go/usr/austin/eval/stmt.go
Austin Clements 709e75e3a1 Implement if, for (modulo ranges), break, continue, increment,
and decrement.  blockCompilers now form a tree the mimics the
nesting of scopes and provide convenient ways to enter and
exit scopes.  blockCompilers also track the break and continue
PC for the current block.  The statement testing interface now
works in lists of statements, which simplifies a bunch of
things.

R=rsc
APPROVED=rsc
DELTA=401  (335 added, 44 deleted, 22 changed)
OCL=32308
CL=32317
2009-07-28 14:37:06 -07:00

788 lines
17 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package eval
import (
"bignum";
"eval";
"log";
"os";
"go/ast";
"go/scanner";
"go/token";
"strconv";
)
/*
* Statement compiler
*/
type stmtCompiler struct {
*blockCompiler;
pos token.Position;
// err should be initialized to true before visiting and set
// to false when the statement is compiled successfully. The
// function invoking Visit should or this with
// blockCompiler.err. This is less error prone than setting
// blockCompiler.err on every failure path.
err bool;
}
func (a *stmtCompiler) diag(format string, args ...) {
a.diagAt(&a.pos, format, args);
}
/*
* Statement visitors
*/
func (a *stmtCompiler) DoBadStmt(s *ast.BadStmt) {
// Do nothing. Already reported by parser.
}
func (a *stmtCompiler) DoDeclStmt(s *ast.DeclStmt) {
log.Crash("Not implemented");
}
func (a *stmtCompiler) DoEmptyStmt(s *ast.EmptyStmt) {
a.err = false;
}
func (a *stmtCompiler) DoLabeledStmt(s *ast.LabeledStmt) {
log.Crash("Not implemented");
}
func (a *stmtCompiler) DoExprStmt(s *ast.ExprStmt) {
e := a.compileExpr(a.scope, s.X, false);
if e == nil {
return;
}
if e.exec == nil {
a.diag("%s cannot be used as expression statement", e.desc);
return;
}
exec := e.exec;
a.push(func(v *vm) {
exec(v.f);
});
a.err = false;
}
func (a *stmtCompiler) DoIncDecStmt(s *ast.IncDecStmt) {
l := a.compileExpr(a.scope, s.X, false);
if l == nil {
return;
}
if l.evalAddr == nil {
l.diag("cannot assign to %s", l.desc);
return;
}
if !(l.t.isInteger() || l.t.isFloat()) {
l.diagOpType(s.Tok, l.t);
return;
}
effect, l := l.extractEffect();
one := l.copy();
one.pos = s.Pos();
one.t = IdealIntType;
one.evalIdealInt = func() *bignum.Integer { return bignum.Int(1) };
var op token.Token;
switch s.Tok {
case token.INC:
op = token.ADD;
case token.DEC:
op = token.SUB;
default:
log.Crashf("Unexpected IncDec token %v", s.Tok);
}
binop := l.copy();
binop.pos = s.Pos();
binop.doBinaryExpr(op, l, one);
if binop.t == nil {
return;
}
assign := a.compileAssign(s.Pos(), l.t, []*exprCompiler{binop}, "", "");
if assign == nil {
log.Crashf("compileAssign type check failed");
}
lf := l.evalAddr;
a.push(func(v *vm) {
effect(v.f);
assign(lf(v.f), v.f);
});
a.err = false;
}
func (a *stmtCompiler) doAssign(s *ast.AssignStmt) {
bad := false;
// Compile right side first so we have the types when
// compiling the left side and so we don't see definitions
// made on the left side.
rs := make([]*exprCompiler, len(s.Rhs));
for i, re := range s.Rhs {
rs[i] = a.compileExpr(a.scope, re, false);
if rs[i] == nil {
bad = true;
continue;
}
}
errOp := "assignment";
if s.Tok == token.DEFINE {
errOp = "definition";
}
ac, ok := a.checkAssign(s.Pos(), rs, "assignment", "value");
if !ok {
bad = true;
}
// If this is a definition and the LHS is too big, we won't be
// able to produce the usual error message because we can't
// begin to infer the types of the LHS.
