mirror of
https://github.com/golang/go.git
synced 2025-05-27 18:31:35 +00:00
603 lines
14 KiB
Go
603 lines
14 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package rsa implements RSA encryption as specified in PKCS#1.
|
|
package rsa
|
|
|
|
// TODO(agl): Add support for PSS padding.
|
|
|
|
import (
|
|
"big"
|
|
"crypto/subtle"
|
|
"hash"
|
|
"io"
|
|
"os"
|
|
"sync"
|
|
)
|
|
|
|
var bigZero = big.NewInt(0)
|
|
var bigOne = big.NewInt(1)
|
|
|
|
// randomPrime returns a number, p, of the given size, such that p is prime
|
|
// with high probability.
|
|
func randomPrime(rand io.Reader, bits int) (p *big.Int, err os.Error) {
|
|
if bits < 1 {
|
|
err = os.EINVAL
|
|
}
|
|
|
|
bytes := make([]byte, (bits+7)/8)
|
|
p = new(big.Int)
|
|
|
|
for {
|
|
_, err = io.ReadFull(rand, bytes)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
// Don't let the value be too small.
|
|
bytes[0] |= 0x80
|
|
// Make the value odd since an even number this large certainly isn't prime.
|
|
bytes[len(bytes)-1] |= 1
|
|
|
|
p.SetBytes(bytes)
|
|
if big.ProbablyPrime(p, 20) {
|
|
return
|
|
}
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// randomNumber returns a uniform random value in [0, max).
|
|
func randomNumber(rand io.Reader, max *big.Int) (n *big.Int, err os.Error) {
|
|
k := (max.BitLen() + 7) / 8
|
|
|
|
// r is the number of bits in the used in the most significant byte of
|
|
// max.
|
|
r := uint(max.BitLen() % 8)
|
|
if r == 0 {
|
|
r = 8
|
|
}
|
|
|
|
bytes := make([]byte, k)
|
|
n = new(big.Int)
|
|
|
|
for {
|
|
_, err = io.ReadFull(rand, bytes)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
// Clear bits in the first byte to increase the probability
|
|
// that the candidate is < max.
|
|
bytes[0] &= uint8(int(1<<r) - 1)
|
|
|
|
n.SetBytes(bytes)
|
|
if n.Cmp(max) < 0 {
|
|
return
|
|
}
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// A PublicKey represents the public part of an RSA key.
|
|
type PublicKey struct {
|
|
N *big.Int // modulus
|
|
E int // public exponent
|
|
}
|
|
|
|
// A PrivateKey represents an RSA key
|
|
type PrivateKey struct {
|
|
PublicKey // public part.
|
|
D *big.Int // private exponent
|
|
P, Q, R *big.Int // prime factors of N (R may be nil)
|
|
|
|
rwMutex sync.RWMutex // protects the following
|
|
dP, dQ, dR *big.Int // D mod (P-1) (or mod Q-1 etc)
|
|
qInv *big.Int // q^-1 mod p
|
|
pq *big.Int // P*Q
|
|
tr *big.Int // pq·tr ≡ 1 mod r
|
|
}
|
|
|
|
// Validate performs basic sanity checks on the key.
|
|
// It returns nil if the key is valid, or else an os.Error describing a problem.
|
|
|
|
func (priv *PrivateKey) Validate() os.Error {
|
|
// Check that p, q and, maybe, r are prime. Note that this is just a
|
|
// sanity check. Since the random witnesses chosen by ProbablyPrime are
|
|
// deterministic, given the candidate number, it's easy for an attack
|
|
// to generate composites that pass this test.
|
|
if !big.ProbablyPrime(priv.P, 20) {
|
|
return os.ErrorString("P is composite")
|
|
}
|
|
if !big.ProbablyPrime(priv.Q, 20) {
|
|
return os.ErrorString("Q is composite")
|
|
}
|
|
if priv.R != nil && !big.ProbablyPrime(priv.R, 20) {
|
|
return os.ErrorString("R is composite")
|
|
}
|
|
|
|
// Check that p*q*r == n.
|
|
modulus := new(big.Int).Mul(priv.P, priv.Q)
|
|
if priv.R != nil {
|
|
modulus.Mul(modulus, priv.R)
|
|
}
|
|
if modulus.Cmp(priv.N) != 0 {
|
|
return os.ErrorString("invalid modulus")
|
|
}
|
|
// Check that e and totient(p, q, r) are coprime.
