Austin Clements 77527a316b cmd/compile: add go:notinheap type pragma
This adds a //go:notinheap pragma for declarations of types that must
not be heap allocated. We ensure these rules by disallowing new(T),
make([]T), append([]T), or implicit allocation of T, by disallowing
conversions to notinheap types, and by propagating notinheap to any
struct or array that contains notinheap elements.

The utility of this pragma is that we can eliminate write barriers for
writes to pointers to go:notinheap types, since the write barrier is
guaranteed to be a no-op. This will let us mark several scheduler and
memory allocator structures as go:notinheap, which will let us
disallow write barriers in the scheduler and memory allocator much
more thoroughly and also eliminate some problematic hybrid write
barriers.

This also makes go:nowritebarrierrec and go:yeswritebarrierrec much
more powerful. Currently we use go:nowritebarrier all over the place,
but it's almost never what you actually want: when write barriers are
illegal, they're typically illegal for a whole dynamic scope. Partly
this is because go:nowritebarrier has been around longer, but it's
also because go:nowritebarrierrec couldn't be used in situations that
had no-op write barriers or where some nested scope did allow write
barriers. go:notinheap eliminates many no-op write barriers and
go:yeswritebarrierrec makes it possible to opt back in to write
barriers, so these two changes will let us use go:nowritebarrierrec
far more liberally.

This updates #13386, which is about controlling pointers from non-GC'd
memory to GC'd memory. That would require some additional pragma (or
pragmas), but could build on this pragma.

Change-Id: I6314f8f4181535dd166887c9ec239977b54940bd
Reviewed-on: https://go-review.googlesource.com/30939
Reviewed-by: Keith Randall <khr@golang.org>
Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2016-10-15 17:58:14 +00:00

2227 lines
48 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"bytes"
"cmd/internal/obj"
"crypto/md5"
"encoding/binary"
"fmt"
"os"
"runtime/debug"
"sort"
"strconv"
"strings"
"unicode"
"unicode/utf8"
)
type Error struct {
lineno int32
msg string
}
var errors []Error
func errorexit() {
flusherrors()
if outfile != "" {
os.Remove(outfile)
}
os.Exit(2)
}
func adderrorname(n *Node) {
if n.Op != ODOT {
return
}
old := fmt.Sprintf("%v: undefined: %v\n", n.Line(), n.Left)
if len(errors) > 0 && errors[len(errors)-1].lineno == n.Lineno && errors[len(errors)-1].msg == old {
errors[len(errors)-1].msg = fmt.Sprintf("%v: undefined: %v in %v\n", n.Line(), n.Left, n)
}
}
func adderr(line int32, format string, args ...interface{}) {
errors = append(errors, Error{
lineno: line,
msg: fmt.Sprintf("%v: %s\n", linestr(line), fmt.Sprintf(format, args...)),
})
}
// byLineno sorts errors by lineno.
type byLineno []Error
func (x byLineno) Len() int { return len(x) }
func (x byLineno) Less(i, j int) bool { return x[i].lineno < x[j].lineno }
func (x byLineno) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
func flusherrors() {
Ctxt.Bso.Flush()
if len(errors) == 0 {
return
}
sort.Stable(byLineno(errors))
for i := 0; i < len(errors); i++ {
if i == 0 || errors[i].msg != errors[i-1].msg {
fmt.Printf("%s", errors[i].msg)
}
}
errors = errors[:0]
}
func hcrash() {
if Debug['h'] != 0 {
flusherrors()
if outfile != "" {
os.Remove(outfile)
}
var x *int
*x = 0
}
}
func linestr(line int32) string {
return Ctxt.Line(int(line))
}
// lasterror keeps track of the most recently issued error.
// It is used to avoid multiple error messages on the same
// line.
var lasterror struct {
syntax int32 // line of last syntax error
other int32 // line of last non-syntax error
msg string // error message of last non-syntax error
}
func yyerrorl(line int32, format string, args ...interface{}) {
msg := fmt.Sprintf(format, args...)
if strings.HasPrefix(msg, "syntax error") {
nsyntaxerrors++
// only one syntax error per line, no matter what error
if lasterror.syntax == line {
return
}
lasterror.syntax = line
} else {
// only one of multiple equal non-syntax errors per line
// (flusherrors shows only one of them, so we filter them
// here as best as we can (they may not appear in order)
// so that we don't count them here and exit early, and
// then have nothing to show for.)
if lasterror.other == line && lasterror.msg == msg {
return
}
lasterror.other = line
lasterror.msg = msg
}
adderr(line, "%s", msg)
hcrash()
nerrors++
if nsavederrors+nerrors >= 10 && Debug['e'] == 0 {
flusherrors()
fmt.Printf("%v: too many errors\n", linestr(line))
errorexit()
}
}
func yyerror(format string, args ...interface{}) {
yyerrorl(lineno, format, args...)