if s.Tok == token.DEFINE && len(s.Lhs) > len(ac.rmt.Elems) {
a.diag("not enough values for definition");
bad = true;
}
// Compile left side
ls := make([]*exprCompiler, len(s.Lhs));
nDefs := 0;
for i, le := range s.Lhs {
if s.Tok == token.DEFINE {
// Check that it's an identifier
ident, ok := le.(*ast.Ident);
if !ok {
a.diagAt(le, "left side of := must be a name");
bad = true;
// Suppress new defitions errors
nDefs++;
continue;
}
// Is this simply an assignment?
if _, ok := a.scope.defs[ident.Value]; ok {
goto assignment;
}
nDefs++;
// Compute the identifier's type from the RHS
// type. We use the computed MultiType so we
// don't have to worry about unpacking.
var lt Type;
switch {
case i >= len(ac.rmt.Elems):
// Define a placeholder. We already
// gave the "not enough" error above.
lt = nil;
case ac.rmt.Elems[i] == nil:
// We gave the error when we compiled
// the RHS.
lt = nil;
case ac.rmt.Elems[i].isIdeal():
// If the type is absent and the
// corresponding expression is a
// constant expression of ideal
// integer or ideal float type, the
// type of the declared variable is
// int or float respectively.
switch {
case ac.rmt.Elems[i].isInteger():
lt = IntType;
case ac.rmt.Elems[i].isFloat():
lt = FloatType;
default:
log.Crashf("unexpected ideal type %v", rs[i].t);
}
default:
lt = ac.rmt.Elems[i];
}
// Define identifier
v := a.scope.DefineVar(ident.Value, lt);
if v == nil {
log.Crashf("Failed to define %s", ident.Value);
}
}
assignment:
ls[i] = a.compileExpr(a.scope, le, false);
if ls[i] == nil {
bad = true;
continue;
}
if ls[i].evalAddr == nil {
ls[i].diag("cannot assign to %s", ls[i].desc);
bad = true;
continue;
}
}
// A short variable declaration may redeclare variables
// provided they were originally declared in the same block
// with the same type, and at least one of the variables is
// new.
if s.Tok == token.DEFINE && nDefs == 0 {
a.diag("at least one new variable must be declared");
return;
}
if bad {
return;
}
// Create assigner
var lt Type;
n := len(s.Lhs);
if n == 1 {
lt = ls[0].t;
} else {
lts := make([]Type, len(ls));
for i, l := range ls {
if l != nil {
lts[i] = l.t;
}
}
lt = NewMultiType(lts);
}
assign := ac.compile(lt);
if assign == nil {
return;
}
// Compile
if n == 1 {
// Don't need temporaries and can avoid []Value.
lf := ls[0].evalAddr;
a.push(func(v *vm) { assign(lf(v.f), v.f) });
} else if s.Tok == token.DEFINE && nDefs == n {
// Don't need temporaries
lfs := make([]func(*Frame) Value, n);
for i, l := range ls {
lfs[i] = l.evalAddr;
}
a.push(func(v *vm) {
dest := make([]Value, n);
for i, lf := range lfs {
dest[i] = lf(v.f);
}
assign(multiV(dest), v.f);
});
} else {
// Need temporaries
lmt := lt.(*MultiType);
lfs := make([]func(*Frame) Value, n);
for i, l := range ls {
lfs[i] = l.evalAddr;
}
a.push(func(v *vm) {
temp := lmt.Zero().(multiV);
assign(temp, v.f);
// Copy to destination
for i := 0; i < n; i ++ {
// TODO(austin) Need to evaluate LHS
// before RHS
lfs[i](v.f).Assign(temp[i]);
}
});
}
a.err = false;
}
var assignOpToOp = map[token.Token] token.Token {
token.ADD_ASSIGN : token.ADD,
token.SUB_ASSIGN : token.SUB,
token.MUL_ASSIGN : token.MUL,
token.QUO_ASSIGN : token.QUO,
token.REM_ASSIGN : token.REM,
token.AND_ASSIGN : token.AND,
token.OR_ASSIGN : token.OR,
token.XOR_ASSIGN : token.XOR,
token.SHL_ASSIGN : token.SHL,
token.SHR_ASSIGN : token.SHR,
token.AND_NOT_ASSIGN : token.AND_NOT,
}
func (a *stmtCompiler) doAssignOp(s *ast.AssignStmt) {
if len(s.Lhs) != 1 || len(s.Rhs) != 1 {
a.diag("tuple assignment cannot be combined with an arithmetic operation");