|
|
pminus1 := new(big.Int).Sub(priv.P, bigOne)
|
|
qminus1 := new(big.Int).Sub(priv.Q, bigOne)
|
|
totient := new(big.Int).Mul(pminus1, qminus1)
|
|
if priv.R != nil {
|
|
rminus1 := new(big.Int).Sub(priv.R, bigOne)
|
|
totient.Mul(totient, rminus1)
|
|
}
|
|
e := big.NewInt(int64(priv.E))
|
|
gcd := new(big.Int)
|
|
x := new(big.Int)
|
|
y := new(big.Int)
|
|
big.GcdInt(gcd, x, y, totient, e)
|
|
if gcd.Cmp(bigOne) != 0 {
|
|
return os.ErrorString("invalid public exponent E")
|
|
}
|
|
// Check that de ≡ 1 (mod totient(p, q, r))
|
|
de := new(big.Int).Mul(priv.D, e)
|
|
de.Mod(de, totient)
|
|
if de.Cmp(bigOne) != 0 {
|
|
return os.ErrorString("invalid private exponent D")
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// GenerateKey generates an RSA keypair of the given bit size.
|
|
func GenerateKey(rand io.Reader, bits int) (priv *PrivateKey, err os.Error) {
|
|
priv = new(PrivateKey)
|
|
// Smaller public exponents lead to faster public key
|
|
// operations. Since the exponent must be coprime to
|
|
// (p-1)(q-1), the smallest possible value is 3. Some have
|
|
// suggested that a larger exponent (often 2**16+1) be used
|
|
// since previous implementation bugs[1] were avoided when this
|
|
// was the case. However, there are no current reasons not to use
|
|
// small exponents.
|
|
// [1] http://marc.info/?l=cryptography&m=115694833312008&w=2
|
|
priv.E = 3
|
|
|
|
pminus1 := new(big.Int)
|
|
qminus1 := new(big.Int)
|
|
totient := new(big.Int)
|
|
|
|
for {
|
|
p, err := randomPrime(rand, bits/2)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
q, err := randomPrime(rand, bits/2)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if p.Cmp(q) == 0 {
|
|
continue
|
|
}
|
|
|
|
n := new(big.Int).Mul(p, q)
|
|
pminus1.Sub(p, bigOne)
|
|
qminus1.Sub(q, bigOne)
|
|
totient.Mul(pminus1, qminus1)
|
|
|
|
g := new(big.Int)
|
|
priv.D = new(big.Int)
|
|
y := new(big.Int)
|
|
e := big.NewInt(int64(priv.E))
|
|
big.GcdInt(g, priv.D, y, e, totient)
|
|
|
|
if g.Cmp(bigOne) == 0 {
|
|
priv.D.Add(priv.D, totient)
|
|
priv.P = p
|
|
priv.Q = q
|
|
priv.N = n
|
|
|
|
break
|
|
}
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// Generate3PrimeKey generates a 3-prime RSA keypair of the given bit size, as
|
|
// suggested in [1]. Although the public keys are compatible (actually,
|
|
// indistinguishable) from the 2-prime case, the private keys are not. Thus it
|
|
// may not be possible to export 3-prime private keys in certain formats or to
|
|
// subsequently import them into other code.
|
|
//
|
|
// Table 1 in [2] suggests that size should be >= 1024 when using 3 primes.
