go/src/cmd/compile/internal/walk/builtin.go
Austin Clements 596120fdc6 cmd/compile: redo IsRuntimePkg/IsReflectPkg predicate
Currently, the types package has IsRuntimePkg and IsReflectPkg
predicates for testing if a Pkg is the runtime or reflect packages.
IsRuntimePkg returns "true" for any "CompilingRuntime" package, which
includes all of the packages imported by the runtime. This isn't
inherently wrong, except that all but one use of it is of the form "is
this Sym a specific runtime.X symbol?" for which we clearly only want
the package "runtime" itself. IsRuntimePkg was introduced (as
isRuntime) in CL 37538 as part of separating the real runtime package
from the compiler built-in fake runtime package. As of that CL, the
"runtime" package couldn't import any other packages, so this was
adequate at the time.

We could fix this by just changing the implementation of IsRuntimePkg,
but the meaning of this API is clearly somewhat ambiguous. Instead, we
replace it with a new RuntimeSymName function that returns the name of
a symbol if it's in package "runtime", or "" if not. This is what
every call site (except one) actually wants, which lets us simplify
the callers, and also more clearly addresses the ambiguity between
package "runtime" and the general concept of a runtime package.

IsReflectPkg doesn't have the same issue of ambiguity, but it
parallels IsRuntimePkg and is used in the same way, so we replace it
with a new ReflectSymName for consistency.

Change-Id: If3a81d7d11732a9ab2cac9488d17508415cfb597
Reviewed-on: https://go-review.googlesource.com/c/go/+/521696
Reviewed-by: Cuong Manh Le <cuong.manhle.vn@gmail.com>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gopher Robot <gobot@golang.org>
2023-08-22 19:18:21 +00:00

882 lines
30 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package walk
import (
"fmt"
"go/constant"
"go/token"
"strings"
"cmd/compile/internal/base"
"cmd/compile/internal/escape"
"cmd/compile/internal/ir"
"cmd/compile/internal/reflectdata"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
)
// Rewrite append(src, x, y, z) so that any side effects in
// x, y, z (including runtime panics) are evaluated in
// initialization statements before the append.
// For normal code generation, stop there and leave the
// rest to ssagen.
//
// For race detector, expand append(src, a [, b]* ) to
//
// init {
// s := src
// const argc = len(args) - 1
// newLen := s.len + argc
// if uint(newLen) <= uint(s.cap) {
// s = s[:newLen]
// } else {
// s = growslice(s.ptr, newLen, s.cap, argc, elemType)
// }
// s[s.len - argc] = a
// s[s.len - argc + 1] = b
// ...
// }
// s
func walkAppend(n *ir.CallExpr, init *ir.Nodes, dst ir.Node) ir.Node {
if !ir.SameSafeExpr(dst, n.Args[0]) {
n.Args[0] = safeExpr(n.Args[0], init)
n.Args[0] = walkExpr(n.Args[0], init)
}
walkExprListSafe(n.Args[1:], init)
nsrc := n.Args[0]
// walkExprListSafe will leave OINDEX (s[n]) alone if both s
// and n are name or literal, but those may index the slice we're
// modifying here. Fix explicitly.
// Using cheapExpr also makes sure that the evaluation
// of all arguments (and especially any panics) happen
// before we begin to modify the slice in a visible way.
ls := n.Args[1:]
for i, n := range ls {
n = cheapExpr(n, init)
if !types.Identical(n.Type(), nsrc.Type().Elem()) {
n = typecheck.AssignConv(n, nsrc.Type().Elem(), "append")
n = walkExpr(n, init)
}
ls[i] = n
}
argc := len(n.Args) - 1
if argc < 1 {
return nsrc
}
// General case, with no function calls left as arguments.
// Leave for ssagen, except that instrumentation requires the old form.
if !base.Flag.Cfg.Instrumenting || base.Flag.CompilingRuntime {
return n
}
var l []ir.Node
// s = slice to append to
s := typecheck.TempAt(base.Pos, ir.CurFunc, nsrc.Type())
l = append(l, ir.NewAssignStmt(base.Pos, s, nsrc))
// num = number of things to append
num := ir.NewInt(base.Pos, int64(argc))
// newLen := s.len + num
newLen := typecheck.TempAt(base.Pos, ir.CurFunc, types.Types[types.TINT])
l = append(l, ir.NewAssignStmt(base.Pos, newLen, ir.NewBinaryExpr(base.Pos, ir.OADD, ir.NewUnaryExpr(base.Pos, ir.OLEN, s), num)))
// if uint(newLen) <= uint(s.cap)
nif := ir.NewIfStmt(base.Pos, nil, nil, nil)
nif.Cond = ir.NewBinaryExpr(base.Pos, ir.OLE, typecheck.Conv(newLen, types.Types[types.TUINT]), typecheck.Conv(ir.NewUnaryExpr(base.Pos, ir.OCAP, s), types.Types[types.TUINT]))
nif.Likely = true
// then { s = s[:n] }
slice := ir.NewSliceExpr(base.Pos, ir.OSLICE, s, nil, newLen, nil)
slice.SetBounded(true)
nif.Body = []ir.Node{
ir.NewAssignStmt(base.Pos, s, slice),
}
fn := typecheck.LookupRuntime("growslice") // growslice(ptr *T, newLen, oldCap, num int, <type>) (ret []T)
fn = typecheck.SubstArgTypes(fn, s.Type().Elem(), s.Type().Elem())
// else { s = growslice(s.ptr, n, s.cap, a, T) }
nif.Else = []ir.Node{
ir.NewAssignStmt(base.Pos, s, mkcall1(fn, s.Type(), nif.PtrInit(),
ir.NewUnaryExpr(base.Pos, ir.OSPTR, s),
newLen,
ir.NewUnaryExpr(base.Pos, ir.OCAP, s),
num,
reflectdata.TypePtrAt(base.Pos, s.Type().Elem()))),
}
l = append(l, nif)
ls = n.Args[1:]
for i, n := range ls {
// s[s.len-argc+i] = arg
ix := ir.NewIndexExpr(base.Pos, s, ir.NewBinaryExpr(base.Pos, ir.OSUB, newLen, ir.NewInt(base.Pos, int64(argc-i))))
ix.SetBounded(true)
l = append(l, ir.NewAssignStmt(base.Pos, ix, n))
}
typecheck.Stmts(l)
walkStmtList(l)
init.Append(l...)