return;
}
l := a.compileExpr(a.scope, s.Lhs[0], false);
r := a.compileExpr(a.scope, s.Rhs[0], false);
if l == nil || r == nil {
return;
}
if l.evalAddr == nil {
l.diag("cannot assign to %s", l.desc);
return;
}
effect, l := l.extractEffect();
binop := r.copy();
binop.pos = s.TokPos;
binop.doBinaryExpr(assignOpToOp[s.Tok], l, r);
if binop.t == nil {
return;
}
assign := a.compileAssign(s.Pos(), l.t, []*exprCompiler{binop}, "assignment", "value");
if assign == nil {
log.Crashf("compileAssign type check failed");
}
lf := l.evalAddr;
a.push(func(v *vm) {
effect(v.f);
assign(lf(v.f), v.f);
});
a.err = false;
}
func (a *stmtCompiler) DoAssignStmt(s *ast.AssignStmt) {
switch s.Tok {
case token.ASSIGN, token.DEFINE:
a.doAssign(s);
default:
a.doAssignOp(s);
}
}
func (a *stmtCompiler) DoGoStmt(s *ast.GoStmt) {
log.Crash("Not implemented");
}
func (a *stmtCompiler) DoDeferStmt(s *ast.DeferStmt) {
log.Crash("Not implemented");
}
func (a *stmtCompiler) DoReturnStmt(s *ast.ReturnStmt) {
if a.fnType == nil {
a.diag("cannot return at the top level");
return;
}
// Supress return errors even if we fail to compile this
// return statement.
a.returned = true;
if len(s.Results) == 0 && (len(a.fnType.Out) == 0 || a.outVarsNamed) {
// Simple case. Simply exit from the function.
a.push(func(v *vm) { v.pc = ^uint(0) });
a.err = false;
return;
}
// Compile expressions
bad := false;
rs := make([]*exprCompiler, len(s.Results));
for i, re := range s.Results {
rs[i] = a.compileExpr(a.scope, re, false);
if rs[i] == nil {
bad = true;
}
}
if bad {
return;
}
// Create assigner
// However, if the expression list in the "return" statement
// is a single call to a multi-valued function, the values
// returned from the called function will be returned from
// this one.
assign := a.compileAssign(s.Pos(), NewMultiType(a.fnType.Out), rs, "return", "value");
if assign == nil {
return;
}
// XXX(Spec) "The result types of the current function and the
// called function must match." Match is fuzzy. It should
// say that they must be assignment compatible.
// Compile
start := len(a.fnType.In);
nout := len(a.fnType.Out);
a.push(func(v *vm) {
assign(multiV(v.activation.Vars[start:start+nout]), v.f);
v.pc = ^uint(0);
});
a.err = false;
}
func (a *stmtCompiler) DoBranchStmt(s *ast.BranchStmt) {
switch s.Tok {
case token.BREAK:
if s.Label != nil {
log.Crash("break with label not implemented");
}
bc := a.blockCompiler;
for ; bc != nil; bc = bc.parent {
if bc.breakPC != nil {
pc := bc.breakPC;
a.push(func(v *vm) { v.pc = *pc });
a.err = false;
return;
}
}
a.diag("break outside for loop, switch, or select");
case token.CONTINUE:
if s.Label != nil {
log.Crash("continue with label not implemented");
}
bc := a.blockCompiler;
for ; bc != nil; bc = bc.parent {
if bc.continuePC != nil {
pc := bc.continuePC;
a.push(func(v *vm) { v.pc = *pc });
a.err = false;
return;
}
}
a.diag("continue outside for loop");
case token.GOTO:
log.Crash("goto not implemented");
case token.FALLTHROUGH:
log.Crash("fallthrough not implemented");
default:
log.Crash("Unexpected branch token %v", s.Tok);
}
}
func (a *stmtCompiler) DoBlockStmt(s *ast.BlockStmt) {
bc := a.enterChild();
bc.compileStmts(s);
bc.exit();
a.returned = a.returned || bc.returned;
a.err = false;
}
func (a *stmtCompiler) DoIfStmt(s *ast.IfStmt) {
// The scope of any variables declared by [the init] statement
// extends to the end of the "if" statement and the variables
// are initialized once before the statement is entered.