|
|
//
|
|
// [1] US patent 4405829 (1972, expired)
|
|
// [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
|
|
func Generate3PrimeKey(rand io.Reader, bits int) (priv *PrivateKey, err os.Error) {
|
|
priv = new(PrivateKey)
|
|
priv.E = 3
|
|
|
|
pminus1 := new(big.Int)
|
|
qminus1 := new(big.Int)
|
|
rminus1 := new(big.Int)
|
|
totient := new(big.Int)
|
|
|
|
for {
|
|
p, err := randomPrime(rand, bits/3)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
todo := bits - p.BitLen()
|
|
q, err := randomPrime(rand, todo/2)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
todo -= q.BitLen()
|
|
r, err := randomPrime(rand, todo)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if p.Cmp(q) == 0 ||
|
|
q.Cmp(r) == 0 ||
|
|
r.Cmp(p) == 0 {
|
|
continue
|
|
}
|
|
|
|
n := new(big.Int).Mul(p, q)
|
|
n.Mul(n, r)
|
|
pminus1.Sub(p, bigOne)
|
|
qminus1.Sub(q, bigOne)
|
|
rminus1.Sub(r, bigOne)
|
|
totient.Mul(pminus1, qminus1)
|
|
totient.Mul(totient, rminus1)
|
|
|
|
g := new(big.Int)
|
|
priv.D = new(big.Int)
|
|
y := new(big.Int)
|
|
e := big.NewInt(int64(priv.E))
|
|
big.GcdInt(g, priv.D, y, e, totient)
|
|
|
|
if g.Cmp(bigOne) == 0 {
|
|
priv.D.Add(priv.D, totient)
|
|
priv.P = p
|
|
priv.Q = q
|
|
priv.R = r
|
|
priv.N = n
|
|
|
|
break
|
|
}
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// incCounter increments a four byte, big-endian counter.
|
|
func incCounter(c *[4]byte) {
|
|
if c[3]++; c[3] != 0 {
|
|
return
|
|
}
|
|
if c[2]++; c[2] != 0 {
|
|
return
|
|
}
|
|
if c[1]++; c[1] != 0 {
|
|
return
|
|
}
|
|
c[0]++
|
|
}
|
|
|
|
// mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function
|
|
// specified in PKCS#1 v2.1.
|
|
func mgf1XOR(out []byte, hash hash.Hash, seed []byte) {
|
|
var counter [4]byte
|
|
|
|
done := 0
|
|
for done < len(out) {
|
|
hash.Write(seed)
|
|
hash.Write(counter[0:4])
|
|
digest := hash.Sum()
|
|
hash.Reset()
|
|
|
|
for i := 0; i < len(digest) && done < len(out); i++ {
|
|
out[done] ^= digest[i]
|
|
done++
|
|
}
|
|
incCounter(&counter)
|
|
}
|
|
}
|
|
|
|
// MessageTooLongError is returned when attempting to encrypt a message which
|
|
// is too large for the size of the public key.
|
|
type MessageTooLongError struct{}
|
|
|
|
func (MessageTooLongError) String() string {
|
|
return "message too long for RSA public key size"
|
|
}
|
|
|
|
func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int {
|
|
e := big.NewInt(int64(pub.E))
|
|
c.Exp(m, e, pub.N)
|
|
return c
|
|
}
|
|
|
|
// EncryptOAEP encrypts the given message with RSA-OAEP.
|
|
// The message must be no longer than the length of the public modulus less
|
|
// twice the hash length plus 2.
|
|
func EncryptOAEP(hash hash.Hash, rand io.Reader, pub *PublicKey, msg []byte, label []byte) (out []byte, err os.Error) {
|
|
hash.Reset()
|
|
k := (pub.N.BitLen() + 7) / 8
|
|
if len(msg) > k-2*hash.Size()-2 {
|
|
err = MessageTooLongError{}
|
|
return
|
|
}
|
|
|
|
hash.Write(label)
|
|
lHash := hash.Sum()
|
|
hash.Reset()
|
|
|
|
em := make([]byte, k)
|
|
seed := em[1 : 1+hash.Size()]
|
|
db := em[1+hash.Size():]
|
|
|
|
copy(db[0:hash.Size()], lHash)
|
|
db[len(db)-len(msg)-1] = 1
|
|
copy(db[len(db)-len(msg):], msg)
|
|
|
|
_, err = io.ReadFull(rand, seed)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
mgf1XOR(db, hash, seed)
|
|
mgf1XOR(seed, hash, db)
|
|
|
|
m := new(big.Int)
|
|
m.SetBytes(em)
|
|
c := encrypt(new(big.Int), pub, m)
|
|
out = c.Bytes()
|
|
|
|
if len(out) < k {
|
|
// If the output is too small, we need to left-pad with zeros.
|
|
t := make([]byte, k)
|
|
copy(t[k-len(out):], out)
|
|
out = t
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// A DecryptionError represents a failure to decrypt a message.
|
|
// It is deliberately vague to avoid adaptive attacks.