return s
}
// walkClear walks an OCLEAR node.
func walkClear(n *ir.UnaryExpr) ir.Node {
typ := n.X.Type()
switch {
case typ.IsSlice():
if n := arrayClear(n.X.Pos(), n.X, nil); n != nil {
return n
}
// If n == nil, we are clearing an array which takes zero memory, do nothing.
return ir.NewBlockStmt(n.Pos(), nil)
case typ.IsMap():
return mapClear(n.X, reflectdata.TypePtrAt(n.X.Pos(), n.X.Type()))
}
panic("unreachable")
}
// walkClose walks an OCLOSE node.
func walkClose(n *ir.UnaryExpr, init *ir.Nodes) ir.Node {
// cannot use chanfn - closechan takes any, not chan any
fn := typecheck.LookupRuntime("closechan")
fn = typecheck.SubstArgTypes(fn, n.X.Type())
return mkcall1(fn, nil, init, n.X)
}
// Lower copy(a, b) to a memmove call or a runtime call.
//
// init {
// n := len(a)
// if n > len(b) { n = len(b) }
// if a.ptr != b.ptr { memmove(a.ptr, b.ptr, n*sizeof(elem(a))) }
// }
// n;
//
// Also works if b is a string.
func walkCopy(n *ir.BinaryExpr, init *ir.Nodes, runtimecall bool) ir.Node {
if n.X.Type().Elem().HasPointers() {
ir.CurFunc.SetWBPos(n.Pos())
fn := writebarrierfn("typedslicecopy", n.X.Type().Elem(), n.Y.Type().Elem())
n.X = cheapExpr(n.X, init)
ptrL, lenL := backingArrayPtrLen(n.X)
n.Y = cheapExpr(n.Y, init)
ptrR, lenR := backingArrayPtrLen(n.Y)
return mkcall1(fn, n.Type(), init, reflectdata.CopyElemRType(base.Pos, n), ptrL, lenL, ptrR, lenR)
}
if runtimecall {
// rely on runtime to instrument:
// copy(n.Left, n.Right)
// n.Right can be a slice or string.
n.X = cheapExpr(n.X, init)
ptrL, lenL := backingArrayPtrLen(n.X)
n.Y = cheapExpr(n.Y, init)
ptrR, lenR := backingArrayPtrLen(n.Y)
fn := typecheck.LookupRuntime("slicecopy")
fn = typecheck.SubstArgTypes(fn, ptrL.Type().Elem(), ptrR.Type().Elem())
return mkcall1(fn, n.Type(), init, ptrL, lenL, ptrR, lenR, ir.NewInt(base.Pos, n.X.Type().Elem().Size()))
}
n.X = walkExpr(n.X, init)
n.Y = walkExpr(n.Y, init)
nl := typecheck.TempAt(base.Pos, ir.CurFunc, n.X.Type())
nr := typecheck.TempAt(base.Pos, ir.CurFunc, n.Y.Type())
var l []ir.Node
l = append(l, ir.NewAssignStmt(base.Pos, nl, n.X))
l = append(l, ir.NewAssignStmt(base.Pos, nr, n.Y))
nfrm := ir.NewUnaryExpr(base.Pos, ir.OSPTR, nr)
nto := ir.NewUnaryExpr(base.Pos, ir.OSPTR, nl)
nlen := typecheck.TempAt(base.Pos, ir.CurFunc, types.Types[types.TINT])
// n = len(to)
l = append(l, ir.NewAssignStmt(base.Pos, nlen, ir.NewUnaryExpr(base.Pos, ir.OLEN, nl)))
// if n > len(frm) { n = len(frm) }
nif := ir.NewIfStmt(base.Pos, nil, nil, nil)
nif.Cond = ir.NewBinaryExpr(base.Pos, ir.OGT, nlen, ir.NewUnaryExpr(base.Pos, ir.OLEN, nr))
nif.Body.Append(ir.NewAssignStmt(base.Pos, nlen, ir.NewUnaryExpr(base.Pos, ir.OLEN, nr)))
l = append(l, nif)
// if to.ptr != frm.ptr { memmove( ... ) }
ne := ir.NewIfStmt(base.Pos, ir.NewBinaryExpr(base.Pos, ir.ONE, nto, nfrm), nil, nil)
ne.Likely = true
l = append(l, ne)
fn := typecheck.LookupRuntime("memmove")
fn = typecheck.SubstArgTypes(fn, nl.Type().Elem(), nl.Type().Elem())
nwid := ir.Node(typecheck.TempAt(base.Pos, ir.CurFunc, types.Types[types.TUINTPTR]))
setwid := ir.NewAssignStmt(base.Pos, nwid, typecheck.Conv(nlen, types.Types[types.TUINTPTR]))
ne.Body.Append(setwid)
nwid = ir.NewBinaryExpr(base.Pos, ir.OMUL, nwid, ir.NewInt(base.Pos, nl.Type().Elem().Size()))
call := mkcall1(fn, nil, init, nto, nfrm, nwid)
ne.Body.Append(call)
typecheck.Stmts(l)
walkStmtList(l)
init.Append(l...)
