mirror of
https://github.com/golang/go.git
synced 2025-05-05 23:53:05 +00:00
Previously, the check to make sure we only considered constant cases for duplicates was skipping past integer ranges, because those use n.List instead of n.Left. Thanks to Emmanuel Odeke for investigating and helping to identify the root cause. Fixes #17517. Change-Id: I46fcda8ed9c346ff3a9647d50b83f1555587b740 Reviewed-on: https://go-review.googlesource.com/31716 Run-TryBot: Matthew Dempsky <mdempsky@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Emmanuel Odeke <emm.odeke@gmail.com> Reviewed-by: Robert Griesemer <gri@golang.org>
948 lines
25 KiB
Go
948 lines
25 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package gc
|
|
|
|
import "sort"
|
|
|
|
const (
|
|
// expression switch
|
|
switchKindExpr = iota // switch a {...} or switch 5 {...}
|
|
switchKindTrue // switch true {...} or switch {...}
|
|
switchKindFalse // switch false {...}
|
|
|
|
// type switch
|
|
switchKindType // switch a.(type) {...}
|
|
)
|
|
|
|
const (
|
|
binarySearchMin = 4 // minimum number of cases for binary search
|
|
integerRangeMin = 2 // minimum size of integer ranges
|
|
)
|
|
|
|
// An exprSwitch walks an expression switch.
|
|
type exprSwitch struct {
|
|
exprname *Node // node for the expression being switched on
|
|
kind int // kind of switch statement (switchKind*)
|
|
}
|
|
|
|
// A typeSwitch walks a type switch.
|
|
type typeSwitch struct {
|
|
hashname *Node // node for the hash of the type of the variable being switched on
|
|
facename *Node // node for the concrete type of the variable being switched on
|
|
okname *Node // boolean node used for comma-ok type assertions
|
|
}
|
|
|
|
// A caseClause is a single case clause in a switch statement.
|
|
type caseClause struct {
|
|
node *Node // points at case statement
|
|
ordinal int // position in switch
|
|
hash uint32 // hash of a type switch
|
|
// isconst indicates whether this case clause is a constant,
|
|
// for the purposes of the switch code generation.
|
|
// For expression switches, that's generally literals (case 5:, not case x:).
|
|
// For type switches, that's concrete types (case time.Time:), not interfaces (case io.Reader:).
|
|
isconst bool
|
|
}
|
|
|
|
// caseClauses are all the case clauses in a switch statement.
|
|
type caseClauses struct {
|
|
list []caseClause // general cases
|
|
defjmp *Node // OGOTO for default case or OBREAK if no default case present
|
|
niljmp *Node // OGOTO for nil type case in a type switch
|
|
}
|
|
|
|
// typecheckswitch typechecks a switch statement.
|
|
func typecheckswitch(n *Node) {
|
|
lno := lineno
|
|
typecheckslice(n.Ninit.Slice(), Etop)
|
|
|
|
var nilonly string
|
|
var top int
|
|
var t *Type
|
|
|
|
if n.Left != nil && n.Left.Op == OTYPESW {
|
|
// type switch
|
|
top = Etype
|
|
n.Left.Right = typecheck(n.Left.Right, Erv)
|
|
t = n.Left.Right.Type
|
|
if t != nil && !t.IsInterface() {
|
|
yyerror("cannot type switch on non-interface value %L", n.Left.Right)
|
|
}
|
|
} else {
|
|
// expression switch
|
|
top = Erv
|
|
if n.Left != nil {
|
|
n.Left = typecheck(n.Left, Erv)
|
|
n.Left = defaultlit(n.Left, nil)
|
|
t = n.Left.Type
|
|
} else {
|
|
t = Types[TBOOL]
|
|
}
|
|
if t != nil {
|
|
switch {
|
|
case !okforeq[t.Etype]:
|
|
yyerror("cannot switch on %L", n.Left)
|
|
case t.IsSlice():
|
|
nilonly = "slice"
|
|
case t.IsArray() && !t.IsComparable():
|
|
yyerror("cannot switch on %L", n.Left)
|
|
case t.IsStruct():
|
|
if f := t.IncomparableField(); f != nil {
|
|
yyerror("cannot switch on %L (struct containing %v cannot be compared)", n.Left, f.Type)
|
|
}
|
|
case t.Etype == TFUNC:
|
|
nilonly = "func"
|
|
case t.IsMap():
|
|
nilonly = "map"
|
|
}
|
|
}
|
|
}
|
|
|
|
n.Type = t
|
|
|
|
var def, niltype *Node
|
|
for _, ncase := range n.List.Slice() {
|
|
setlineno(n)
|
|
if ncase.List.Len() == 0 {
|
|
// default
|
|
if def != nil {
|
|
setlineno(ncase)
|
|
yyerror("multiple defaults in switch (first at %v)", def.Line())
|
|
} else {
|
|
def = ncase
|
|
}
|
|
} else {
|
|
ls := ncase.List.Slice()
|
|
for i1, n1 := range ls {
|
|
setlineno(n1)
|
|
ls[i1] = typecheck(ls[i1], Erv|Etype)
|
|
n1 = ls[i1]
|
|
if n1.Type == nil || t == nil {
|
|
continue
|
|
}
|
|
setlineno(ncase)
|
|
switch top {
|
|
// expression switch
|
|
case Erv:
|
|
ls[i1] = defaultlit(ls[i1], t)
|
|
n1 = ls[i1]
|
|
switch {
|
|
case n1.Op == OTYPE:
|
|
yyerror("type %v is not an expression", n1.Type)
|
|
case n1.Type != nil && assignop(n1.Type, t, nil) == 0 && assignop(t, n1.Type, nil) == 0:
|
|
if n.Left != nil {
|
|
yyerror("invalid case %v in switch on %v (mismatched types %v and %v)", n1, n.Left, n1.Type, t)
|
|
} else {
|
|
yyerror("invalid case %v in switch (mismatched types %v and bool)", n1, n1.Type)
|
|
}
|
|
case nilonly != "" && !isnil(n1):
|
|
yyerror("invalid case %v in switch (can only compare %s %v to nil)", n1, nilonly, n.Left)
|
|
case t.IsInterface() && !n1.Type.IsInterface() && !n1.Type.IsComparable():
|
|
yyerror("invalid case %L in switch (incomparable type)", n1)
|
|
}
|
|
|
|
// type switch
|
|
case Etype:
|
|
var missing, have *Field
|
|
var ptr int
|
|
switch {
|
|
case n1.Op == OLITERAL && n1.Type.IsKind(TNIL):
|
|
// case nil:
|
|
if niltype != nil {
|
|
yyerror("multiple nil cases in type switch (first at %v)", niltype.Line())
|
|
} else {
|
|
niltype = ncase
|
|
}
|
|
case n1.Op != OTYPE && n1.Type != nil: // should this be ||?
|
|
yyerror("%L is not a type", n1)
|
|
// reset to original type
|
|
n1 = n.Left.Right
|
|
ls[i1] = n1
|
|
case !n1.Type.IsInterface() && t.IsInterface() && !implements(n1.Type, t, &missing, &have, &ptr):
|
|
if have != nil && !missing.Broke && !have.Broke {
|
|
yyerror("impossible type switch case: %L cannot have dynamic type %v"+
|
|
" (wrong type for %v method)\n\thave %v%S\n\twant %v%S", n.Left.Right, n1.Type, missing.Sym, have.Sym, have.Type, missing.Sym, missing.Type)
|
|
} else if !missing.Broke {
|
|
yyerror("impossible type switch case: %L cannot have dynamic type %v"+
|
|
" (missing %v method)", n.Left.Right, n1.Type, missing.Sym)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if top == Etype && n.Type != nil {
|
|
ll := ncase.List
|
|
if ncase.Rlist.Len() != 0 {
|
|
nvar := ncase.Rlist.First()
|
|
if ll.Len() == 1 && ll.First().Type != nil && !ll.First().Type.IsKind(TNIL) {
|
|
// single entry type switch
|
|
nvar.Name.Param.Ntype = typenod(ll.First().Type)
|
|
} else {
|
|
// multiple entry type switch or default
|
|
nvar.Name.Param.Ntype = typenod(n.Type)
|
|
}
|
|
|
|
nvar = typecheck(nvar, Erv|Easgn)
|
|
ncase.Rlist.SetIndex(0, nvar)
|
|
}
|
|
}
|
|
|
|
typecheckslice(ncase.Nbody.Slice(), Etop)
|
|
}
|
|
|
|
lineno = lno
|
|
}
|
|
|
|
// walkswitch walks a switch statement.
|
|
func walkswitch(sw *Node) {
|
|
// convert switch {...} to switch true {...}
|
|
if sw.Left == nil {
|
|
sw.Left = nodbool(true)
|
|
sw.Left = typecheck(sw.Left, Erv)
|
|
}
|
|
|
|
if sw.Left.Op == OTYPESW {
|
|
var s typeSwitch
|
|
s.walk(sw)
|
|
} else {
|
|
var s exprSwitch
|
|
s.walk(sw)
|
|
}
|
|
}
|
|
|
|
// walk generates an AST implementing sw.
|
|
// sw is an expression switch.
|
|
// The AST is generally of the form of a linear
|
|
// search using if..goto, although binary search
|
|
// is used with long runs of constants.