|
|
type DecryptionError struct{}
|
|
|
|
func (DecryptionError) String() string { return "RSA decryption error" }
|
|
|
|
// A VerificationError represents a failure to verify a signature.
|
|
// It is deliberately vague to avoid adaptive attacks.
|
|
type VerificationError struct{}
|
|
|
|
func (VerificationError) String() string { return "RSA verification error" }
|
|
|
|
// modInverse returns ia, the inverse of a in the multiplicative group of prime
|
|
// order n. It requires that a be a member of the group (i.e. less than n).
|
|
func modInverse(a, n *big.Int) (ia *big.Int, ok bool) {
|
|
g := new(big.Int)
|
|
x := new(big.Int)
|
|
y := new(big.Int)
|
|
big.GcdInt(g, x, y, a, n)
|
|
if g.Cmp(bigOne) != 0 {
|
|
// In this case, a and n aren't coprime and we cannot calculate
|
|
// the inverse. This happens because the values of n are nearly
|
|
// prime (being the product of two primes) rather than truly
|
|
// prime.
|
|
return
|
|
}
|
|
|
|
if x.Cmp(bigOne) < 0 {
|
|
// 0 is not the multiplicative inverse of any element so, if x
|
|
// < 1, then x is negative.
|
|
x.Add(x, n)
|
|
}
|
|
|
|
return x, true
|
|
}
|
|
|
|
// precompute performs some calculations that speed up private key operations
|
|
// in the future.
|
|
func (priv *PrivateKey) precompute() {
|
|
priv.dP = new(big.Int).Sub(priv.P, bigOne)
|
|
priv.dP.Mod(priv.D, priv.dP)
|
|
|
|
priv.dQ = new(big.Int).Sub(priv.Q, bigOne)
|
|
priv.dQ.Mod(priv.D, priv.dQ)
|
|
|
|
priv.qInv = new(big.Int).ModInverse(priv.Q, priv.P)
|
|
|
|
if priv.R != nil {
|
|
priv.dR = new(big.Int).Sub(priv.R, bigOne)
|
|
priv.dR.Mod(priv.D, priv.dR)
|
|
|
|
priv.pq = new(big.Int).Mul(priv.P, priv.Q)
|
|
priv.tr = new(big.Int).ModInverse(priv.pq, priv.R)
|
|
}
|
|
}
|
|
|
|
// decrypt performs an RSA decryption, resulting in a plaintext integer. If a
|
|
// random source is given, RSA blinding is used.
|
|
func decrypt(rand io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err os.Error) {
|
|
// TODO(agl): can we get away with reusing blinds?
|
|
if c.Cmp(priv.N) > 0 {
|
|
err = DecryptionError{}
|
|
return
|
|
}
|
|
|
|
var ir *big.Int
|
|
if rand != nil {
|
|
// Blinding enabled. Blinding involves multiplying c by r^e.
|
|
// Then the decryption operation performs (m^e * r^e)^d mod n
|
|
// which equals mr mod n. The factor of r can then be removed
|
|
// by multipling by the multiplicative inverse of r.
|
|
|
|
var r *big.Int
|
|
|
|
for {
|
|
r, err = randomNumber(rand, priv.N)
|
|
if err != nil {
|
|
return
|
|
}
|
|
if r.Cmp(bigZero) == 0 {
|
|
r = bigOne
|
|
}
|
|
var ok bool
|
|
ir, ok = modInverse(r, priv.N)
|
|
if ok {
|
|
break
|
|
}
|
|
}
|
|
bigE := big.NewInt(int64(priv.E))
|
|
rpowe := new(big.Int).Exp(r, bigE, priv.N)
|
|
c.Mul(c, rpowe)
|
|
c.Mod(c, priv.N)
|
|
}
|
|
|
|
priv.rwMutex.RLock()
|
|
|
|
if priv.dP == nil && priv.P != nil {
|
|
priv.rwMutex.RUnlock()
|
|
priv.rwMutex.Lock()
|
|
if priv.dP == nil && priv.P != nil {
|
|
priv.precompute()
|
|
}
|
|
priv.rwMutex.Unlock()
|
|
priv.rwMutex.RLock()
|
|
}
|
|
|
|
if priv.dP == nil {
|
|
m = new(big.Int).Exp(c, priv.D, priv.N)
|
|
} else {
|
|
// We have the precalculated values needed for the CRT.