return nlen
}
// walkDelete walks an ODELETE node.
func walkDelete(init *ir.Nodes, n *ir.CallExpr) ir.Node {
init.Append(ir.TakeInit(n)...)
map_ := n.Args[0]
key := n.Args[1]
map_ = walkExpr(map_, init)
key = walkExpr(key, init)
t := map_.Type()
fast := mapfast(t)
key = mapKeyArg(fast, n, key, false)
return mkcall1(mapfndel(mapdelete[fast], t), nil, init, reflectdata.DeleteMapRType(base.Pos, n), map_, key)
}
// walkLenCap walks an OLEN or OCAP node.
func walkLenCap(n *ir.UnaryExpr, init *ir.Nodes) ir.Node {
if isRuneCount(n) {
// Replace len([]rune(string)) with runtime.countrunes(string).
return mkcall("countrunes", n.Type(), init, typecheck.Conv(n.X.(*ir.ConvExpr).X, types.Types[types.TSTRING]))
}
if isByteCount(n) {
conv := n.X.(*ir.ConvExpr)
walkStmtList(conv.Init())
init.Append(ir.TakeInit(conv)...)
_, len := backingArrayPtrLen(cheapExpr(conv.X, init))
return len
}
n.X = walkExpr(n.X, init)
// replace len(*[10]int) with 10.
// delayed until now to preserve side effects.
t := n.X.Type()
if t.IsPtr() {
t = t.Elem()
}
if t.IsArray() {
safeExpr(n.X, init)
con := typecheck.OrigInt(n, t.NumElem())
con.SetTypecheck(1)
return con
}
return n
}
// walkMakeChan walks an OMAKECHAN node.
func walkMakeChan(n *ir.MakeExpr, init *ir.Nodes) ir.Node {
// When size fits into int, use makechan instead of
// makechan64, which is faster and shorter on 32 bit platforms.
size := n.Len
fnname := "makechan64"
argtype := types.Types[types.TINT64]
// Type checking guarantees that TIDEAL size is positive and fits in an int.
// The case of size overflow when converting TUINT or TUINTPTR to TINT
// will be handled by the negative range checks in makechan during runtime.
if size.Type().IsKind(types.TIDEAL) || size.Type().Size() <= types.Types[types.TUINT].Size() {
fnname = "makechan"
argtype = types.Types[types.TINT]
}
return mkcall1(chanfn(fnname, 1, n.Type()), n.Type(), init, reflectdata.MakeChanRType(base.Pos, n), typecheck.Conv(size, argtype))
}
// walkMakeMap walks an OMAKEMAP node.
func walkMakeMap(n *ir.MakeExpr, init *ir.Nodes) ir.Node {
t := n.Type()
hmapType := reflectdata.MapType()
hint := n.Len
// var h *hmap
var h ir.Node
if n.Esc() == ir.EscNone {
// Allocate hmap on stack.
// var hv hmap
// h = &hv
h = stackTempAddr(init, hmapType)
// Allocate one bucket pointed to by hmap.buckets on stack if hint
// is not larger than BUCKETSIZE. In case hint is larger than
// BUCKETSIZE runtime.makemap will allocate the buckets on the heap.
// Maximum key and elem size is 128 bytes, larger objects
// are stored with an indirection. So max bucket size is 2048+eps.
if !ir.IsConst(hint, constant.Int) ||
constant.Compare(hint.Val(), token.LEQ, constant.MakeInt64(reflectdata.BUCKETSIZE)) {
// In case hint is larger than BUCKETSIZE runtime.makemap
// will allocate the buckets on the heap, see #20184
//
// if hint <= BUCKETSIZE {
// var bv bmap
// b = &bv
// h.buckets = b
// }
nif := ir.NewIfStmt(base.Pos, ir.NewBinaryExpr(base.Pos, ir.OLE, hint, ir.NewInt(base.Pos, reflectdata.BUCKETSIZE)), nil, nil)
nif.Likely = true
// var bv bmap
// b = &bv
b := stackTempAddr(&nif.Body, reflectdata.MapBucketType(t))
// h.buckets = b
bsym := hmapType.Field(5).Sym // hmap.buckets see reflect.go:hmap
na := ir.NewAssignStmt(base.Pos, ir.NewSelectorExpr(base.Pos, ir.ODOT, h, bsym), typecheck.ConvNop(b, types.Types[types.TUNSAFEPTR]))
nif.Body.Append(na)
appendWalkStmt(init, nif)
}
}
if ir.IsConst(hint, constant.Int) && constant.Compare(hint.Val(), token.LEQ, constant.MakeInt64(reflectdata.BUCKETSIZE)) {
// Handling make(map[any]any) and
// make(map[any]any, hint) where hint <= BUCKETSIZE
// special allows for faster map initialization and
// improves binary size by using calls with fewer arguments.
