Austin Clements 5918101d67 testing: detect a stopped timer in B.Loop
Currently, if the user stops the timer in a B.Loop benchmark loop, the
benchmark will run until it hits the timeout and fails.

Fix this by detecting that the timer is stopped and failing the
benchmark right away. We avoid making the fast path more expensive for
this check by "poisoning" the B.Loop iteration counter when the timer
is stopped so that it falls back to the slow path, which can check the
timer.

This causes b to escape from B.Loop, which is totally harmless because
it was already definitely heap-allocated. But it causes the
test/inline_testingbloop.go errorcheck test to fail. I don't think the
escape messages actually mattered to that test, they just had to be
matched. To fix this, we drop the debug level to -m=1, since -m=2
prints a lot of extra information for escaping parameters that we
don't want to deal with, and change one error check to allow b to
escape.

Fixes #72971.

Change-Id: I7d4abbb1ec1e096685514536f91ba0d581cca6b7
Reviewed-on: https://go-review.googlesource.com/c/go/+/659657
Auto-Submit: Austin Clements <austin@google.com>
Reviewed-by: Junyang Shao <shaojunyang@google.com>
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
2025-03-24 11:41:09 -07:00

405 lines
11 KiB
Go

// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package interleaved implements the interleaved devirtualization and
// inlining pass.
package interleaved
import (
"cmd/compile/internal/base"
"cmd/compile/internal/devirtualize"
"cmd/compile/internal/inline"
"cmd/compile/internal/inline/inlheur"
"cmd/compile/internal/ir"
"cmd/compile/internal/pgoir"
"cmd/compile/internal/typecheck"
"fmt"
)
// DevirtualizeAndInlinePackage interleaves devirtualization and inlining on
// all functions within pkg.
func DevirtualizeAndInlinePackage(pkg *ir.Package, profile *pgoir.Profile) {
if profile != nil && base.Debug.PGODevirtualize > 0 {
// TODO(mdempsky): Integrate into DevirtualizeAndInlineFunc below.
ir.VisitFuncsBottomUp(typecheck.Target.Funcs, func(list []*ir.Func, recursive bool) {
for _, fn := range list {
devirtualize.ProfileGuided(fn, profile)
}
})
ir.CurFunc = nil
}
if base.Flag.LowerL != 0 {
inlheur.SetupScoreAdjustments()
}
var inlProfile *pgoir.Profile // copy of profile for inlining
if base.Debug.PGOInline != 0 {
inlProfile = profile
}
// First compute inlinability of all functions in the package.
inline.CanInlineFuncs(pkg.Funcs, inlProfile)
inlState := make(map[*ir.Func]*inlClosureState)
calleeUseCounts := make(map[*ir.Func]int)
// Pre-process all the functions, adding parentheses around call sites and starting their "inl state".
for _, fn := range typecheck.Target.Funcs {
bigCaller := base.Flag.LowerL != 0 && inline.IsBigFunc(fn)
if bigCaller && base.Flag.LowerM > 1 {
fmt.Printf("%v: function %v considered 'big'; reducing max cost of inlinees\n", ir.Line(fn), fn)
}
s := &inlClosureState{bigCaller: bigCaller, profile: profile, fn: fn, callSites: make(map[*ir.ParenExpr]bool), useCounts: calleeUseCounts}
s.parenthesize()
inlState[fn] = s
// Do a first pass at counting call sites.
for i := range s.parens {
s.resolve(i)
}
}
ir.VisitFuncsBottomUp(typecheck.Target.Funcs, func(list []*ir.Func, recursive bool) {
anyInlineHeuristics := false
// inline heuristics, placed here because they have static state and that's what seems to work.
for _, fn := range list {
if base.Flag.LowerL != 0 {
if inlheur.Enabled() && !fn.Wrapper() {
inlheur.ScoreCalls(fn)
anyInlineHeuristics = true
}
if base.Debug.DumpInlFuncProps != "" && !fn.Wrapper() {
inlheur.DumpFuncProps(fn, base.Debug.DumpInlFuncProps)
}
}
}
if anyInlineHeuristics {
defer inlheur.ScoreCallsCleanup()
}
// Iterate to a fixed point over all the functions.
done := false
for !done {
done = true
for _, fn := range list {
s := inlState[fn]
ir.WithFunc(fn, func() {
l1 := len(s.parens)
l0 := 0
