mirror of
https://github.com/golang/go.git
synced 2025-05-14 11:54:38 +00:00
Currently large sysReserve calls on some OSes don't actually reserve the memory, but just check that it can be reserved. This was important when we called sysReserve to "reserve" many gigabytes for the heap up front, but now that we map memory in small increments as we need it, this complication is no longer necessary. This has one curious side benefit: currently, on Linux, allocations that are large enough to be rejected by mmap wind up freezing the application for a long time before it panics. This happens because sysReserve doesn't reserve the memory, so sysMap calls mmap_fixed, which calls mmap, which fails because the mapping is too large. However, mmap_fixed doesn't inspect *why* mmap fails, so it falls back to probing every page in the desired region individually with mincore before performing an (otherwise dangerous) MAP_FIXED mapping, which will also fail. This takes a long time for a large region. Now this logic is gone, so the mmap failure leads to an immediate panic. Updates #10460. Change-Id: I8efe88c611871cdb14f99fadd09db83e0161ca2e Reviewed-on: https://go-review.googlesource.com/85888 Run-TryBot: Austin Clements <austin@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Rick Hudson <rlh@golang.org>
447 lines
9.3 KiB
Go
447 lines
9.3 KiB
Go
// Copyright 2010 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Export guts for testing.
|
|
|
|
package runtime
|
|
|
|
import (
|
|
"runtime/internal/atomic"
|
|
"runtime/internal/sys"
|
|
"unsafe"
|
|
)
|
|
|
|
var Fadd64 = fadd64
|
|
var Fsub64 = fsub64
|
|
var Fmul64 = fmul64
|
|
var Fdiv64 = fdiv64
|
|
var F64to32 = f64to32
|
|
var F32to64 = f32to64
|
|
var Fcmp64 = fcmp64
|
|
var Fintto64 = fintto64
|
|
var F64toint = f64toint
|
|
var Sqrt = sqrt
|
|
|
|
var Entersyscall = entersyscall
|
|
var Exitsyscall = exitsyscall
|
|
var LockedOSThread = lockedOSThread
|
|
var Xadduintptr = atomic.Xadduintptr
|
|
|
|
var FuncPC = funcPC
|
|
|
|
var Fastlog2 = fastlog2
|
|
|
|
var Atoi = atoi
|
|
var Atoi32 = atoi32
|
|
|
|
type LFNode struct {
|
|
Next uint64
|
|
Pushcnt uintptr
|
|
}
|
|
|
|
func LFStackPush(head *uint64, node *LFNode) {
|
|
(*lfstack)(head).push((*lfnode)(unsafe.Pointer(node)))
|
|
}
|
|
|
|
func LFStackPop(head *uint64) *LFNode {
|
|
return (*LFNode)(unsafe.Pointer((*lfstack)(head).pop()))
|
|
}
|
|
|
|
func GCMask(x interface{}) (ret []byte) {
|
|
systemstack(func() {
|
|
ret = getgcmask(x)
|
|
})
|
|
return
|
|
}
|
|
|
|
func RunSchedLocalQueueTest() {
|
|
_p_ := new(p)
|
|
gs := make([]g, len(_p_.runq))
|
|
for i := 0; i < len(_p_.runq); i++ {
|
|
if g, _ := runqget(_p_); g != nil {
|
|
throw("runq is not empty initially")
|
|
}
|
|
for j := 0; j < i; j++ {
|
|
runqput(_p_, &gs[i], false)
|
|
}
|
|
for j := 0; j < i; j++ {
|
|
if g, _ := runqget(_p_); g != &gs[i] {
|
|
print("bad element at iter ", i, "/", j, "\n")
|
|
throw("bad element")
|
|
}
|
|
}
|
|
if g, _ := runqget(_p_); g != nil {
|
|
throw("runq is not empty afterwards")
|
|
}
|
|
}
|
|
}
|
|
|
|
func RunSchedLocalQueueStealTest() {
|
|
p1 := new(p)
|
|
p2 := new(p)
|
|
gs := make([]g, len(p1.runq))
|
|
for i := 0; i < len(p1.runq); i++ {
|
|
for j := 0; j < i; j++ {
|
|
gs[j].sig = 0
|
|
runqput(p1, &gs[j], false)
|
|
}
|
|
gp := runqsteal(p2, p1, true)
|
|
s := 0
|
|
if gp != nil {
|
|
s++
|
|
gp.sig++
|
|
}
|
|
for {
|
|
gp, _ = runqget(p2)
|
|
if gp == nil {
|
|
break
|
|
}
|
|
s++
|
|
gp.sig++
|
|
}
|
|
for {
|
|
gp, _ = runqget(p1)
|
|
if gp == nil {
|
|
break
|
|
}
|
|
gp.sig++
|
|
}
|
|
for j := 0; j < i; j++ {
|
|
if gs[j].sig != 1 {
|
|
print("bad element ", j, "(", gs[j].sig, ") at iter ", i, "\n")
|
|
throw("bad element")
|
|
}
|
|
}
|
|
if s != i/2 && s != i/2+1 {
|
|
print("bad steal ", s, ", want ", i/2, " or ", i/2+1, ", iter ", i, "\n")
|
|
throw("bad steal")
|
|
}
|
|
}
|
|
}
|
|
|
|
func RunSchedLocalQueueEmptyTest(iters int) {
|
|
// Test that runq is not spuriously reported as empty.