// For hint <= BUCKETSIZE overLoadFactor(hint, 0) is false
// and no buckets will be allocated by makemap. Therefore,
// no buckets need to be allocated in this code path.
if n.Esc() == ir.EscNone {
// Only need to initialize h.hash0 since
// hmap h has been allocated on the stack already.
// h.hash0 = fastrand()
rand := mkcall("fastrand", types.Types[types.TUINT32], init)
hashsym := hmapType.Field(4).Sym // hmap.hash0 see reflect.go:hmap
appendWalkStmt(init, ir.NewAssignStmt(base.Pos, ir.NewSelectorExpr(base.Pos, ir.ODOT, h, hashsym), rand))
return typecheck.ConvNop(h, t)
}
// Call runtime.makehmap to allocate an
// hmap on the heap and initialize hmap's hash0 field.
fn := typecheck.LookupRuntime("makemap_small")
fn = typecheck.SubstArgTypes(fn, t.Key(), t.Elem())
return mkcall1(fn, n.Type(), init)
}
if n.Esc() != ir.EscNone {
h = typecheck.NodNil()
}
// Map initialization with a variable or large hint is
// more complicated. We therefore generate a call to
// runtime.makemap to initialize hmap and allocate the
// map buckets.
// When hint fits into int, use makemap instead of
// makemap64, which is faster and shorter on 32 bit platforms.
fnname := "makemap64"
argtype := types.Types[types.TINT64]
// Type checking guarantees that TIDEAL hint is positive and fits in an int.
// See checkmake call in TMAP case of OMAKE case in OpSwitch in typecheck1 function.
// The case of hint overflow when converting TUINT or TUINTPTR to TINT
// will be handled by the negative range checks in makemap during runtime.
if hint.Type().IsKind(types.TIDEAL) || hint.Type().Size() <= types.Types[types.TUINT].Size() {
fnname = "makemap"
argtype = types.Types[types.TINT]
}
fn := typecheck.LookupRuntime(fnname)
fn = typecheck.SubstArgTypes(fn, hmapType, t.Key(), t.Elem())
return mkcall1(fn, n.Type(), init, reflectdata.MakeMapRType(base.Pos, n), typecheck.Conv(hint, argtype), h)
}
// walkMakeSlice walks an OMAKESLICE node.
func walkMakeSlice(n *ir.MakeExpr, init *ir.Nodes) ir.Node {
l := n.Len
r := n.Cap
if r == nil {
r = safeExpr(l, init)
l = r
}
t := n.Type()
if t.Elem().NotInHeap() {
base.Errorf("%v can't be allocated in Go; it is incomplete (or unallocatable)", t.Elem())
}
if n.Esc() == ir.EscNone {
if why := escape.HeapAllocReason(n); why != "" {
base.Fatalf("%v has EscNone, but %v", n, why)
}
// var arr [r]T
// n = arr[:l]
i := typecheck.IndexConst(r)
if i < 0 {
base.Fatalf("walkExpr: invalid index %v", r)
}
// cap is constrained to [0,2^31) or [0,2^63) depending on whether
// we're in 32-bit or 64-bit systems. So it's safe to do:
//
// if uint64(len) > cap {
// if len < 0 { panicmakeslicelen() }
// panicmakeslicecap()
// }
nif := ir.NewIfStmt(base.Pos, ir.NewBinaryExpr(base.Pos, ir.OGT, typecheck.Conv(l, types.Types[types.TUINT64]), ir.NewInt(base.Pos, i)), nil, nil)
niflen := ir.NewIfStmt(base.Pos, ir.NewBinaryExpr(base.Pos, ir.OLT, l, ir.NewInt(base.Pos, 0)), nil, nil)
niflen.Body = []ir.Node{mkcall("panicmakeslicelen", nil, init)}
nif.Body.Append(niflen, mkcall("panicmakeslicecap", nil, init))
init.Append(typecheck.Stmt(nif))
t = types.NewArray(t.Elem(), i) // [r]T
var_ := typecheck.TempAt(base.Pos, ir.CurFunc, t)
appendWalkStmt(init, ir.NewAssignStmt(base.Pos, var_, nil)) // zero temp
r := ir.NewSliceExpr(base.Pos, ir.OSLICE, var_, nil, l, nil) // arr[:l]
// The conv is necessary in case n.Type is named.
return walkExpr(typecheck.Expr(typecheck.Conv(r, n.Type())), init)
}
// n escapes; set up a call to makeslice.
// When len and cap can fit into int, use makeslice instead of
// makeslice64, which is faster and shorter on 32 bit platforms.
len, cap := l, r
fnname := "makeslice64"
argtype := types.Types[types.TINT64]
// Type checking guarantees that TIDEAL len/cap are positive and fit in an int.