|
|
m = new(big.Int).Exp(c, priv.dP, priv.P)
|
|
m2 := new(big.Int).Exp(c, priv.dQ, priv.Q)
|
|
m.Sub(m, m2)
|
|
if m.Sign() < 0 {
|
|
m.Add(m, priv.P)
|
|
}
|
|
m.Mul(m, priv.qInv)
|
|
m.Mod(m, priv.P)
|
|
m.Mul(m, priv.Q)
|
|
m.Add(m, m2)
|
|
|
|
if priv.dR != nil {
|
|
// 3-prime CRT.
|
|
m2.Exp(c, priv.dR, priv.R)
|
|
m2.Sub(m2, m)
|
|
m2.Mul(m2, priv.tr)
|
|
m2.Mod(m2, priv.R)
|
|
if m2.Sign() < 0 {
|
|
m2.Add(m2, priv.R)
|
|
}
|
|
m2.Mul(m2, priv.pq)
|
|
m.Add(m, m2)
|
|
}
|
|
}
|
|
|
|
priv.rwMutex.RUnlock()
|
|
|
|
if ir != nil {
|
|
// Unblind.
|
|
m.Mul(m, ir)
|
|
m.Mod(m, priv.N)
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// DecryptOAEP decrypts ciphertext using RSA-OAEP.
|
|
// If rand != nil, DecryptOAEP uses RSA blinding to avoid timing side-channel attacks.
|
|
func DecryptOAEP(hash hash.Hash, rand io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) (msg []byte, err os.Error) {
|
|
k := (priv.N.BitLen() + 7) / 8
|
|
if len(ciphertext) > k ||
|
|
k < hash.Size()*2+2 {
|
|
err = DecryptionError{}
|
|
return
|
|
}
|
|
|
|
c := new(big.Int).SetBytes(ciphertext)
|
|
|
|
m, err := decrypt(rand, priv, c)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
hash.Write(label)
|
|
lHash := hash.Sum()
|
|
hash.Reset()
|
|
|
|
// Converting the plaintext number to bytes will strip any
|
|
// leading zeros so we may have to left pad. We do this unconditionally
|
|
// to avoid leaking timing information. (Although we still probably
|
|
// leak the number of leading zeros. It's not clear that we can do
|
|
// anything about this.)
|
|
em := leftPad(m.Bytes(), k)
|
|
|
|
firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
|
|
|
|
seed := em[1 : hash.Size()+1]
|
|
db := em[hash.Size()+1:]
|
|
|
|
mgf1XOR(seed, hash, db)
|
|
mgf1XOR(db, hash, seed)
|
|
|
|
lHash2 := db[0:hash.Size()]
|
|
|
|
// We have to validate the plaintext in constant time in order to avoid
|
|
// attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal
|
|
// Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1
|
|
// v2.0. In J. Kilian, editor, Advances in Cryptology.
|
|
lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2)
|
|
|
|
// The remainder of the plaintext must be zero or more 0x00, followed
|
|
// by 0x01, followed by the message.
|
|
// lookingForIndex: 1 iff we are still looking for the 0x01
|
|
// index: the offset of the first 0x01 byte
|
|
// invalid: 1 iff we saw a non-zero byte before the 0x01.
|
|
var lookingForIndex, index, invalid int
|
|
lookingForIndex = 1
|
|
rest := db[hash.Size():]
|
|
|
|
for i := 0; i < len(rest); i++ {
|
|
equals0 := subtle.ConstantTimeByteEq(rest[i], 0)
|
|
equals1 := subtle.ConstantTimeByteEq(rest[i], 1)
|
|
index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index)
|
|
lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex)
|
|
invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid)
|
|
}
|
|
|
|
if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 {
|
|
err = DecryptionError{}
|
|
return
|
|
}
|
|
|
|
msg = rest[index+1:]
|
|
return
|
|
}
|
|
|
|
// leftPad returns a new slice of length size. The contents of input are right
|
|
// aligned in the new slice.
|
|
func leftPad(input []byte, size int) (out []byte) {
|
|
n := len(input)
|
|
if n > size {
|
|
n = size
|
|
}
|
|
out = make([]byte, size)
|
|
copy(out[len(out)-n:], input)
|
|
return
|
|
}
|