|
|
func (s *exprSwitch) walk(sw *Node) {
|
|
casebody(sw, nil)
|
|
|
|
cond := sw.Left
|
|
sw.Left = nil
|
|
|
|
s.kind = switchKindExpr
|
|
if Isconst(cond, CTBOOL) {
|
|
s.kind = switchKindTrue
|
|
if !cond.Val().U.(bool) {
|
|
s.kind = switchKindFalse
|
|
}
|
|
}
|
|
|
|
cond = walkexpr(cond, &sw.Ninit)
|
|
t := sw.Type
|
|
if t == nil {
|
|
return
|
|
}
|
|
|
|
// convert the switch into OIF statements
|
|
var cas []*Node
|
|
if s.kind == switchKindTrue || s.kind == switchKindFalse {
|
|
s.exprname = nodbool(s.kind == switchKindTrue)
|
|
} else if consttype(cond) >= 0 {
|
|
// leave constants to enable dead code elimination (issue 9608)
|
|
s.exprname = cond
|
|
} else {
|
|
s.exprname = temp(cond.Type)
|
|
cas = []*Node{nod(OAS, s.exprname, cond)}
|
|
typecheckslice(cas, Etop)
|
|
}
|
|
|
|
// Enumerate the cases and prepare the default case.
|
|
clauses := s.genCaseClauses(sw.List.Slice())
|
|
sw.List.Set(nil)
|
|
cc := clauses.list
|
|
|
|
// handle the cases in order
|
|
for len(cc) > 0 {
|
|
// deal with expressions one at a time
|
|
if !okforcmp[t.Etype] || !cc[0].isconst {
|
|
a := s.walkCases(cc[:1])
|
|
cas = append(cas, a)
|
|
cc = cc[1:]
|
|
continue
|
|
}
|
|
|
|
// do binary search on runs of constants
|
|
var run int
|
|
for run = 1; run < len(cc) && cc[run].isconst; run++ {
|
|
}
|
|
|
|
// sort and compile constants
|
|
sort.Sort(caseClauseByConstVal(cc[:run]))
|
|
a := s.walkCases(cc[:run])
|
|
cas = append(cas, a)
|
|
cc = cc[run:]
|
|
}
|
|
|
|
// handle default case
|
|
if nerrors == 0 {
|
|
cas = append(cas, clauses.defjmp)
|
|
sw.Nbody.Prepend(cas...)
|
|
walkstmtlist(sw.Nbody.Slice())
|
|
}
|
|
}
|
|
|
|
// walkCases generates an AST implementing the cases in cc.
|
|
func (s *exprSwitch) walkCases(cc []caseClause) *Node {
|
|
if len(cc) < binarySearchMin {
|
|
// linear search
|
|
var cas []*Node
|
|
for _, c := range cc {
|
|
n := c.node
|
|
lno := setlineno(n)
|
|
|
|
a := nod(OIF, nil, nil)
|
|
if rng := n.List.Slice(); rng != nil {
|
|
// Integer range.
|
|
// exprname is a temp or a constant,
|
|
// so it is safe to evaluate twice.
|
|
// In most cases, this conjunction will be
|
|
// rewritten by walkinrange into a single comparison.
|
|
low := nod(OGE, s.exprname, rng[0])
|
|
high := nod(OLE, s.exprname, rng[1])
|
|
a.Left = nod(OANDAND, low, high)
|
|
a.Left = typecheck(a.Left, Erv)
|
|
a.Left = walkexpr(a.Left, nil) // give walk the opportunity to optimize the range check
|
|
} else if (s.kind != switchKindTrue && s.kind != switchKindFalse) || assignop(n.Left.Type, s.exprname.Type, nil) == OCONVIFACE || assignop(s.exprname.Type, n.Left.Type, nil) == OCONVIFACE {
|
|
a.Left = nod(OEQ, s.exprname, n.Left) // if name == val
|
|
a.Left = typecheck(a.Left, Erv)
|
|
} else if s.kind == switchKindTrue {
|
|
a.Left = n.Left // if val
|
|
} else {
|
|
// s.kind == switchKindFalse
|
|
a.Left = nod(ONOT, n.Left, nil) // if !val
|
|
a.Left = typecheck(a.Left, Erv)
|
|
}
|
|
a.Nbody.Set1(n.Right) // goto l
|
|
|
|
cas = append(cas, a)
|
|
lineno = lno
|
|
}
|
|
return liststmt(cas)
|
|
}
|
|
|
|
// find the middle and recur
|
|
half := len(cc) / 2
|
|
a := nod(OIF, nil, nil)
|
|
n := cc[half-1].node
|
|
var mid *Node
|
|
if rng := n.List.Slice(); rng != nil {
|
|
mid = rng[1] // high end of range
|
|
} else {
|
|
mid = n.Left
|
|
}
|
|
le := nod(OLE, s.exprname, mid)
|
|
if Isconst(mid, CTSTR) {
|
|
// Search by length and then by value; see caseClauseByConstVal.