// The case of len or cap overflow when converting TUINT or TUINTPTR to TINT
// will be handled by the negative range checks in makeslice during runtime.
if (len.Type().IsKind(types.TIDEAL) || len.Type().Size() <= types.Types[types.TUINT].Size()) &&
(cap.Type().IsKind(types.TIDEAL) || cap.Type().Size() <= types.Types[types.TUINT].Size()) {
fnname = "makeslice"
argtype = types.Types[types.TINT]
}
fn := typecheck.LookupRuntime(fnname)
ptr := mkcall1(fn, types.Types[types.TUNSAFEPTR], init, reflectdata.MakeSliceElemRType(base.Pos, n), typecheck.Conv(len, argtype), typecheck.Conv(cap, argtype))
ptr.MarkNonNil()
len = typecheck.Conv(len, types.Types[types.TINT])
cap = typecheck.Conv(cap, types.Types[types.TINT])
sh := ir.NewSliceHeaderExpr(base.Pos, t, ptr, len, cap)
return walkExpr(typecheck.Expr(sh), init)
}
// walkMakeSliceCopy walks an OMAKESLICECOPY node.
func walkMakeSliceCopy(n *ir.MakeExpr, init *ir.Nodes) ir.Node {
if n.Esc() == ir.EscNone {
base.Fatalf("OMAKESLICECOPY with EscNone: %v", n)
}
t := n.Type()
if t.Elem().NotInHeap() {
base.Errorf("%v can't be allocated in Go; it is incomplete (or unallocatable)", t.Elem())
}
length := typecheck.Conv(n.Len, types.Types[types.TINT])
copylen := ir.NewUnaryExpr(base.Pos, ir.OLEN, n.Cap)
copyptr := ir.NewUnaryExpr(base.Pos, ir.OSPTR, n.Cap)
if !t.Elem().HasPointers() && n.Bounded() {
// When len(to)==len(from) and elements have no pointers:
// replace make+copy with runtime.mallocgc+runtime.memmove.
// We do not check for overflow of len(to)*elem.Width here
// since len(from) is an existing checked slice capacity
// with same elem.Width for the from slice.
size := ir.NewBinaryExpr(base.Pos, ir.OMUL, typecheck.Conv(length, types.Types[types.TUINTPTR]), typecheck.Conv(ir.NewInt(base.Pos, t.Elem().Size()), types.Types[types.TUINTPTR]))
// instantiate mallocgc(size uintptr, typ *byte, needszero bool) unsafe.Pointer
fn := typecheck.LookupRuntime("mallocgc")
ptr := mkcall1(fn, types.Types[types.TUNSAFEPTR], init, size, typecheck.NodNil(), ir.NewBool(base.Pos, false))
ptr.MarkNonNil()
sh := ir.NewSliceHeaderExpr(base.Pos, t, ptr, length, length)
s := typecheck.TempAt(base.Pos, ir.CurFunc, t)
r := typecheck.Stmt(ir.NewAssignStmt(base.Pos, s, sh))
r = walkExpr(r, init)
init.Append(r)
// instantiate memmove(to *any, frm *any, size uintptr)
fn = typecheck.LookupRuntime("memmove")
fn = typecheck.SubstArgTypes(fn, t.Elem(), t.Elem())
ncopy := mkcall1(fn, nil, init, ir.NewUnaryExpr(base.Pos, ir.OSPTR, s), copyptr, size)
init.Append(walkExpr(typecheck.Stmt(ncopy), init))
return s
}
// Replace make+copy with runtime.makeslicecopy.
// instantiate makeslicecopy(typ *byte, tolen int, fromlen int, from unsafe.Pointer) unsafe.Pointer
fn := typecheck.LookupRuntime("makeslicecopy")
ptr := mkcall1(fn, types.Types[types.TUNSAFEPTR], init, reflectdata.MakeSliceElemRType(base.Pos, n), length, copylen, typecheck.Conv(copyptr, types.Types[types.TUNSAFEPTR]))
ptr.MarkNonNil()
sh := ir.NewSliceHeaderExpr(base.Pos, t, ptr, length, length)
return walkExpr(typecheck.Expr(sh), init)
}
// walkNew walks an ONEW node.
func walkNew(n *ir.UnaryExpr, init *ir.Nodes) ir.Node {
t := n.Type().Elem()
if t.NotInHeap() {
base.Errorf("%v can't be allocated in Go; it is incomplete (or unallocatable)", n.Type().Elem())
}
if n.Esc() == ir.EscNone {
if t.Size() > ir.MaxImplicitStackVarSize {
base.Fatalf("large ONEW with EscNone: %v", n)
}
return stackTempAddr(init, t)
}
types.CalcSize(t)
n.MarkNonNil()
return n
}
func walkMinMax(n *ir.CallExpr, init *ir.Nodes) ir.Node {
init.Append(ir.TakeInit(n)...)
walkExprList(n.Args, init)
return n
}
// generate code for print.
func walkPrint(nn *ir.CallExpr, init *ir.Nodes) ir.Node {
// Hoist all the argument evaluation up before the lock.
walkExprListCheap(nn.Args, init)
// For println, add " " between elements and "\n" at the end.