}
func Warn(fmt_ string, args ...interface{}) {
adderr(lineno, fmt_, args...)
hcrash()
}
func Warnl(line int32, fmt_ string, args ...interface{}) {
adderr(line, fmt_, args...)
if Debug['m'] != 0 {
flusherrors()
}
}
func Fatalf(fmt_ string, args ...interface{}) {
flusherrors()
fmt.Printf("%v: internal compiler error: ", linestr(lineno))
fmt.Printf(fmt_, args...)
fmt.Printf("\n")
// If this is a released compiler version, ask for a bug report.
if strings.HasPrefix(obj.Version, "release") {
fmt.Printf("\n")
fmt.Printf("Please file a bug report including a short program that triggers the error.\n")
fmt.Printf("https://golang.org/issue/new\n")
} else {
// Not a release; dump a stack trace, too.
fmt.Println()
os.Stdout.Write(debug.Stack())
fmt.Println()
}
hcrash()
errorexit()
}
func linehistpragma(file string) {
if Debug['i'] != 0 {
fmt.Printf("pragma %s at line %v\n", file, linestr(lexlineno))
}
Ctxt.AddImport(file)
}
func linehistpush(file string) {
if Debug['i'] != 0 {
fmt.Printf("import %s at line %v\n", file, linestr(lexlineno))
}
Ctxt.LineHist.Push(int(lexlineno), file)
}
func linehistpop() {
if Debug['i'] != 0 {
fmt.Printf("end of import at line %v\n", linestr(lexlineno))
}
Ctxt.LineHist.Pop(int(lexlineno))
}
func linehistupdate(file string, off int) {
if Debug['i'] != 0 {
fmt.Printf("line %s at line %v\n", file, linestr(lexlineno))
}
Ctxt.LineHist.Update(int(lexlineno), file, off)
}
func setlineno(n *Node) int32 {
lno := lineno
if n != nil {
switch n.Op {
case ONAME, OTYPE, OPACK:
break
case OLITERAL:
if n.Sym != nil {
break
}
fallthrough
default:
lineno = n.Lineno
if lineno == 0 {
if Debug['K'] != 0 {
Warn("setlineno: line 0")
}
lineno = lno
}
}
}
return lno
}
func lookup(name string) *Sym {
return localpkg.Lookup(name)
}
func lookupf(format string, a ...interface{}) *Sym {
return lookup(fmt.Sprintf(format, a...))
}
func lookupBytes(name []byte) *Sym {
return localpkg.LookupBytes(name)
}
// lookupN looks up the symbol starting with prefix and ending with
// the decimal n. If prefix is too long, lookupN panics.
func lookupN(prefix string, n int) *Sym {
var buf [20]byte // plenty long enough for all current users
copy(buf[:], prefix)
b := strconv.AppendInt(buf[:len(prefix)], int64(n), 10)
return lookupBytes(b)
}
// autolabel generates a new Name node for use with
// an automatically generated label.
// prefix is a short mnemonic (e.g. ".s" for switch)
// to help with debugging.
// It should begin with "." to avoid conflicts with
// user labels.