|
|
lenlt := nod(OLT, nod(OLEN, s.exprname, nil), nod(OLEN, mid, nil))
|
|
leneq := nod(OEQ, nod(OLEN, s.exprname, nil), nod(OLEN, mid, nil))
|
|
a.Left = nod(OOROR, lenlt, nod(OANDAND, leneq, le))
|
|
} else {
|
|
a.Left = le
|
|
}
|
|
a.Left = typecheck(a.Left, Erv)
|
|
a.Nbody.Set1(s.walkCases(cc[:half]))
|
|
a.Rlist.Set1(s.walkCases(cc[half:]))
|
|
return a
|
|
}
|
|
|
|
// casebody builds separate lists of statements and cases.
|
|
// It makes labels between cases and statements
|
|
// and deals with fallthrough, break, and unreachable statements.
|
|
func casebody(sw *Node, typeswvar *Node) {
|
|
if sw.List.Len() == 0 {
|
|
return
|
|
}
|
|
|
|
lno := setlineno(sw)
|
|
|
|
var cas []*Node // cases
|
|
var stat []*Node // statements
|
|
var def *Node // defaults
|
|
br := nod(OBREAK, nil, nil)
|
|
|
|
for i, n := range sw.List.Slice() {
|
|
setlineno(n)
|
|
if n.Op != OXCASE {
|
|
Fatalf("casebody %v", n.Op)
|
|
}
|
|
n.Op = OCASE
|
|
needvar := n.List.Len() != 1 || n.List.First().Op == OLITERAL
|
|
|
|
jmp := nod(OGOTO, autolabel(".s"), nil)
|
|
switch n.List.Len() {
|
|
case 0:
|
|
// default
|
|
if def != nil {
|
|
yyerror("more than one default case")
|
|
}
|
|
// reuse original default case
|
|
n.Right = jmp
|
|
def = n
|
|
case 1:
|
|
// one case -- reuse OCASE node
|
|
n.Left = n.List.First()
|
|
n.Right = jmp
|
|
n.List.Set(nil)
|
|
cas = append(cas, n)
|
|
default:
|
|
// Expand multi-valued cases and detect ranges of integer cases.
|
|
if typeswvar != nil || sw.Left.Type.IsInterface() || !n.List.First().Type.IsInteger() || n.List.Len() < integerRangeMin {
|
|
// Can't use integer ranges. Expand each case into a separate node.
|
|
for _, n1 := range n.List.Slice() {
|
|
cas = append(cas, nod(OCASE, n1, jmp))
|
|
}
|
|
break
|
|
}
|
|
// Find integer ranges within runs of constants.
|
|
s := n.List.Slice()
|
|
j := 0
|
|
for j < len(s) {
|
|
// Find a run of constants.
|
|
var run int
|
|
for run = j; run < len(s) && Isconst(s[run], CTINT); run++ {
|
|
}
|
|
if run-j >= integerRangeMin {
|
|
// Search for integer ranges in s[j:run].
|
|
// Typechecking is done, so all values are already in an appropriate range.
|
|
search := s[j:run]
|
|
sort.Sort(constIntNodesByVal(search))
|
|
for beg, end := 0, 1; end <= len(search); end++ {
|
|
if end < len(search) && search[end].Int64() == search[end-1].Int64()+1 {
|
|
continue
|
|
}
|
|
if end-beg >= integerRangeMin {
|
|
// Record range in List.
|
|
c := nod(OCASE, nil, jmp)
|
|
c.List.Set2(search[beg], search[end-1])
|
|
cas = append(cas, c)
|
|
} else {
|
|
// Not large enough for range; record separately.
|
|
for _, n := range search[beg:end] {
|
|
cas = append(cas, nod(OCASE, n, jmp))
|
|
}
|
|
}
|
|
beg = end
|
|
}
|
|
j = run
|
|
}
|
|
// Advance to next constant, adding individual non-constant
|
|
// or as-yet-unhandled constant cases as we go.
|
|
for ; j < len(s) && (j < run || !Isconst(s[j], CTINT)); j++ {
|
|
cas = append(cas, nod(OCASE, s[j], jmp))
|
|
}
|
|
}
|
|
}
|
|
|
|
stat = append(stat, nod(OLABEL, jmp.Left, nil))
|
|
if typeswvar != nil && needvar && n.Rlist.Len() != 0 {
|
|
l := []*Node{
|
|
nod(ODCL, n.Rlist.First(), nil),
|
|
nod(OAS, n.Rlist.First(), typeswvar),
|
|
}
|
|
typecheckslice(l, Etop)
|
|
stat = append(stat, l...)
|
|
}
|
|
stat = append(stat, n.Nbody.Slice()...)