if nn.Op() == ir.OPRINTN {
s := nn.Args
t := make([]ir.Node, 0, len(s)*2)
for i, n := range s {
if i != 0 {
t = append(t, ir.NewString(base.Pos, " "))
}
t = append(t, n)
}
t = append(t, ir.NewString(base.Pos, "\n"))
nn.Args = t
}
// Collapse runs of constant strings.
s := nn.Args
t := make([]ir.Node, 0, len(s))
for i := 0; i < len(s); {
var strs []string
for i < len(s) && ir.IsConst(s[i], constant.String) {
strs = append(strs, ir.StringVal(s[i]))
i++
}
if len(strs) > 0 {
t = append(t, ir.NewString(base.Pos, strings.Join(strs, "")))
}
if i < len(s) {
t = append(t, s[i])
i++
}
}
nn.Args = t
calls := []ir.Node{mkcall("printlock", nil, init)}
for i, n := range nn.Args {
if n.Op() == ir.OLITERAL {
if n.Type() == types.UntypedRune {
n = typecheck.DefaultLit(n, types.RuneType)
}
switch n.Val().Kind() {
case constant.Int:
n = typecheck.DefaultLit(n, types.Types[types.TINT64])
case constant.Float:
n = typecheck.DefaultLit(n, types.Types[types.TFLOAT64])
}
}
if n.Op() != ir.OLITERAL && n.Type() != nil && n.Type().Kind() == types.TIDEAL {
n = typecheck.DefaultLit(n, types.Types[types.TINT64])
}
n = typecheck.DefaultLit(n, nil)
nn.Args[i] = n
if n.Type() == nil || n.Type().Kind() == types.TFORW {
continue
}
var on *ir.Name
switch n.Type().Kind() {
case types.TINTER:
if n.Type().IsEmptyInterface() {
on = typecheck.LookupRuntime("printeface")
} else {
on = typecheck.LookupRuntime("printiface")
}
on = typecheck.SubstArgTypes(on, n.Type()) // any-1
case types.TPTR:
if n.Type().Elem().NotInHeap() {
on = typecheck.LookupRuntime("printuintptr")
n = ir.NewConvExpr(base.Pos, ir.OCONV, nil, n)
n.SetType(types.Types[types.TUNSAFEPTR])
n = ir.NewConvExpr(base.Pos, ir.OCONV, nil, n)
n.SetType(types.Types[types.TUINTPTR])
break
}
fallthrough
case types.TCHAN, types.TMAP, types.TFUNC, types.TUNSAFEPTR:
on = typecheck.LookupRuntime("printpointer")
on = typecheck.SubstArgTypes(on, n.Type()) // any-1
case types.TSLICE:
on = typecheck.LookupRuntime("printslice")
on = typecheck.SubstArgTypes(on, n.Type()) // any-1
case types.TUINT, types.TUINT8, types.TUINT16, types.TUINT32, types.TUINT64, types.TUINTPTR:
if types.RuntimeSymName(n.Type().Sym()) == "hex" {
on = typecheck.LookupRuntime("printhex")
} else {
on = typecheck.LookupRuntime("printuint")
}
case types.TINT, types.TINT8, types.TINT16, types.TINT32, types.TINT64:
on = typecheck.LookupRuntime("printint")
case types.TFLOAT32, types.TFLOAT64:
on = typecheck.LookupRuntime("printfloat")
case types.TCOMPLEX64, types.TCOMPLEX128:
on = typecheck.LookupRuntime("printcomplex")
case types.TBOOL:
on = typecheck.LookupRuntime("printbool")
case types.TSTRING:
cs := ""
if ir.IsConst(n, constant.String) {
cs = ir.StringVal(n)
}
switch cs {
case " ":
on = typecheck.LookupRuntime("printsp")
case "\n":
on = typecheck.LookupRuntime("printnl")
default:
on = typecheck.LookupRuntime("printstring")
}
default:
badtype(ir.OPRINT, n.Type(), nil)
continue
}
r := ir.NewCallExpr(base.Pos, ir.OCALL, on, nil)
if params := on.Type().Params(); len(params) > 0 {
t := params[0].Type
n = typecheck.Conv(n, t)
r.Args.Append(n)
}
calls = append(calls, r)
}
calls = append(calls, mkcall("printunlock", nil, init))
typecheck.Stmts(calls)
walkExprList(calls, init)
r := ir.NewBlockStmt(base.Pos, nil)
r.List = calls
return walkStmt(typecheck.Stmt(r))
}
// walkRecoverFP walks an ORECOVERFP node.
func walkRecoverFP(nn *ir.CallExpr, init *ir.Nodes) ir.Node {
return mkcall("gorecover", nn.Type(), init, walkExpr(nn.Args[0], init))
}
// walkUnsafeData walks an OUNSAFESLICEDATA or OUNSAFESTRINGDATA expression.
func walkUnsafeData(n *ir.UnaryExpr, init *ir.Nodes) ir.Node {
slice := walkExpr(n.X, init)
res := typecheck.Expr(ir.NewUnaryExpr(n.Pos(), ir.OSPTR, slice))
res.SetType(n.Type())
return walkExpr(res, init)
}
func walkUnsafeSlice(n *ir.BinaryExpr, init *ir.Nodes) ir.Node {
ptr := safeExpr(n.X, init)
len := safeExpr(n.Y, init)
sliceType := n.Type()
lenType := types.Types[types.TINT64]
unsafePtr := typecheck.Conv(ptr, types.Types[types.TUNSAFEPTR])
// If checkptr enabled, call runtime.unsafeslicecheckptr to check ptr and len.