|
|
// Runq emptiness affects scheduling decisions and spurious emptiness
|
|
// can lead to underutilization (both runnable Gs and idle Ps coexist
|
|
// for arbitrary long time).
|
|
done := make(chan bool, 1)
|
|
p := new(p)
|
|
gs := make([]g, 2)
|
|
ready := new(uint32)
|
|
for i := 0; i < iters; i++ {
|
|
*ready = 0
|
|
next0 := (i & 1) == 0
|
|
next1 := (i & 2) == 0
|
|
runqput(p, &gs[0], next0)
|
|
go func() {
|
|
for atomic.Xadd(ready, 1); atomic.Load(ready) != 2; {
|
|
}
|
|
if runqempty(p) {
|
|
println("next:", next0, next1)
|
|
throw("queue is empty")
|
|
}
|
|
done <- true
|
|
}()
|
|
for atomic.Xadd(ready, 1); atomic.Load(ready) != 2; {
|
|
}
|
|
runqput(p, &gs[1], next1)
|
|
runqget(p)
|
|
<-done
|
|
runqget(p)
|
|
}
|
|
}
|
|
|
|
var (
|
|
StringHash = stringHash
|
|
BytesHash = bytesHash
|
|
Int32Hash = int32Hash
|
|
Int64Hash = int64Hash
|
|
MemHash = memhash
|
|
MemHash32 = memhash32
|
|
MemHash64 = memhash64
|
|
EfaceHash = efaceHash
|
|
IfaceHash = ifaceHash
|
|
)
|
|
|
|
var UseAeshash = &useAeshash
|
|
|
|
func MemclrBytes(b []byte) {
|
|
s := (*slice)(unsafe.Pointer(&b))
|
|
memclrNoHeapPointers(s.array, uintptr(s.len))
|
|
}
|
|
|
|
var HashLoad = &hashLoad
|
|
|
|
// entry point for testing
|
|
func GostringW(w []uint16) (s string) {
|
|
systemstack(func() {
|
|
s = gostringw(&w[0])
|
|
})
|
|
return
|
|
}
|
|
|
|
type Uintreg sys.Uintreg
|
|
|
|
var Open = open
|
|
var Close = closefd
|
|
var Read = read
|
|
var Write = write
|
|
|
|
func Envs() []string { return envs }
|
|
func SetEnvs(e []string) { envs = e }
|
|
|
|
var BigEndian = sys.BigEndian
|
|
|
|
// For benchmarking.
|
|
|
|
func BenchSetType(n int, x interface{}) {
|
|
e := *efaceOf(&x)
|
|
t := e._type
|
|
var size uintptr
|
|
var p unsafe.Pointer
|
|
switch t.kind & kindMask {
|
|
case kindPtr:
|
|
t = (*ptrtype)(unsafe.Pointer(t)).elem
|
|
size = t.size
|
|
p = e.data
|
|
case kindSlice:
|
|
slice := *(*struct {
|
|
ptr unsafe.Pointer
|
|
len, cap uintptr
|
|
})(e.data)
|
|
t = (*slicetype)(unsafe.Pointer(t)).elem
|
|
size = t.size * slice.len
|
|
p = slice.ptr
|
|
}
|
|
allocSize := roundupsize(size)
|
|
systemstack(func() {
|
|
for i := 0; i < n; i++ {
|
|
heapBitsSetType(uintptr(p), allocSize, size, t)
|
|
}
|
|
})
|
|
}
|
|
|
|
const PtrSize = sys.PtrSize
|
|
|
|
var ForceGCPeriod = &forcegcperiod
|
|
|
|
// SetTracebackEnv is like runtime/debug.SetTraceback, but it raises
|
|
// the "environment" traceback level, so later calls to
|
|
// debug.SetTraceback (e.g., from testing timeouts) can't lower it.