|
|
|
|
// Search backwards for the index of the fallthrough
|
|
// statement. Do not assume it'll be in the last
|
|
// position, since in some cases (e.g. when the statement
|
|
// list contains autotmp_ variables), one or more OVARKILL
|
|
// nodes will be at the end of the list.
|
|
fallIndex := len(stat) - 1
|
|
for stat[fallIndex].Op == OVARKILL {
|
|
fallIndex--
|
|
}
|
|
last := stat[fallIndex]
|
|
|
|
// botch - shouldn't fall through declaration
|
|
if last.Xoffset == n.Xoffset && last.Op == OXFALL {
|
|
if typeswvar != nil {
|
|
setlineno(last)
|
|
yyerror("cannot fallthrough in type switch")
|
|
}
|
|
|
|
if i+1 >= sw.List.Len() {
|
|
setlineno(last)
|
|
yyerror("cannot fallthrough final case in switch")
|
|
}
|
|
|
|
last.Op = OFALL
|
|
} else {
|
|
stat = append(stat, br)
|
|
}
|
|
}
|
|
|
|
stat = append(stat, br)
|
|
if def != nil {
|
|
cas = append(cas, def)
|
|
}
|
|
|
|
sw.List.Set(cas)
|
|
sw.Nbody.Set(stat)
|
|
lineno = lno
|
|
}
|
|
|
|
// genCaseClauses generates the caseClauses value for clauses.
|
|
func (s *exprSwitch) genCaseClauses(clauses []*Node) caseClauses {
|
|
var cc caseClauses
|
|
for _, n := range clauses {
|
|
if n.Left == nil && n.List.Len() == 0 {
|
|
// default case
|
|
if cc.defjmp != nil {
|
|
Fatalf("duplicate default case not detected during typechecking")
|
|
}
|
|
cc.defjmp = n.Right
|
|
continue
|
|
}
|
|
c := caseClause{node: n, ordinal: len(cc.list)}
|
|
if n.List.Len() > 0 {
|
|
c.isconst = true
|
|
}
|
|
switch consttype(n.Left) {
|
|
case CTFLT, CTINT, CTRUNE, CTSTR:
|
|
c.isconst = true
|
|
}
|
|
cc.list = append(cc.list, c)
|
|
}
|
|
|
|
if cc.defjmp == nil {
|
|
cc.defjmp = nod(OBREAK, nil, nil)
|
|
}
|
|
|
|
// diagnose duplicate cases
|
|
s.checkDupCases(cc.list)
|
|
return cc
|
|
}
|
|
|
|
// genCaseClauses generates the caseClauses value for clauses.
|
|
func (s *typeSwitch) genCaseClauses(clauses []*Node) caseClauses {
|
|
var cc caseClauses
|
|
for _, n := range clauses {
|
|
switch {
|
|
case n.Left == nil:
|
|
// default case
|
|
if cc.defjmp != nil {
|
|
Fatalf("duplicate default case not detected during typechecking")
|
|
}
|
|
cc.defjmp = n.Right
|
|
continue
|
|
case n.Left.Op == OLITERAL:
|
|
// nil case in type switch
|
|
if cc.niljmp != nil {
|
|
Fatalf("duplicate nil case not detected during typechecking")
|
|
}
|
|
cc.niljmp = n.Right
|
|
continue
|
|
}
|
|
|
|
// general case
|
|
c := caseClause{
|
|
node: n,
|
|
ordinal: len(cc.list),
|
|
isconst: !n.Left.Type.IsInterface(),
|
|
hash: typehash(n.Left.Type),
|
|
}
|
|
cc.list = append(cc.list, c)
|
|
}
|
|
|
|
if cc.defjmp == nil {
|
|
cc.defjmp = nod(OBREAK, nil, nil)
|
|
}
|
|
|
|
// diagnose duplicate cases
|
|
s.checkDupCases(cc.list)
|
|
return cc
|
|
}
|
|
|
|
func (s *typeSwitch) checkDupCases(cc []caseClause) {
|
|
if len(cc) < 2 {
|
|
return
|
|
}
|
|
// We store seen types in a map keyed by type hash.
|
|
// It is possible, but very unlikely, for multiple distinct types to have the same hash.
|
|
seen := make(map[uint32][]*Node)
|
|
// To avoid many small allocations of length 1 slices,
|
|
// also set up a single large slice to slice into.
|
|
nn := make([]*Node, 0, len(cc))
|
|
Outer:
|
|
for _, c := range cc {
|
|
prev, ok := seen[c.hash]
|
|
if !ok {
|
|
// First entry for this hash.