func autolabel(prefix string) *Node {
if prefix[0] != '.' {
Fatalf("autolabel prefix must start with '.', have %q", prefix)
}
fn := Curfn
if Curfn == nil {
Fatalf("autolabel outside function")
}
n := fn.Func.Label
fn.Func.Label++
return newname(lookupN(prefix, int(n)))
}
var initSyms []*Sym
var nopkg = &Pkg{
Syms: make(map[string]*Sym),
}
func (pkg *Pkg) Lookup(name string) *Sym {
if pkg == nil {
pkg = nopkg
}
if s := pkg.Syms[name]; s != nil {
return s
}
s := &Sym{
Name: name,
Pkg: pkg,
}
if name == "init" {
initSyms = append(initSyms, s)
}
pkg.Syms[name] = s
return s
}
func (pkg *Pkg) LookupBytes(name []byte) *Sym {
if pkg == nil {
pkg = nopkg
}
if s := pkg.Syms[string(name)]; s != nil {
return s
}
str := internString(name)
return pkg.Lookup(str)
}
func Pkglookup(name string, pkg *Pkg) *Sym {
return pkg.Lookup(name)
}
func restrictlookup(name string, pkg *Pkg) *Sym {
if !exportname(name) && pkg != localpkg {
yyerror("cannot refer to unexported name %s.%s", pkg.Name, name)
}
return Pkglookup(name, pkg)
}
// find all the exported symbols in package opkg
// and make them available in the current package
func importdot(opkg *Pkg, pack *Node) {
var s1 *Sym
var pkgerror string
n := 0
for _, s := range opkg.Syms {
if s.Def == nil {
continue
}
if !exportname(s.Name) || strings.ContainsRune(s.Name, 0xb7) { // 0xb7 = center dot
continue
}
s1 = lookup(s.Name)
if s1.Def != nil {
pkgerror = fmt.Sprintf("during import %q", opkg.Path)
redeclare(s1, pkgerror)
continue
}
s1.Def = s.Def
s1.Block = s.Block
if s1.Def.Name == nil {
Dump("s1def", s1.Def)
Fatalf("missing Name")
}
s1.Def.Name.Pack = pack
s1.Origpkg = opkg
n++
}
if n == 0 {
// can't possibly be used - there were no symbols
yyerrorl(pack.Lineno, "imported and not used: %q", opkg.Path)
}
}
func nod(op Op, nleft *Node, nright *Node) *Node {
n := new(Node)
n.Op = op
n.Left = nleft
n.Right = nright
n.Lineno = lineno
n.Xoffset = BADWIDTH
n.Orig = n
switch op {
case OCLOSURE, ODCLFUNC:
n.Func = new(Func)
n.Func.FCurfn = Curfn
case ONAME:
n.Name = new(Name)
n.Name.Param = new(Param)
case OLABEL, OPACK:
n.Name = new(Name)
}
if n.Name != nil {
n.Name.Curfn = Curfn
}
return n
}
// nodSym makes a Node with Op op and with the Left field set to left
// and the Sym field set to sym. This is for ODOT and friends.
func nodSym(op Op, left *Node, sym *Sym) *Node {
n := nod(op, left, nil)
n.Sym = sym
return n
}
func saveorignode(n *Node) {
if n.Orig != nil {
return
}
norig := nod(n.Op, nil, nil)
*norig = *n
n.Orig = norig
}
// methcmp sorts by symbol, then by package path for unexported symbols.
type methcmp []*Field
func (x methcmp) Len() int { return len(x) }
func (x methcmp) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
func (x methcmp) Less(i, j int) bool {
a := x[i]
b := x[j]
if a.Sym == nil && b.Sym == nil {
return false
}
if a.Sym == nil {
return true
}
if b.Sym == nil {
return false
}
if a.Sym.Name != b.Sym.Name {
return a.Sym.Name < b.Sym.Name
}
if !exportname(a.Sym.Name) {
if a.Sym.Pkg.Path != b.Sym.Pkg.Path {
return a.Sym.Pkg.Path < b.Sym.Pkg.Path
}
}
return false
}
func nodintconst(v int64) *Node {
c := nod(OLITERAL, nil, nil)
c.Addable = true
c.SetVal(Val{new(Mpint)})
c.Val().U.(*Mpint).SetInt64(v)
c.Type = Types[TIDEAL]
ullmancalc(c)
return c
}
func nodfltconst(v *Mpflt) *Node {
c := nod(OLITERAL, nil, nil)
c.Addable = true
c.SetVal(Val{newMpflt()})
c.Val().U.(*Mpflt).Set(v)
c.Type = Types[TIDEAL]
ullmancalc(c)
return c
}
func Nodconst(n *Node, t *Type, v int64) {
*n = Node{}
n.Op = OLITERAL
n.Addable = true
ullmancalc(n)
n.SetVal(Val{new(Mpint)})
n.Val().U.(*Mpint).SetInt64(v)
n.Type = t
if t.IsFloat() {
Fatalf("nodconst: bad type %v", t)
}
}
func nodnil() *Node {
c := nodintconst(0)
c.SetVal(Val{new(NilVal)})
c.Type = Types[TNIL]
return c
}
func nodbool(b bool) *Node {
c := nodintconst(0)
c.SetVal(Val{b})
c.Type = idealbool
return c
}
// treecopy recursively copies n, with the exception of
// ONAME, OLITERAL, OTYPE, and non-iota ONONAME leaves.