|
|
func SetTracebackEnv(level string) {
|
|
setTraceback(level)
|
|
traceback_env = traceback_cache
|
|
}
|
|
|
|
var ReadUnaligned32 = readUnaligned32
|
|
var ReadUnaligned64 = readUnaligned64
|
|
|
|
func CountPagesInUse() (pagesInUse, counted uintptr) {
|
|
stopTheWorld("CountPagesInUse")
|
|
|
|
pagesInUse = uintptr(mheap_.pagesInUse)
|
|
|
|
for _, s := range mheap_.allspans {
|
|
if s.state == mSpanInUse {
|
|
counted += s.npages
|
|
}
|
|
}
|
|
|
|
startTheWorld()
|
|
|
|
return
|
|
}
|
|
|
|
func Fastrand() uint32 { return fastrand() }
|
|
func Fastrandn(n uint32) uint32 { return fastrandn(n) }
|
|
|
|
type ProfBuf profBuf
|
|
|
|
func NewProfBuf(hdrsize, bufwords, tags int) *ProfBuf {
|
|
return (*ProfBuf)(newProfBuf(hdrsize, bufwords, tags))
|
|
}
|
|
|
|
func (p *ProfBuf) Write(tag *unsafe.Pointer, now int64, hdr []uint64, stk []uintptr) {
|
|
(*profBuf)(p).write(tag, now, hdr, stk)
|
|
}
|
|
|
|
const (
|
|
ProfBufBlocking = profBufBlocking
|
|
ProfBufNonBlocking = profBufNonBlocking
|
|
)
|
|
|
|
func (p *ProfBuf) Read(mode profBufReadMode) ([]uint64, []unsafe.Pointer, bool) {
|
|
return (*profBuf)(p).read(profBufReadMode(mode))
|
|
}
|
|
|
|
func (p *ProfBuf) Close() {
|
|
(*profBuf)(p).close()
|
|
}
|
|
|
|
// ReadMemStatsSlow returns both the runtime-computed MemStats and
|
|
// MemStats accumulated by scanning the heap.
|
|
func ReadMemStatsSlow() (base, slow MemStats) {
|
|
stopTheWorld("ReadMemStatsSlow")
|
|
|
|
// Run on the system stack to avoid stack growth allocation.
|
|
systemstack(func() {
|
|
// Make sure stats don't change.
|
|
getg().m.mallocing++
|
|
|
|
readmemstats_m(&base)
|
|
|
|
// Initialize slow from base and zero the fields we're
|
|
// recomputing.
|
|
slow = base
|
|
slow.Alloc = 0
|
|
slow.TotalAlloc = 0
|
|
slow.Mallocs = 0
|
|
slow.Frees = 0
|
|
var bySize [_NumSizeClasses]struct {
|
|
Mallocs, Frees uint64
|
|
}
|
|
|
|
// Add up current allocations in spans.
|
|
for _, s := range mheap_.allspans {
|
|
if s.state != mSpanInUse {
|
|
continue
|
|
}
|
|
if sizeclass := s.spanclass.sizeclass(); sizeclass == 0 {
|
|
slow.Mallocs++
|
|
slow.Alloc += uint64(s.elemsize)
|
|
} else {
|
|
slow.Mallocs += uint64(s.allocCount)
|
|
slow.Alloc += uint64(s.allocCount) * uint64(s.elemsize)
|
|
bySize[sizeclass].Mallocs += uint64(s.allocCount)
|
|
}
|
|
}
|
|
|
|
// Add in frees. readmemstats_m flushed the cached stats, so
|
|
// these are up-to-date.