|
|
nn = append(nn, c.node)
|
|
seen[c.hash] = nn[len(nn)-1 : len(nn):len(nn)]
|
|
continue
|
|
}
|
|
for _, n := range prev {
|
|
if eqtype(n.Left.Type, c.node.Left.Type) {
|
|
yyerrorl(c.node.Lineno, "duplicate case %v in type switch\n\tprevious case at %v", c.node.Left.Type, n.Line())
|
|
// avoid double-reporting errors
|
|
continue Outer
|
|
}
|
|
}
|
|
seen[c.hash] = append(seen[c.hash], c.node)
|
|
}
|
|
}
|
|
|
|
func (s *exprSwitch) checkDupCases(cc []caseClause) {
|
|
if len(cc) < 2 {
|
|
return
|
|
}
|
|
// The common case is that s's expression is not an interface.
|
|
// In that case, all constant clauses have the same type,
|
|
// so checking for duplicates can be done solely by value.
|
|
if !s.exprname.Type.IsInterface() {
|
|
seen := make(map[interface{}]*Node)
|
|
for _, c := range cc {
|
|
switch {
|
|
case c.node.Left != nil:
|
|
// Single constant.
|
|
|
|
// Can't check for duplicates that aren't constants, per the spec. Issue 15896.
|
|
// Don't check for duplicate bools. Although the spec allows it,
|
|
// (1) the compiler hasn't checked it in the past, so compatibility mandates it, and
|
|
// (2) it would disallow useful things like
|
|
// case GOARCH == "arm" && GOARM == "5":
|
|
// case GOARCH == "arm":
|
|
// which would both evaluate to false for non-ARM compiles.
|
|
if ct := consttype(c.node.Left); ct < 0 || ct == CTBOOL {
|
|
continue
|
|
}
|
|
|
|
val := c.node.Left.Val().Interface()
|
|
prev, dup := seen[val]
|
|
if !dup {
|
|
seen[val] = c.node
|
|
continue
|
|
}
|
|
setlineno(c.node)
|
|
yyerror("duplicate case %#v in switch\n\tprevious case at %v", val, prev.Line())
|
|
|
|
case c.node.List.Len() == 2:
|
|
// Range of integers.
|
|
low := c.node.List.Index(0).Int64()
|
|
high := c.node.List.Index(1).Int64()
|
|
for i := low; i <= high; i++ {
|
|
prev, dup := seen[i]
|
|
if !dup {
|
|
seen[i] = c.node
|
|
continue
|
|
}
|
|
setlineno(c.node)
|
|
yyerror("duplicate case %d in switch\n\tprevious case at %v", i, prev.Line())
|
|
}
|
|
|
|
default:
|
|
Fatalf("bad caseClause node in checkDupCases: %v", c.node)
|
|
}
|
|
}
|
|
return
|
|
}
|
|
// s's expression is an interface. This is fairly rare, so keep this simple.
|
|
// Duplicates are only duplicates if they have the same type and the same value.
|
|
type typeVal struct {
|
|
typ string
|
|
val interface{}
|
|
}
|
|
seen := make(map[typeVal]*Node)
|
|
for _, c := range cc {
|
|
if ct := consttype(c.node.Left); ct < 0 || ct == CTBOOL {
|
|
continue
|
|
}
|
|
n := c.node.Left
|
|
tv := typeVal{
|
|
// n.Type.tconv(FmtLeft | FmtUnsigned) here serves to completely describe the type.
|
|
// See the comments in func typehash.
|
|
typ: n.Type.tconv(FmtLeft | FmtUnsigned),
|
|
val: n.Val().Interface(),
|
|
}
|
|
prev, dup := seen[tv]
|
|
if !dup {
|
|
seen[tv] = c.node
|
|
continue
|
|
}
|
|
setlineno(c.node)
|
|
yyerror("duplicate case %v in switch\n\tprevious case at %v", prev.Left, prev.Line())
|
|
}
|
|
}
|
|
|
|
// walk generates an AST that implements sw,
|
|
// where sw is a type switch.
|
|
// The AST is generally of the form of a linear
|
|
// search using if..goto, although binary search
|
|
// is used with long runs of concrete types.
|
|
func (s *typeSwitch) walk(sw *Node) {
|
|
cond := sw.Left
|
|
sw.Left = nil
|
|
|
|
if cond == nil {
|
|
sw.List.Set(nil)
|
|
return
|
|
}
|
|
if cond.Right == nil {
|
|
setlineno(sw)
|
|
yyerror("type switch must have an assignment")
|
|
return
|
|
}
|
|
|
|
cond.Right = walkexpr(cond.Right, &sw.Ninit)
|
|
if !cond.Right.Type.IsInterface() {
|
|
yyerror("type switch must be on an interface")
|
|
return
|
|
}
|
|
|
|
var cas []*Node
|
|
|
|
// predeclare temporary variables and the boolean var
|
|
s.facename = temp(cond.Right.Type)
|
|
|
|
a := nod(OAS, s.facename, cond.Right)
|
|
a = typecheck(a, Etop)
|
|
cas = append(cas, a)
|
|
|
|
s.okname = temp(Types[TBOOL])
|
|
s.okname = typecheck(s.okname, Erv)
|
|
|
|
s.hashname = temp(Types[TUINT32])
|
|
s.hashname = typecheck(s.hashname, Erv)
|
|
|
|
// set up labels and jumps
|
|
casebody(sw, s.facename)
|
|
|
|
clauses := s.genCaseClauses(sw.List.Slice())
|
|
sw.List.Set(nil)
|
|
def := clauses.defjmp
|
|
|
|
// For empty interfaces, do:
|
|
// if e._type == nil {
|
|
// do nil case if it exists, otherwise default
|
|
// }
|
|
// h := e._type.hash
|
|
// Use a similar strategy for non-empty interfaces.