// Copies of iota ONONAME nodes are assigned the current
// value of iota_. If lineno != 0, it sets the line number
// of newly allocated nodes to lineno.
func treecopy(n *Node, lineno int32) *Node {
if n == nil {
return nil
}
switch n.Op {
default:
m := *n
m.Orig = &m
m.Left = treecopy(n.Left, lineno)
m.Right = treecopy(n.Right, lineno)
m.List.Set(listtreecopy(n.List.Slice(), lineno))
if lineno != 0 {
m.Lineno = lineno
}
if m.Name != nil && n.Op != ODCLFIELD {
Dump("treecopy", n)
Fatalf("treecopy Name")
}
return &m
case ONONAME:
if n.Sym == lookup("iota") {
// Not sure yet whether this is the real iota,
// but make a copy of the Node* just in case,
// so that all the copies of this const definition
// don't have the same iota value.
m := *n
if lineno != 0 {
m.Lineno = lineno
}
m.Name = new(Name)
*m.Name = *n.Name
m.Name.Iota = iota_
return &m
}
return n
case OPACK:
// OPACK nodes are never valid in const value declarations,
// but allow them like any other declared symbol to avoid
// crashing (golang.org/issue/11361).
fallthrough
case ONAME, OLITERAL, OTYPE:
return n
}
}
// isnil reports whether n represents the universal untyped zero value "nil".
func isnil(n *Node) bool {
// Check n.Orig because constant propagation may produce typed nil constants,
// which don't exist in the Go spec.
return Isconst(n.Orig, CTNIL)
}
func isptrto(t *Type, et EType) bool {
if t == nil {
return false
}
if !t.IsPtr() {
return false
}
t = t.Elem()
if t == nil {
return false
}
if t.Etype != et {
return false
}
return true
}
func isblank(n *Node) bool {
if n == nil {
return false
}
return isblanksym(n.Sym)
}
func isblanksym(s *Sym) bool {
return s != nil && s.Name == "_"
}
// methtype returns the underlying type, if any,
// that owns methods with receiver parameter t.
// The result is either a named type or an anonymous struct.
func methtype(t *Type) *Type {
if t == nil {
return nil
}
// Strip away pointer if it's there.
if t.IsPtr() {
if t.Sym != nil {
return nil
}
t = t.Elem()
if t == nil {
return nil
}
}
// Must be a named type or anonymous struct.
if t.Sym == nil && !t.IsStruct() {
return nil
}
// Check types.
if issimple[t.Etype] {
return t
}
switch t.Etype {
case TARRAY, TCHAN, TFUNC, TMAP, TSLICE, TSTRING, TSTRUCT:
return t
}
return nil
}
func cplxsubtype(et EType) EType {
switch et {
case TCOMPLEX64:
return TFLOAT32
case TCOMPLEX128:
return TFLOAT64
}
Fatalf("cplxsubtype: %v\n", et)
return 0
}
// eqtype reports whether t1 and t2 are identical, following the spec rules.
//
// Any cyclic type must go through a named type, and if one is
// named, it is only identical to the other if they are the same
// pointer (t1 == t2), so there's no chance of chasing cycles
// ad infinitum, so no need for a depth counter.
func eqtype(t1, t2 *Type) bool {
return eqtype1(t1, t2, true, nil)
}
// eqtypeIgnoreTags is like eqtype but it ignores struct tags for struct identity.
func eqtypeIgnoreTags(t1, t2 *Type) bool {
return eqtype1(t1, t2, false, nil)
}
type typePair struct {
t1 *Type
t2 *Type
}
func eqtype1(t1, t2 *Type, cmpTags bool, assumedEqual map[typePair]struct{}) bool {
if t1 == t2 {
return true
}
if t1 == nil || t2 == nil || t1.Etype != t2.Etype || t1.Broke || t2.Broke {
return false
}
if t1.Sym != nil || t2.Sym != nil {
// Special case: we keep byte/uint8 and rune/int32
// separate for error messages. Treat them as equal.