// for simplicity, unsafeslicecheckptr always uses int64.
// Type checking guarantees that TIDEAL len/cap are positive and fit in an int.
// The case of len or cap overflow when converting TUINT or TUINTPTR to TINT
// will be handled by the negative range checks in unsafeslice during runtime.
if ir.ShouldCheckPtr(ir.CurFunc, 1) {
fnname := "unsafeslicecheckptr"
fn := typecheck.LookupRuntime(fnname)
init.Append(mkcall1(fn, nil, init, reflectdata.UnsafeSliceElemRType(base.Pos, n), unsafePtr, typecheck.Conv(len, lenType)))
} else {
// Otherwise, open code unsafe.Slice to prevent runtime call overhead.
// Keep this code in sync with runtime.unsafeslice{,64}
if len.Type().IsKind(types.TIDEAL) || len.Type().Size() <= types.Types[types.TUINT].Size() {
lenType = types.Types[types.TINT]
} else {
// len64 := int64(len)
// if int64(int(len64)) != len64 {
// panicunsafeslicelen()
// }
len64 := typecheck.Conv(len, lenType)
nif := ir.NewIfStmt(base.Pos, nil, nil, nil)
nif.Cond = ir.NewBinaryExpr(base.Pos, ir.ONE, typecheck.Conv(typecheck.Conv(len64, types.Types[types.TINT]), lenType), len64)
nif.Body.Append(mkcall("panicunsafeslicelen", nil, &nif.Body))
appendWalkStmt(init, nif)
}
// if len < 0 { panicunsafeslicelen() }
nif := ir.NewIfStmt(base.Pos, nil, nil, nil)
nif.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, typecheck.Conv(len, lenType), ir.NewInt(base.Pos, 0))
nif.Body.Append(mkcall("panicunsafeslicelen", nil, &nif.Body))
appendWalkStmt(init, nif)
if sliceType.Elem().Size() == 0 {
// if ptr == nil && len > 0 {
// panicunsafesliceptrnil()
// }
nifPtr := ir.NewIfStmt(base.Pos, nil, nil, nil)
isNil := ir.NewBinaryExpr(base.Pos, ir.OEQ, unsafePtr, typecheck.NodNil())
gtZero := ir.NewBinaryExpr(base.Pos, ir.OGT, typecheck.Conv(len, lenType), ir.NewInt(base.Pos, 0))
nifPtr.Cond =
ir.NewLogicalExpr(base.Pos, ir.OANDAND, isNil, gtZero)
nifPtr.Body.Append(mkcall("panicunsafeslicenilptr", nil, &nifPtr.Body))
appendWalkStmt(init, nifPtr)
h := ir.NewSliceHeaderExpr(n.Pos(), sliceType,
typecheck.Conv(ptr, types.Types[types.TUNSAFEPTR]),
typecheck.Conv(len, types.Types[types.TINT]),
typecheck.Conv(len, types.Types[types.TINT]))
return walkExpr(typecheck.Expr(h), init)
}
// mem, overflow := runtime.mulUintptr(et.size, len)
mem := typecheck.TempAt(base.Pos, ir.CurFunc, types.Types[types.TUINTPTR])
overflow := typecheck.TempAt(base.Pos, ir.CurFunc, types.Types[types.TBOOL])
fn := typecheck.LookupRuntime("mulUintptr")
call := mkcall1(fn, fn.Type().ResultsTuple(), init, ir.NewInt(base.Pos, sliceType.Elem().Size()), typecheck.Conv(typecheck.Conv(len, lenType), types.Types[types.TUINTPTR]))
appendWalkStmt(init, ir.NewAssignListStmt(base.Pos, ir.OAS2, []ir.Node{mem, overflow}, []ir.Node{call}))
// if overflow || mem > -uintptr(ptr) {
// if ptr == nil {
// panicunsafesliceptrnil()
// }
// panicunsafeslicelen()
// }
nif = ir.NewIfStmt(base.Pos, nil, nil, nil)
memCond := ir.NewBinaryExpr(base.Pos, ir.OGT, mem, ir.NewUnaryExpr(base.Pos, ir.ONEG, typecheck.Conv(unsafePtr, types.Types[types.TUINTPTR])))
nif.Cond = ir.NewLogicalExpr(base.Pos, ir.OOROR, overflow, memCond)
nifPtr := ir.NewIfStmt(base.Pos, nil, nil, nil)
nifPtr.Cond = ir.NewBinaryExpr(base.Pos, ir.OEQ, unsafePtr, typecheck.NodNil())
nifPtr.Body.Append(mkcall("panicunsafeslicenilptr", nil, &nifPtr.Body))
nif.Body.Append(nifPtr, mkcall("panicunsafeslicelen", nil, &nif.Body))
appendWalkStmt(init, nif)
}
h := ir.NewSliceHeaderExpr(n.Pos(), sliceType,
typecheck.Conv(ptr, types.Types[types.TUNSAFEPTR]),
typecheck.Conv(len, types.Types[types.TINT]),
typecheck.Conv(len, types.Types[types.TINT]))
return walkExpr(typecheck.Expr(h), init)
}
func walkUnsafeString(n *ir.BinaryExpr, init *ir.Nodes) ir.Node {
ptr := safeExpr(n.X, init)
len := safeExpr(n.Y, init)
lenType := types.Types[types.TINT64]
unsafePtr := typecheck.Conv(ptr, types.Types[types.TUNSAFEPTR])
// If checkptr enabled, call runtime.unsafestringcheckptr to check ptr and len.