//
// XXX(Spec) What this really wants to say is that there's an
// implicit scope wrapping every if, for, and switch
// statement. This is subtly different from what it actually
// says when there's a non-block else clause, because that
// else claus has to execute in a scope that is *not* the
// surrounding scope.
bc := a.blockCompiler;
bc = bc.enterChild();
defer bc.exit();
// Compile init statement, if any
if s.Init != nil {
bc.compileStmt(s.Init);
}
var elsePC, endPC uint;
// Compile condition, if any. If there is no condition, we
// fall through to the body.
bad := false;
if s.Cond != nil {
e := bc.compileExpr(bc.scope, s.Cond, false);
switch {
case e == nil:
bad = true;
case !e.t.isBoolean():
e.diag("'if' condition must be boolean\n\t%v", e.t);
bad = true;
default:
eval := e.asBool();
a.push(func(v *vm) {
if !eval(v.f) {
v.pc = elsePC;
}
});
}
}
// Compile body
body := bc.enterChild();
body.compileStmts(s.Body);
body.exit();
// Compile else
if s.Else != nil {
// Skip over else if we executed the body
a.push(func(v *vm) {
v.pc = endPC;
});
elsePC = a.nextPC();
bc.compileStmt(s.Else);
if body.returned && bc.returned {
a.returned = true;
}
} else {
elsePC = a.nextPC();
}
endPC = a.nextPC();
if !bad {
a.err = false;
}
}
func (a *stmtCompiler) DoCaseClause(s *ast.CaseClause) {
log.Crash("Not implemented");
}
func (a *stmtCompiler) DoSwitchStmt(s *ast.SwitchStmt) {
log.Crash("Not implemented");
}
func (a *stmtCompiler) DoTypeCaseClause(s *ast.TypeCaseClause) {
log.Crash("Not implemented");
}
func (a *stmtCompiler) DoTypeSwitchStmt(s *ast.TypeSwitchStmt) {
log.Crash("Not implemented");
}
func (a *stmtCompiler) DoCommClause(s *ast.CommClause) {
log.Crash("Not implemented");
}
func (a *stmtCompiler) DoSelectStmt(s *ast.SelectStmt) {
log.Crash("Not implemented");
}
func (a *stmtCompiler) DoForStmt(s *ast.ForStmt) {
// Compile init statement, if any
bc := a.blockCompiler;
if s.Init != nil {
bc = bc.enterChild();
defer bc.exit();
bc.compileStmt(s.Init);
}
var bodyPC, checkPC, endPC uint;
// Jump to condition check. We generate slightly less code by
// placing the condition check after the body.
a.push(func(v *vm) { v.pc = checkPC });
// Compile body
bodyPC = a.nextPC();
body := bc.enterChild();
body.breakPC = &endPC;
body.continuePC = &checkPC;
body.compileStmts(s.Body);
body.exit();
// Compile post, if any
if s.Post != nil {
// TODO(austin) Does the parser disallow short
// declarations in s.Post?
bc.compileStmt(s.Post);
}
// Compile condition check, if any
bad := false;
checkPC = a.nextPC();
if s.Cond == nil {
// If the condition is absent, it is equivalent to true.