|
|
var smallFree uint64
|
|
slow.Frees = mheap_.nlargefree
|
|
for i := range mheap_.nsmallfree {
|
|
slow.Frees += mheap_.nsmallfree[i]
|
|
bySize[i].Frees = mheap_.nsmallfree[i]
|
|
bySize[i].Mallocs += mheap_.nsmallfree[i]
|
|
smallFree += mheap_.nsmallfree[i] * uint64(class_to_size[i])
|
|
}
|
|
slow.Frees += memstats.tinyallocs
|
|
slow.Mallocs += slow.Frees
|
|
|
|
slow.TotalAlloc = slow.Alloc + mheap_.largefree + smallFree
|
|
|
|
for i := range slow.BySize {
|
|
slow.BySize[i].Mallocs = bySize[i].Mallocs
|
|
slow.BySize[i].Frees = bySize[i].Frees
|
|
}
|
|
|
|
getg().m.mallocing--
|
|
})
|
|
|
|
startTheWorld()
|
|
return
|
|
}
|
|
|
|
// BlockOnSystemStack switches to the system stack, prints "x\n" to
|
|
// stderr, and blocks in a stack containing
|
|
// "runtime.blockOnSystemStackInternal".
|
|
func BlockOnSystemStack() {
|
|
systemstack(blockOnSystemStackInternal)
|
|
}
|
|
|
|
func blockOnSystemStackInternal() {
|
|
print("x\n")
|
|
lock(&deadlock)
|
|
lock(&deadlock)
|
|
}
|
|
|
|
type RWMutex struct {
|
|
rw rwmutex
|
|
}
|
|
|
|
func (rw *RWMutex) RLock() {
|
|
rw.rw.rlock()
|
|
}
|
|
|
|
func (rw *RWMutex) RUnlock() {
|
|
rw.rw.runlock()
|
|
}
|
|
|
|
func (rw *RWMutex) Lock() {
|
|
rw.rw.lock()
|
|
}
|
|
|
|
func (rw *RWMutex) Unlock() {
|
|
rw.rw.unlock()
|
|
}
|
|
|
|
func MapBucketsCount(m map[int]int) int {
|
|
h := *(**hmap)(unsafe.Pointer(&m))
|
|
return 1 << h.B
|
|
}
|
|
|
|
func MapBucketsPointerIsNil(m map[int]int) bool {
|
|
h := *(**hmap)(unsafe.Pointer(&m))
|
|
return h.buckets == nil
|
|
}
|
|
|
|
func LockOSCounts() (external, internal uint32) {
|
|
g := getg()
|
|
if g.m.lockedExt+g.m.lockedInt == 0 {
|
|
if g.lockedm != 0 {
|
|
panic("lockedm on non-locked goroutine")
|
|
}
|
|
} else {
|
|
if g.lockedm == 0 {
|
|
panic("nil lockedm on locked goroutine")
|
|
}
|
|
}
|
|
return g.m.lockedExt, g.m.lockedInt
|
|
}
|
|
|
|
//go:noinline
|
|
func TracebackSystemstack(stk []uintptr, i int) int {
|
|
if i == 0 {
|
|
pc, sp := getcallerpc(), getcallersp(unsafe.Pointer(&stk))
|
|
return gentraceback(pc, sp, 0, getg(), 0, &stk[0], len(stk), nil, nil, _TraceJumpStack)
|
|
}
|
|
n := 0
|
|
systemstack(func() {
|
|
n = TracebackSystemstack(stk, i-1)
|
|
})
|
|
return n
|
|
}
|
|
|
|
func KeepNArenaHints(n int) {
|
|
hint := mheap_.arenaHints
|
|
for i := 1; i < n; i++ {
|
|
hint = hint.next
|
|
if hint == nil {
|
|
return
|
|
}
|
|
}
|
|
hint.next = nil
|
|
}
|
|
|
|
// MapNextArenaHint reserves a page at the next arena growth hint,
|
|
// preventing the arena from growing there, and returns the range of
|
|
// addresses that are no longer viable.
|
|
func MapNextArenaHint() (start, end uintptr) {
|
|
hint := mheap_.arenaHints
|
|
addr := hint.addr
|
|
if hint.down {
|
|
start, end = addr-heapArenaBytes, addr
|
|
addr -= physPageSize
|
|
} else {
|
|
start, end = addr, addr+heapArenaBytes
|
|
}
|
|
sysReserve(unsafe.Pointer(addr), physPageSize)
|
|
return
|
|
}
|
|
|
|
func GetNextArenaHint() uintptr {
|
|
return mheap_.arenaHints.addr
|
|
}
|