switch t1.Etype {
case TUINT8:
return (t1 == Types[TUINT8] || t1 == bytetype) && (t2 == Types[TUINT8] || t2 == bytetype)
case TINT32:
return (t1 == Types[TINT32] || t1 == runetype) && (t2 == Types[TINT32] || t2 == runetype)
default:
return false
}
}
if assumedEqual == nil {
assumedEqual = make(map[typePair]struct{})
} else if _, ok := assumedEqual[typePair{t1, t2}]; ok {
return true
}
assumedEqual[typePair{t1, t2}] = struct{}{}
switch t1.Etype {
case TINTER, TSTRUCT:
t1, i1 := iterFields(t1)
t2, i2 := iterFields(t2)
for ; t1 != nil && t2 != nil; t1, t2 = i1.Next(), i2.Next() {
if t1.Sym != t2.Sym || t1.Embedded != t2.Embedded || !eqtype1(t1.Type, t2.Type, cmpTags, assumedEqual) || cmpTags && t1.Note != t2.Note {
return false
}
}
if t1 == nil && t2 == nil {
return true
}
return false
case TFUNC:
// Check parameters and result parameters for type equality.
// We intentionally ignore receiver parameters for type
// equality, because they're never relevant.
for _, f := range paramsResults {
// Loop over fields in structs, ignoring argument names.
ta, ia := iterFields(f(t1))
tb, ib := iterFields(f(t2))
for ; ta != nil && tb != nil; ta, tb = ia.Next(), ib.Next() {
if ta.Isddd != tb.Isddd || !eqtype1(ta.Type, tb.Type, cmpTags, assumedEqual) {
return false
}
}
if ta != nil || tb != nil {
return false
}
}
return true
case TARRAY:
if t1.NumElem() != t2.NumElem() {
return false
}
case TCHAN:
if t1.ChanDir() != t2.ChanDir() {
return false
}
case TMAP:
if !eqtype1(t1.Key(), t2.Key(), cmpTags, assumedEqual) {
return false
}
return eqtype1(t1.Val(), t2.Val(), cmpTags, assumedEqual)
}
return eqtype1(t1.Elem(), t2.Elem(), cmpTags, assumedEqual)
}
// Are t1 and t2 equal struct types when field names are ignored?
// For deciding whether the result struct from g can be copied
// directly when compiling f(g()).
func eqtypenoname(t1 *Type, t2 *Type) bool {
if t1 == nil || t2 == nil || !t1.IsStruct() || !t2.IsStruct() {
return false
}
f1, i1 := iterFields(t1)
f2, i2 := iterFields(t2)
for {
if !eqtype(f1.Type, f2.Type) {
return false
}
if f1 == nil {
return true
}
f1 = i1.Next()
f2 = i2.Next()
}
}
// Is type src assignment compatible to type dst?
// If so, return op code to use in conversion.
// If not, return 0.
func assignop(src *Type, dst *Type, why *string) Op {
if why != nil {
*why = ""
}
// TODO(rsc,lvd): This behaves poorly in the presence of inlining.
// https://golang.org/issue/2795
if safemode && importpkg == nil && src != nil && src.Etype == TUNSAFEPTR {
yyerror("cannot use unsafe.Pointer")
errorexit()
}
if src == dst {
return OCONVNOP
}
if src == nil || dst == nil || src.Etype == TFORW || dst.Etype == TFORW || src.Orig == nil || dst.Orig == nil {
return 0
}
// 1. src type is identical to dst.
if eqtype(src, dst) {
return OCONVNOP
}
// 2. src and dst have identical underlying types
// and either src or dst is not a named type or
// both are empty interface types.
// For assignable but different non-empty interface types,
// we want to recompute the itab.
if eqtype(src.Orig, dst.Orig) && (src.Sym == nil || dst.Sym == nil || src.IsEmptyInterface()) {
return OCONVNOP
}
// 3. dst is an interface type and src implements dst.
if dst.IsInterface() && src.Etype != TNIL {
var missing, have *Field
var ptr int
if implements(src, dst, &missing, &have, &ptr) {
return OCONVIFACE
}
// we'll have complained about this method anyway, suppress spurious messages.
