.LSym, useGCProg bool, ptrdata int64) {
|
|
ptrdata = typeptrdata(t)
|
|
if ptrdata/int64(Widthptr) <= maxPtrmaskBytes*8 {
|
|
lsym = dgcptrmask(t)
|
|
return
|
|
}
|
|
|
|
useGCProg = true
|
|
lsym, ptrdata = dgcprog(t)
|
|
return
|
|
}
|
|
|
|
// dgcptrmask emits and returns the symbol containing a pointer mask for type t.
|
|
func dgcptrmask(t *types.Type) *obj.LSym {
|
|
ptrmask := make([]byte, (typeptrdata(t)/int64(Widthptr)+7)/8)
|
|
fillptrmask(t, ptrmask)
|
|
p := fmt.Sprintf("gcbits.%x", ptrmask)
|
|
|
|
sym := Runtimepkg.Lookup(p)
|
|
lsym := sym.Linksym()
|
|
if !sym.Uniq() {
|
|
sym.SetUniq(true)
|
|
for i, x := range ptrmask {
|
|
duint8(lsym, i, x)
|
|
}
|
|
ggloblsym(lsym, int32(len(ptrmask)), obj.DUPOK|obj.RODATA|obj.LOCAL)
|
|
}
|
|
return lsym
|
|
}
|
|
|
|
// fillptrmask fills in ptrmask with 1s corresponding to the
|
|
// word offsets in t that hold pointers.
|
|
// ptrmask is assumed to fit at least typeptrdata(t)/Widthptr bits.
|
|
func fillptrmask(t *types.Type, ptrmask []byte) {
|
|
for i := range ptrmask {
|
|
ptrmask[i] = 0
|
|
}
|
|
if !types.Haspointers(t) {
|
|
return
|
|
}
|
|
|
|
vec := bvalloc(8 * int32(len(ptrmask)))
|
|
xoffset := int64(0)
|
|
onebitwalktype1(t, &xoffset, vec)
|
|
|
|
nptr := typeptrdata(t) / int64(Widthptr)
|
|
for i := int64(0); i < nptr; i++ {
|
|
if vec.Get(int32(i)) {
|
|
ptrmask[i/8] |= 1 << (uint(i) % 8)
|
|
}
|
|
}
|
|
}
|
|
|
|
// dgcprog emits and returns the symbol containing a GC program for type t
|
|
// along with the size of the data described by the program (in the range [typeptrdata(t), t.Width]).
|
|
// In practice, the size is typeptrdata(t) except for non-trivial arrays.
|
|
// For non-trivial arrays, the program describes the full t.Width size.
|
|
func dgcprog(t *types.Type) (*obj.LSym, int64) {
|
|
dowidth(t)
|
|
if t.Width == BADWIDTH {
|
|
Fatalf("dgcprog: %v badwidth", t)
|
|
}
|
|
lsym := typesymprefix(".gcprog", t).Linksym()
|
|
var p GCProg
|
|
p.init(lsym)
|
|
p.emit(t, 0)
|
|
offset := p.w.BitIndex() * int64(Widthptr)
|
|
p.end()
|
|
if ptrdata := typeptrdata(t); offset < ptrdata || offset > t.Width {
|
|
Fatalf("dgcprog: %v: offset=%d but ptrdata=%d size=%d", t, offset, ptrdata, t.Width)
|
|
}
|
|
return lsym, offset
|
|
}
|
|
|
|
type GCProg struct {
|
|
lsym *obj.LSym
|
|
symoff int
|
|
w gcprog.Writer
|
|
}
|
|
|
|
var Debug_gcprog int // set by -d gcprog
|
|
|
|
func (p *GCProg) init(lsym *obj.LSym) {
|
|
p.lsym = lsym
|
|
p.symoff = 4 // first 4 bytes hold program length
|
|
p.w.Init(p.writeByte)
|
|
if Debug_gcprog > 0 {
|
|
fmt.Fprintf(os.Stderr, "compile: start GCProg for %v\n", lsym)
|
|
p.w.Debug(os.Stderr)
|
|
}
|
|
}
|
|
|
|
func (p *GCProg) writeByte(x byte) {
|
|
p.symoff = duint8(p.lsym, p.symoff, x)
|
|
}
|
|
|
|
func (p *GCProg) end() {
|
|
p.w.End()
|
|
duint32(p.lsym, 0, uint32(p.symoff-4))
|
|
ggloblsym(p.lsym, int32(p.symoff), obj.DUPOK|obj.RODATA|obj.LOCAL)
|
|
if Debug_gcprog > 0 {
|
|
fmt.Fprintf(os.Stderr, "compile: end GCProg for %v\n", p.lsym)
|
|
}
|
|
}
|
|
|
|
func (p *GCProg) emit(t *types.Type, offset int64) {
|
|
dowidth(t)
|
|
if !types.Haspointers(t) {
|
|
return
|
|
}
|
|
if t.Width == int64(Widthptr) {
|
|
p.w.Ptr(offset / int64(Widthptr))
|
|
return
|
|
}
|
|
switch t.Etype {
|
|
default:
|
|
Fatalf("GCProg.emit: unexpected type %v", t)
|
|
|
|
case TSTRING:
|
|
p.w.Ptr(offset / int64(Widthptr))
|
|
|
|
case TINTER:
|
|
p.w.Ptr(offset / int64(Widthptr))
|
|
p.w.Ptr(offset/int64(Widthptr) + 1)
|
|
|
|
case TSLICE:
|
|
p.w.Ptr(offset / int64(Widthptr))
|
|
|
|
case TARRAY:
|
|
if t.NumElem() == 0 {
|
|
// should have been handled by haspointers check above
|
|
Fatalf("GCProg.emit: empty array")
|
|
}
|
|
|
|
// Flatten array-of-array-of-array to just a big array by multiplying counts.
|
|
count := t.NumElem()
|
|
elem := t.Elem()
|
|
for elem.IsArray() {
|
|
count *= elem.NumElem()
|
|
elem = elem.Elem()
|
|
}
|
|
|
|
if !p.w.ShouldRepeat(elem.Width/int64(Widthptr), count) {
|
|
// Cheaper to just emit the bits.
|
|
for i := int64(0); i < count; i++ {
|
|
p.emit(elem, offset+i*elem.Width)
|
|
}
|
|
return
|
|
}
|
|
p.emit(elem, offset)
|
|
p.w.ZeroUntil((offset + elem.Width) / int64(Widthptr))
|
|
p.w.Repeat(elem.Width/int64(Widthptr), count-1)
|
|
|
|
case TSTRUCT:
|
|
for _, t1 := range t.Fields().Slice() {
|
|
p.emit(t1.Type, offset+t1.Offset)
|
|
}
|
|
}
|
|
}
|
|
|
|
// zeroaddr returns the address of a symbol with at least
|
|
// size bytes of zeros.
|
|
func zeroaddr(size int64) *Node {
|
|
if size >= 1<<31 {
|
|
Fatalf("map value too big %d", size)
|
|
}
|
|
if zerosize < size {
|
|
zerosize = size
|
|
}
|
|
s := mappkg.Lookup("zero")
|
|
if s.Def == nil {
|
|
x := newname(s)
|
|
x.Type = types.Types[TUINT8]
|
|
x.SetClass(PEXTERN)
|
|
x.SetTypecheck(1)
|
|
s.Def = asTypesNode(x)
|
|
}
|
|
z := nod(OADDR, asNode(s.Def), nil)
|
|
z.Type = types.NewPtr(types.Types[TUINT8])
|
|
z.SetAddable(true)
|
|
z.SetTypecheck(1)
|
|
return z
|
|
}
|