|
|
|
|
// Get interface descriptor word.
|
|
typ := nod(OITAB, s.facename, nil)
|
|
|
|
// Check for nil first.
|
|
i := nod(OIF, nil, nil)
|
|
i.Left = nod(OEQ, typ, nodnil())
|
|
if clauses.niljmp != nil {
|
|
// Do explicit nil case right here.
|
|
i.Nbody.Set1(clauses.niljmp)
|
|
} else {
|
|
// Jump to default case.
|
|
lbl := autolabel(".s")
|
|
i.Nbody.Set1(nod(OGOTO, lbl, nil))
|
|
// Wrap default case with label.
|
|
blk := nod(OBLOCK, nil, nil)
|
|
blk.List.Set([]*Node{nod(OLABEL, lbl, nil), def})
|
|
def = blk
|
|
}
|
|
i.Left = typecheck(i.Left, Erv)
|
|
cas = append(cas, i)
|
|
|
|
if !cond.Right.Type.IsEmptyInterface() {
|
|
// Load type from itab.
|
|
typ = itabType(typ)
|
|
}
|
|
// Load hash from type.
|
|
h := nodSym(ODOTPTR, typ, nil)
|
|
h.Type = Types[TUINT32]
|
|
h.Typecheck = 1
|
|
h.Xoffset = int64(2 * Widthptr) // offset of hash in runtime._type
|
|
h.Bounded = true // guaranteed not to fault
|
|
a = nod(OAS, s.hashname, h)
|
|
a = typecheck(a, Etop)
|
|
cas = append(cas, a)
|
|
|
|
cc := clauses.list
|
|
|
|
// insert type equality check into each case block
|
|
for _, c := range cc {
|
|
c.node.Right = s.typeone(c.node)
|
|
}
|
|
|
|
// generate list of if statements, binary search for constant sequences
|
|
for len(cc) > 0 {
|
|
if !cc[0].isconst {
|
|
n := cc[0].node
|
|
cas = append(cas, n.Right)
|
|
cc = cc[1:]
|
|
continue
|
|
}
|
|
|
|
// identify run of constants
|
|
var run int
|
|
for run = 1; run < len(cc) && cc[run].isconst; run++ {
|
|
}
|
|
|
|
// sort by hash
|
|
sort.Sort(caseClauseByType(cc[:run]))
|
|
|
|
// for debugging: linear search
|
|
if false {
|
|
for i := 0; i < run; i++ {
|
|
n := cc[i].node
|
|
cas = append(cas, n.Right)
|
|
}
|
|
continue
|
|
}
|
|
|
|
// combine adjacent cases with the same hash
|
|
ncase := 0
|
|
for i := 0; i < run; i++ {
|
|
ncase++
|
|
hash := []*Node{cc[i].node.Right}
|
|
for j := i + 1; j < run && cc[i].hash == cc[j].hash; j++ {
|
|
hash = append(hash, cc[j].node.Right)
|
|
}
|
|
cc[i].node.Right = liststmt(hash)
|
|
}
|
|
|
|
// binary search among cases to narrow by hash
|
|
cas = append(cas, s.walkCases(cc[:ncase]))
|
|
cc = cc[ncase:]
|
|
}
|
|
|
|
// handle default case
|
|
if nerrors == 0 {
|
|
cas = append(cas, def)
|
|
sw.Nbody.Prepend(cas...)
|
|
sw.List.Set(nil)
|
|
walkstmtlist(sw.Nbody.Slice())
|
|
}
|
|
}
|
|
|
|
// typeone generates an AST that jumps to the
|
|
// case body if the variable is of type t.