if have != nil && have.Sym == missing.Sym && (have.Type.Broke || missing.Type.Broke) {
return OCONVIFACE
}
if why != nil {
if isptrto(src, TINTER) {
*why = fmt.Sprintf(":\n\t%v is pointer to interface, not interface", src)
} else if have != nil && have.Sym == missing.Sym && have.Nointerface {
*why = fmt.Sprintf(":\n\t%v does not implement %v (%v method is marked 'nointerface')", src, dst, missing.Sym)
} else if have != nil && have.Sym == missing.Sym {
*why = fmt.Sprintf(":\n\t%v does not implement %v (wrong type for %v method)\n"+
"\t\thave %v%0S\n\t\twant %v%0S", src, dst, missing.Sym, have.Sym, have.Type, missing.Sym, missing.Type)
} else if ptr != 0 {
*why = fmt.Sprintf(":\n\t%v does not implement %v (%v method has pointer receiver)", src, dst, missing.Sym)
} else if have != nil {
*why = fmt.Sprintf(":\n\t%v does not implement %v (missing %v method)\n"+
"\t\thave %v%0S\n\t\twant %v%0S", src, dst, missing.Sym, have.Sym, have.Type, missing.Sym, missing.Type)
} else {
*why = fmt.Sprintf(":\n\t%v does not implement %v (missing %v method)", src, dst, missing.Sym)
}
}
return 0
}
if isptrto(dst, TINTER) {
if why != nil {
*why = fmt.Sprintf(":\n\t%v is pointer to interface, not interface", dst)
}
return 0
}
if src.IsInterface() && dst.Etype != TBLANK {
var missing, have *Field
var ptr int
if why != nil && implements(dst, src, &missing, &have, &ptr) {
*why = ": need type assertion"
}
return 0
}
// 4. src is a bidirectional channel value, dst is a channel type,
// src and dst have identical element types, and
// either src or dst is not a named type.
if src.IsChan() && src.ChanDir() == Cboth && dst.IsChan() {
if eqtype(src.Elem(), dst.Elem()) && (src.Sym == nil || dst.Sym == nil) {
return OCONVNOP
}
}
// 5. src is the predeclared identifier nil and dst is a nillable type.
if src.Etype == TNIL {
switch dst.Etype {
case TPTR32,
TPTR64,
TFUNC,
TMAP,
TCHAN,
TINTER,
TSLICE:
return OCONVNOP
}
}
// 6. rule about untyped constants - already converted by defaultlit.
// 7. Any typed value can be assigned to the blank identifier.
if dst.Etype == TBLANK {
return OCONVNOP
}
return 0
}
// Can we convert a value of type src to a value of type dst?
// If so, return op code to use in conversion (maybe OCONVNOP).
// If not, return 0.
func convertop(src *Type, dst *Type, why *string) Op {
if why != nil {
*why = ""
}
if src == dst {
return OCONVNOP
}
if src == nil || dst == nil {
return 0
}
// Conversions from regular to go:notinheap are not allowed
// (unless it's unsafe.Pointer). This is a runtime-specific
// rule.
if src.IsPtr() && dst.IsPtr() && dst.Elem().NotInHeap && !src.Elem().NotInHeap {
if why != nil {
*why = fmt.Sprintf(":\n\t%v is go:notinheap, but %v is not", dst.Elem(), src.Elem())
}
return 0
}
// 1. src can be assigned to dst.
op := assignop(src, dst, why)
if op != 0 {
return op
}
// The rules for interfaces are no different in conversions
// than assignments. If interfaces are involved, stop now
// with the good message from assignop.
// Otherwise clear the error.
if src.IsInterface() || dst.IsInterface() {
return 0
}
if why != nil {
*why = ""
}
// 2. Ignoring struct tags, src and dst have identical underlying types.
if eqtypeIgnoreTags(src.Orig, dst.Orig) {
return OCONVNOP
}
// 3. src and dst are unnamed pointer types and, ignoring struct tags,
// their base types have identical underlying types.
if src.IsPtr() && dst.IsPtr() && src.Sym == nil && dst.Sym == nil {
if eqtypeIgnoreTags(src.Elem().Orig, dst.Elem().Orig) {
return OCONVNOP
}
}
// 4. src and dst are both integer or floating point types.
if (src.IsInteger() || src.IsFloat()) && (dst.IsInteger() || dst.IsFloat()) {
if simtype[src.Etype] == simtype[dst.Etype] {
return OCONVNOP
}
return OCONV
}
// 5. src and dst are both complex types.
if src.IsComplex() && dst.IsComplex() {
if simtype[src.Etype] == simtype[dst.Etype] {
return OCONVNOP
}
return OCONV
}
// 6. src is an integer or has type []byte or []rune
// and dst is a string type.
if src.IsInteger() && dst.IsString() {
return ORUNESTR
}
if src.IsSlice() && dst.IsString() {
if src.Elem().Etype == bytetype.Etype {
return OARRAYBYTESTR
}
if src.Elem().Etype == runetype.Etype {
return OARRAYRUNESTR
}
}
// 7. src is a string and dst is []byte or []rune.