// Batch iterations so that newly discovered call sites are
// resolved in a batch before inlining attempts.
// Do this to avoid discovering new closure calls 1 at a time
// which might cause first call to be seen as a single (high-budget)
// call before the second is observed.
for {
for i := l0; i < l1; i++ { // can't use "range parens" here
paren := s.parens[i]
if new := s.edit(i); new != nil {
// Update AST and recursively mark nodes.
paren.X = new
ir.EditChildren(new, s.mark) // mark may append to parens
done = false
}
}
l0, l1 = l1, len(s.parens)
if l0 == l1 {
break
}
for i := l0; i < l1; i++ {
s.resolve(i)
}
}
}) // WithFunc
}
}
})
ir.CurFunc = nil
if base.Flag.LowerL != 0 {
if base.Debug.DumpInlFuncProps != "" {
inlheur.DumpFuncProps(nil, base.Debug.DumpInlFuncProps)
}
if inlheur.Enabled() {
inline.PostProcessCallSites(inlProfile)
inlheur.TearDown()
}
}
// remove parentheses
for _, fn := range typecheck.Target.Funcs {
inlState[fn].unparenthesize()
}
}
// DevirtualizeAndInlineFunc interleaves devirtualization and inlining
// on a single function.
func DevirtualizeAndInlineFunc(fn *ir.Func, profile *pgoir.Profile) {
ir.WithFunc(fn, func() {
if base.Flag.LowerL != 0 {
if inlheur.Enabled() && !fn.Wrapper() {
inlheur.ScoreCalls(fn)
defer inlheur.ScoreCallsCleanup()
}
if base.Debug.DumpInlFuncProps != "" && !fn.Wrapper() {
inlheur.DumpFuncProps(fn, base.Debug.DumpInlFuncProps)
}
}
bigCaller := base.Flag.LowerL != 0 && inline.IsBigFunc(fn)
if bigCaller && base.Flag.LowerM > 1 {
fmt.Printf("%v: function %v considered 'big'; reducing max cost of inlinees\n", ir.Line(fn), fn)
}
s := &inlClosureState{bigCaller: bigCaller, profile: profile, fn: fn, callSites: make(map[*ir.ParenExpr]bool), useCounts: make(map[*ir.Func]int)}
s.parenthesize()
s.fixpoint()
s.unparenthesize()
})
}
type callSite struct {
fn *ir.Func
whichParen int
}
type inlClosureState struct {
fn *ir.Func
profile *pgoir.Profile
callSites map[*ir.ParenExpr]bool // callSites[p] == "p appears in parens" (do not append again)
resolved []*ir.Func // for each call in parens, the resolved target of the call
useCounts map[*ir.Func]int // shared among all InlClosureStates
parens []*ir.ParenExpr
bigCaller bool
}
// resolve attempts to resolve a call to a potentially inlineable callee
// and updates use counts on the callees. Returns the call site count
// for that callee.
func (s *inlClosureState) resolve(i int) (*ir.Func, int) {
p := s.parens[i]
if i < len(s.resolved) {
if callee := s.resolved[i]; callee != nil {
return callee, s.useCounts[callee]
}
}
n := p.X
call, ok := n.(*ir.CallExpr)
if !ok { // previously inlined
return nil, -1
}
devirtualize.StaticCall(call)
if callee := inline.InlineCallTarget(s.fn, call, s.profile); callee != nil {
for len(s.resolved) <= i {
s.resolved = append(s.resolved, nil)
}
s.resolved[i] = callee
c := s.useCounts[callee] + 1
s.useCounts[callee] = c
return callee, c
}
return nil, 0
}
func (s *inlClosureState) edit(i int) ir.Node {
n := s.parens[i].X
call, ok := n.(*ir.CallExpr)
if !ok {
return nil
}
// This is redundant with earlier calls to
// resolve, but because things can change it
// must be re-checked.
callee, count := s.resolve(i)
if count <= 0 {
return nil
}
if inlCall := inline.TryInlineCall(s.fn, call, s.bigCaller, s.profile, count == 1 && callee.ClosureParent != nil); inlCall != nil {
return inlCall
}
return nil
}
// Mark inserts parentheses, and is called repeatedly.
// These inserted parentheses mark the call sites where
// inlining will be attempted.
func (s *inlClosureState) mark(n ir.Node) ir.Node {
// Consider the expression "f(g())". We want to be able to replace
// "g()" in-place with its inlined representation. But if we first
// replace "f(...)" with its inlined representation, then "g()" will
// instead appear somewhere within this new AST.
//
// To mitigate this, each matched node n is wrapped in a ParenExpr,