|
|
func (s *typeSwitch) typeone(t *Node) *Node {
|
|
var name *Node
|
|
var init []*Node
|
|
if t.Rlist.Len() == 0 {
|
|
name = nblank
|
|
nblank = typecheck(nblank, Erv|Easgn)
|
|
} else {
|
|
name = t.Rlist.First()
|
|
init = []*Node{nod(ODCL, name, nil)}
|
|
a := nod(OAS, name, nil)
|
|
a = typecheck(a, Etop)
|
|
init = append(init, a)
|
|
}
|
|
|
|
a := nod(OAS2, nil, nil)
|
|
a.List.Set([]*Node{name, s.okname}) // name, ok =
|
|
b := nod(ODOTTYPE, s.facename, nil)
|
|
b.Type = t.Left.Type // interface.(type)
|
|
a.Rlist.Set1(b)
|
|
a = typecheck(a, Etop)
|
|
init = append(init, a)
|
|
|
|
c := nod(OIF, nil, nil)
|
|
c.Left = s.okname
|
|
c.Nbody.Set1(t.Right) // if ok { goto l }
|
|
|
|
return liststmt(append(init, c))
|
|
}
|
|
|
|
// walkCases generates an AST implementing the cases in cc.
|
|
func (s *typeSwitch) walkCases(cc []caseClause) *Node {
|
|
if len(cc) < binarySearchMin {
|
|
var cas []*Node
|
|
for _, c := range cc {
|
|
n := c.node
|
|
if !c.isconst {
|
|
Fatalf("typeSwitch walkCases")
|
|
}
|
|
a := nod(OIF, nil, nil)
|
|
a.Left = nod(OEQ, s.hashname, nodintconst(int64(c.hash)))
|
|
a.Left = typecheck(a.Left, Erv)
|
|
a.Nbody.Set1(n.Right)
|
|
cas = append(cas, a)
|
|
}
|
|
return liststmt(cas)
|
|
}
|
|
|
|
// find the middle and recur
|
|
half := len(cc) / 2
|
|
a := nod(OIF, nil, nil)
|
|
a.Left = nod(OLE, s.hashname, nodintconst(int64(cc[half-1].hash)))
|
|
a.Left = typecheck(a.Left, Erv)
|
|
a.Nbody.Set1(s.walkCases(cc[:half]))
|
|
a.Rlist.Set1(s.walkCases(cc[half:]))
|
|
return a
|
|
}
|
|
|
|
// caseClauseByConstVal sorts clauses by constant value to enable binary search.
|
|
type caseClauseByConstVal []caseClause
|
|
|
|
func (x caseClauseByConstVal) Len() int { return len(x) }
|
|
func (x caseClauseByConstVal) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
|
|
func (x caseClauseByConstVal) Less(i, j int) bool {
|
|
// n1 and n2 might be individual constants or integer ranges.
|
|
// We have checked for duplicates already,
|
|
// so ranges can be safely represented by any value in the range.
|
|
n1 := x[i].node
|
|
var v1 interface{}
|
|
if s := n1.List.Slice(); s != nil {
|
|
v1 = s[0].Val().U
|
|
} else {
|
|
v1 = n1.Left.Val().U
|
|
}
|
|
|
|
n2 := x[j].node
|
|
var v2 interface{}
|
|
if s := n2.List.Slice(); s != nil {
|
|
v2 = s[0].Val().U
|
|
} else {
|
|
v2 = n2.Left.Val().U
|
|
}
|
|
|
|
switch v1 := v1.(type) {
|
|
case *Mpflt:
|
|
return v1.Cmp(v2.(*Mpflt)) < 0
|
|
case *Mpint:
|
|
return v1.Cmp(v2.(*Mpint)) < 0
|
|
case string:
|
|
// Sort strings by length and then by value.
|
|
// It is much cheaper to compare lengths than values,
|
|
// and all we need here is consistency.
|
|
// We respect this sorting in exprSwitch.walkCases.
|
|
a := v1
|
|
b := v2.(string)
|
|
if len(a) != len(b) {
|
|
return len(a) < len(b)
|
|
}
|
|
return a < b
|
|
}
|
|
|
|
Fatalf("caseClauseByConstVal passed bad clauses %v < %v", x[i].node.Left, x[j].node.Left)
|
|
return false
|
|
}
|
|
|
|
type caseClauseByType []caseClause
|
|
|
|
func (x caseClauseByType) Len() int { return len(x) }
|
|
func (x caseClauseByType) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
|
|
func (x caseClauseByType) Less(i, j int) bool {
|
|
c1, c2 := x[i], x[j]
|
|
// sort by hash code, then ordinal (for the rare case of hash collisions)
|
|
if c1.hash != c2.hash {
|
|
return c1.hash < c2.hash
|
|
}
|
|
return c1.ordinal < c2.ordinal
|
|
}
|
|
|
|
type constIntNodesByVal []*Node
|
|
|
|
func (x constIntNodesByVal) Len() int { return len(x) }
|
|
func (x constIntNodesByVal) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
|
|
func (x constIntNodesByVal) Less(i, j int) bool {
|
|
return x[i].Val().U.(*Mpint).Cmp(x[j].Val().U.(*Mpint)) < 0
|
|
}
|