// String to slice.
if src.IsString() && dst.IsSlice() {
if dst.Elem().Etype == bytetype.Etype {
return OSTRARRAYBYTE
}
if dst.Elem().Etype == runetype.Etype {
return OSTRARRAYRUNE
}
}
// 8. src is a pointer or uintptr and dst is unsafe.Pointer.
if (src.IsPtr() || src.Etype == TUINTPTR) && dst.Etype == TUNSAFEPTR {
return OCONVNOP
}
// 9. src is unsafe.Pointer and dst is a pointer or uintptr.
if src.Etype == TUNSAFEPTR && (dst.IsPtr() || dst.Etype == TUINTPTR) {
return OCONVNOP
}
return 0
}
func assignconv(n *Node, t *Type, context string) *Node {
return assignconvfn(n, t, func() string { return context })
}
// Convert node n for assignment to type t.
func assignconvfn(n *Node, t *Type, context func() string) *Node {
if n == nil || n.Type == nil || n.Type.Broke {
return n
}
if t.Etype == TBLANK && n.Type.Etype == TNIL {
yyerror("use of untyped nil")
}
old := n
old.Diag++ // silence errors about n; we'll issue one below
n = defaultlit(n, t)
old.Diag--
if t.Etype == TBLANK {
return n
}
// Convert ideal bool from comparison to plain bool
// if the next step is non-bool (like interface{}).
if n.Type == idealbool && !t.IsBoolean() {
if n.Op == ONAME || n.Op == OLITERAL {
r := nod(OCONVNOP, n, nil)
r.Type = Types[TBOOL]
r.Typecheck = 1
r.Implicit = true
n = r
}
}
if eqtype(n.Type, t) {
return n
}
var why string
op := assignop(n.Type, t, &why)
if op == 0 {
yyerror("cannot use %L as type %v in %s%s", n, t, context(), why)
op = OCONV
}
r := nod(op, n, nil)
r.Type = t
r.Typecheck = 1
r.Implicit = true
r.Orig = n.Orig
return r
}
// IsMethod reports whether n is a method.
// n must be a function or a method.
func (n *Node) IsMethod() bool {
return n.Type.Recv() != nil
}
// SliceBounds returns n's slice bounds: low, high, and max in expr[low:high:max].
// n must be a slice expression. max is nil if n is a simple slice expression.
func (n *Node) SliceBounds() (low, high, max *Node) {
switch n.Op {
case OSLICE, OSLICEARR, OSLICESTR:
if n.Right == nil {
return nil, nil, nil
}
if n.Right.Op != OKEY {
Fatalf("SliceBounds right %s", opnames[n.Right.Op])
}
return n.Right.Left, n.Right.Right, nil
case OSLICE3, OSLICE3ARR:
if n.Right.Op != OKEY || n.Right.Right.Op != OKEY {
Fatalf("SliceBounds right %s %s", opnames[n.Right.Op], opnames[n.Right.Right.Op])
}
return n.Right.Left, n.Right.Right.Left, n.Right.Right.Right
}
Fatalf("SliceBounds op %v: %v", n.Op, n)
return nil, nil, nil
}
// SetSliceBounds sets n's slice bounds, where n is a slice expression.
// n must be a slice expression. If max is non-nil, n must be a full slice expression.
func (n *Node) SetSliceBounds(low, high, max *Node) {
switch n.Op {
case OSLICE, OSLICEARR, OSLICESTR:
if max != nil {
Fatalf("SetSliceBounds %v given three bounds", n.Op)
}
if n.Right == nil {
n.Right = nod(OKEY, low, high)
return
}
n.Right.Left = low
n.Right.Right = high
return
case OSLICE3, OSLICE3ARR:
if n.Right == nil {
n.Right = nod(OKEY, low, nod(OKEY, high, max))
}
n.Right.Left = low
n.Right.Right.Left = high
n.Right.Right.Right = max
return
}
Fatalf("SetSliceBounds op %v: %v", n.Op, n)
}
// IsSlice3 reports whether o is a slice3 op (OSLICE3, OSLICE3ARR).