// for simplicity, unsafestringcheckptr always uses int64.
// Type checking guarantees that TIDEAL len are positive and fit in an int.
if ir.ShouldCheckPtr(ir.CurFunc, 1) {
fnname := "unsafestringcheckptr"
fn := typecheck.LookupRuntime(fnname)
init.Append(mkcall1(fn, nil, init, unsafePtr, typecheck.Conv(len, lenType)))
} else {
// Otherwise, open code unsafe.String to prevent runtime call overhead.
// Keep this code in sync with runtime.unsafestring{,64}
if len.Type().IsKind(types.TIDEAL) || len.Type().Size() <= types.Types[types.TUINT].Size() {
lenType = types.Types[types.TINT]
} else {
// len64 := int64(len)
// if int64(int(len64)) != len64 {
// panicunsafestringlen()
// }
len64 := typecheck.Conv(len, lenType)
nif := ir.NewIfStmt(base.Pos, nil, nil, nil)
nif.Cond = ir.NewBinaryExpr(base.Pos, ir.ONE, typecheck.Conv(typecheck.Conv(len64, types.Types[types.TINT]), lenType), len64)
nif.Body.Append(mkcall("panicunsafestringlen", nil, &nif.Body))
appendWalkStmt(init, nif)
}
// if len < 0 { panicunsafestringlen() }
nif := ir.NewIfStmt(base.Pos, nil, nil, nil)
nif.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, typecheck.Conv(len, lenType), ir.NewInt(base.Pos, 0))
nif.Body.Append(mkcall("panicunsafestringlen", nil, &nif.Body))
appendWalkStmt(init, nif)
// if uintpr(len) > -uintptr(ptr) {
// if ptr == nil {
// panicunsafestringnilptr()
// }
// panicunsafeslicelen()
// }
nifLen := ir.NewIfStmt(base.Pos, nil, nil, nil)
nifLen.Cond = ir.NewBinaryExpr(base.Pos, ir.OGT, typecheck.Conv(len, types.Types[types.TUINTPTR]), ir.NewUnaryExpr(base.Pos, ir.ONEG, typecheck.Conv(unsafePtr, types.Types[types.TUINTPTR])))
nifPtr := ir.NewIfStmt(base.Pos, nil, nil, nil)
nifPtr.Cond = ir.NewBinaryExpr(base.Pos, ir.OEQ, unsafePtr, typecheck.NodNil())
nifPtr.Body.Append(mkcall("panicunsafestringnilptr", nil, &nifPtr.Body))
nifLen.Body.Append(nifPtr, mkcall("panicunsafestringlen", nil, &nifLen.Body))
appendWalkStmt(init, nifLen)
}
h := ir.NewStringHeaderExpr(n.Pos(),
typecheck.Conv(ptr, types.Types[types.TUNSAFEPTR]),
typecheck.Conv(len, types.Types[types.TINT]),
)
return walkExpr(typecheck.Expr(h), init)
}
func badtype(op ir.Op, tl, tr *types.Type) {
var s string
if tl != nil {
s += fmt.Sprintf("\n\t%v", tl)
}
if tr != nil {
s += fmt.Sprintf("\n\t%v", tr)
}
// common mistake: *struct and *interface.
if tl != nil && tr != nil && tl.IsPtr() && tr.IsPtr() {
if tl.Elem().IsStruct() && tr.Elem().IsInterface() {
s += "\n\t(*struct vs *interface)"
} else if tl.Elem().IsInterface() && tr.Elem().IsStruct() {
s += "\n\t(*interface vs *struct)"
}
}
base.Errorf("illegal types for operand: %v%s", op, s)
}
func writebarrierfn(name string, l *types.Type, r *types.Type) ir.Node {
fn := typecheck.LookupRuntime(name)
fn = typecheck.SubstArgTypes(fn, l, r)
return fn
}
// isRuneCount reports whether n is of the form len([]rune(string)).
// These are optimized into a call to runtime.countrunes.
func isRuneCount(n ir.Node) bool {
return base.Flag.N == 0 && !base.Flag.Cfg.Instrumenting && n.Op() == ir.OLEN && n.(*ir.UnaryExpr).X.Op() == ir.OSTR2RUNES
}
// isByteCount reports whether n is of the form len(string([]byte)).
func isByteCount(n ir.Node) bool {
return base.Flag.N == 0 && !base.Flag.Cfg.Instrumenting && n.Op() == ir.OLEN &&
(n.(*ir.UnaryExpr).X.Op() == ir.OBYTES2STR || n.(*ir.UnaryExpr).X.Op() == ir.OBYTES2STRTMP)
}