a.push(func(v *vm) { v.pc = bodyPC });
} else {
e := bc.compileExpr(bc.scope, s.Cond, false);
switch {
case e == nil:
bad = true;
case !e.t.isBoolean():
a.diag("'for' condition must be boolean\n\t%v", e.t);
bad = true;
default:
eval := e.asBool();
a.push(func(v *vm) {
if eval(v.f) {
v.pc = bodyPC;
}
});
}
}
endPC = a.nextPC();
if !bad {
a.err = false;
}
}
func (a *stmtCompiler) DoRangeStmt(s *ast.RangeStmt) {
log.Crash("Not implemented");
}
/*
* Block compiler
*/
func (a *blockCompiler) compileStmt(s ast.Stmt) {
if a.child != nil {
log.Crash("Child scope still entered");
}
sc := &stmtCompiler{a, s.Pos(), true};
s.Visit(sc);
if a.child != nil {
log.Crash("Forgot to exit child scope");
}
a.err = a.err || sc.err;
}
func (a *blockCompiler) compileStmts(block *ast.BlockStmt) {
for i, sub := range block.List {
a.compileStmt(sub);
}
}
func (a *blockCompiler) enterChild() *blockCompiler {
if a.child != nil {
log.Crash("Failed to exit child block before entering another child");
}
blockScope := a.scope.Fork();
bc := &blockCompiler{
funcCompiler: a.funcCompiler,
scope: blockScope,
returned: false,
parent: a,
};
a.child = bc;
a.push(func(v *vm) {
v.f = blockScope.NewFrame(v.f);
});
return bc;
}
func (a *blockCompiler) exit() {
if a.parent == nil {
log.Crash("Cannot exit top-level block");
}
if a.parent.child != a {
log.Crash("Double exit of block");
}
if a.child != nil {
log.Crash("Exit of parent block without exit of child block");
}
a.push(func(v *vm) {
v.f = v.f.Outer;
});
a.parent.child = nil;
}
/*
* Function compiler
*/
func (a *compiler) compileFunc(scope *Scope, decl *FuncDecl, body *ast.BlockStmt) (func (f *Frame) Func) {
// Create body scope
//
// The scope of a parameter or result is the body of the
// corresponding function.
bodyScope := scope.Fork();
for i, t := range decl.Type.In {
bodyScope.DefineVar(decl.InNames[i].Value, t);
}
for i, t := range decl.Type.Out {
if decl.OutNames[i] != nil {
bodyScope.DefineVar(decl.OutNames[i].Value, t);
} else {
// TODO(austin) Not technically a temp
bodyScope.DefineTemp(t);
}
}
// Create block context
fc := &funcCompiler{a, decl.Type, false, newCodeBuf(), false};
if len(decl.OutNames) > 0 && decl.OutNames[0] != nil {
fc.outVarsNamed = true;
}
bc := &blockCompiler{
funcCompiler: fc,
scope: bodyScope,
returned: false,
};
// Compile body
bc.compileStmts(body);
// TODO(austin) Check that all gotos were linked?
if fc.err {
return nil;
}
// Check that the body returned if necessary. We only check
// this if there were no errors compiling the body.
if len(decl.Type.Out) > 0 && !bc.returned {
// XXX(Spec) Not specified.
a.diagAt(&body.Rbrace, "function ends without a return statement");
return nil;
}
code := fc.get();
return func(f *Frame) Func { return &evalFunc{bodyScope, f, code} };
}
/*
* Testing interface
*/
type Stmt struct {
f func (f *Frame);
}
func (s *Stmt) Exec(f *Frame) {
s.f(f);
}
func CompileStmts(scope *Scope, stmts []ast.Stmt) (*Stmt, os.Error) {
errors := scanner.NewErrorVector();
cc := &compiler{errors};
fc := &funcCompiler{cc, nil, false, newCodeBuf(), false};
bc := &blockCompiler{
funcCompiler: fc,
scope: scope,
returned: false
};
out := make([]*Stmt, len(stmts));
for i, stmt := range stmts {
bc.compileStmt(stmt);
}
if fc.err {
return nil, errors.GetError(scanner.Sorted);
}
code := fc.get();
return &Stmt{func(f *Frame) { code.exec(f); }}, nil;
}