// so we can reliably replace n in-place by assigning ParenExpr.X.
// It's safe to use ParenExpr here, because typecheck already
// removed them all.
p, _ := n.(*ir.ParenExpr)
if p != nil && s.callSites[p] {
return n // already visited n.X before wrapping
}
if isTestingBLoop(n) {
// No inlining nor devirtualization performed on b.Loop body
if base.Flag.LowerM > 0 {
fmt.Printf("%v: skip inlining within testing.B.loop for %v\n", ir.Line(n), n)
}
// We still want to explore inlining opportunities in other parts of ForStmt.
nFor, _ := n.(*ir.ForStmt)
nForInit := nFor.Init()
for i, x := range nForInit {
if x != nil {
nForInit[i] = s.mark(x)
}
}
if nFor.Cond != nil {
nFor.Cond = s.mark(nFor.Cond)
}
if nFor.Post != nil {
nFor.Post = s.mark(nFor.Post)
}
return n
}
if p != nil {
n = p.X // in this case p was copied in from a (marked) inlined function, this is a new unvisited node.
}
ok := match(n)
ir.EditChildren(n, s.mark)
if ok {
if p == nil {
p = ir.NewParenExpr(n.Pos(), n)
p.SetType(n.Type())
p.SetTypecheck(n.Typecheck())
s.callSites[p] = true
}
s.parens = append(s.parens, p)
n = p
} else if p != nil {
n = p // didn't change anything, restore n
}
return n
}
// parenthesize applies s.mark to all the nodes within
// s.fn to mark calls and simplify rewriting them in place.
func (s *inlClosureState) parenthesize() {
ir.EditChildren(s.fn, s.mark)
}
func (s *inlClosureState) unparenthesize() {
if s == nil {
return
}
if len(s.parens) == 0 {
return // short circuit
}
var unparen func(ir.Node) ir.Node
unparen = func(n ir.Node) ir.Node {
if paren, ok := n.(*ir.ParenExpr); ok {
n = paren.X
}
ir.EditChildren(n, unparen)
// special case for tail calls: if the tail call was inlined, transform
// the tail call to a return stmt if the inlined function was not void,
// otherwise replace it with the inlined expression followed by a return.
if tail, ok := n.(*ir.TailCallStmt); ok {
if inl, done := tail.Call.(*ir.InlinedCallExpr); done {
if len(inl.ReturnVars) != 0 {
ret := ir.NewReturnStmt(tail.Pos(), []ir.Node{inl})
if len(inl.ReturnVars) > 1 {
typecheck.RewriteMultiValueCall(ret, inl)
}
n = ret
} else {
ret := ir.NewReturnStmt(tail.Pos(), nil)
n = ir.NewBlockStmt(tail.Pos(), []ir.Node{inl, ret})
}
}
}
return n
}
ir.EditChildren(s.fn, unparen)
}
// fixpoint repeatedly edits a function until it stabilizes, returning
// whether anything changed in any of the fixpoint iterations.
//
// It applies s.edit(n) to each node n within the parentheses in s.parens.
// If s.edit(n) returns nil, no change is made. Otherwise, the result
// replaces n in fn's body, and fixpoint iterates at least once more.
//
// After an iteration where all edit calls return nil, fixpoint
// returns.
func (s *inlClosureState) fixpoint() bool {
changed := false
ir.WithFunc(s.fn, func() {
done := false
for !done {
done = true
for i := 0; i < len(s.parens); i++ { // can't use "range parens" here
paren := s.parens[i]
if new := s.edit(i); new != nil {
// Update AST and recursively mark nodes.
paren.X = new
ir.EditChildren(new, s.mark) // mark may append to parens
done = false
changed = true
}
}
}
})
return changed
}
func match(n ir.Node) bool {
switch n.(type) {
case *ir.CallExpr:
return true
}
return false
}
// isTestingBLoop returns true if it matches the node as a
// testing.(*B).Loop. See issue #61515.
func isTestingBLoop(t ir.Node) bool {
if t.Op() != ir.OFOR {
return false
}
nFor, ok := t.(*ir.ForStmt)
if !ok || nFor.Cond == nil || nFor.Cond.Op() != ir.OCALLFUNC {
return false
}
n, ok := nFor.Cond.(*ir.CallExpr)
if !ok || n.Fun == nil || n.Fun.Op() != ir.OMETHEXPR {
return false
}
name := ir.MethodExprName(n.Fun)
if name == nil {
return false
}
if fSym := name.Sym(); fSym != nil && name.Class == ir.PFUNC && fSym.Pkg != nil &&
fSym.Name == "(*B).Loop" && fSym.Pkg.Path == "testing" {
// Attempting to match a function call to testing.(*B).Loop
return true
}
return false
}