// o must be a slicing op.
func (o Op) IsSlice3() bool {
switch o {
case OSLICE, OSLICEARR, OSLICESTR:
return false
case OSLICE3, OSLICE3ARR:
return true
}
Fatalf("IsSlice3 op %v", o)
return false
}
func syslook(name string) *Node {
s := Pkglookup(name, Runtimepkg)
if s == nil || s.Def == nil {
Fatalf("syslook: can't find runtime.%s", name)
}
return s.Def
}
// typehash computes a hash value for type t to use in type switch
// statements.
func typehash(t *Type) uint32 {
// t.tconv(FmtLeft | FmtUnsigned) already contains all the necessary logic
// to generate a representation that completely describes the type, so using
// it here avoids duplicating that code.
// See the comments in exprSwitch.checkDupCases.
p := t.tconv(FmtLeft | FmtUnsigned)
// Using MD5 is overkill, but reduces accidental collisions.
h := md5.Sum([]byte(p))
return binary.LittleEndian.Uint32(h[:4])
}
// ptrto returns the Type *t.
// The returned struct must not be modified.
func ptrto(t *Type) *Type {
if Tptr == 0 {
Fatalf("ptrto: no tptr")
}
if t == nil {
Fatalf("ptrto: nil ptr")
}
return typPtr(t)
}
func frame(context int) {
if context != 0 {
fmt.Printf("--- external frame ---\n")
for _, n := range externdcl {
printframenode(n)
}
return
}
if Curfn != nil {
fmt.Printf("--- %v frame ---\n", Curfn.Func.Nname.Sym)
for _, ln := range Curfn.Func.Dcl {
printframenode(ln)
}
}
}
func printframenode(n *Node) {
w := int64(-1)
if n.Type != nil {
w = n.Type.Width
}
switch n.Op {
case ONAME:
fmt.Printf("%v %v G%d %v width=%d\n", n.Op, n.Sym, n.Name.Vargen, n.Type, w)
case OTYPE:
fmt.Printf("%v %v width=%d\n", n.Op, n.Type, w)
}
}
// calculate sethi/ullman number
// roughly how many registers needed to
// compile a node. used to compile the
// hardest side first to minimize registers.
func ullmancalc(n *Node) {
if n == nil {
return
}
var ul int
var ur int
if n.Ninit.Len() != 0 {
ul = UINF
goto out
}
switch n.Op {
case OREGISTER, OLITERAL, ONAME:
ul = 1
if n.Class == PAUTOHEAP {
ul++
}
goto out
case OCALL, OCALLFUNC, OCALLMETH, OCALLINTER, OASWB:
ul = UINF
goto out
// hard with instrumented code
case OANDAND, OOROR:
if instrumenting {
ul = UINF
goto out
}
}
ul = 1
if n.Left != nil {
ul = int(n.Left.Ullman)
}
ur = 1
if n.Right != nil {
ur = int(n.Right.Ullman)
}
if ul == ur {
ul += 1
}
if ur > ul {
ul = ur
}
out:
if ul > 200 {
ul = 200 // clamp to uchar with room to grow
}
n.Ullman = uint8(ul)
}
func badtype(op Op, tl *Type, tr *Type) {
fmt_ := ""
if tl != nil {
fmt_ += fmt.Sprintf("\n\t%v", tl)
}
if tr != nil {
fmt_ += fmt.Sprintf("\n\t%v", tr)
}
// common mistake: *struct and *interface.
if tl != nil && tr != nil && tl.IsPtr() && tr.IsPtr() {
if tl.Elem().IsStruct() && tr.Elem().IsInterface() {
fmt_ += "\n\t(*struct vs *interface)"
} else if tl.Elem().IsInterface() && tr.Elem().IsStruct() {
fmt_ += "\n\t(*interface vs *struct)"
}
}
s := fmt_
yyerror("illegal types for operand: %v%s", op, s)
}
// brcom returns !(op).
// For example, brcom(==) is !=.
func brcom(op Op) Op {
switch op {
case OEQ:
return ONE
case ONE:
return OEQ
case OLT:
return OGE
case OGT:
return OLE
case OLE:
return OGT
case OGE:
return OLT
}
Fatalf("brcom: no com for %v\n", op)
return op
}
// brrev returns reverse(op).
// For example, Brrev(<) is >.
func brrev(op Op) Op {
switch op {
case OEQ:
return OEQ
case ONE:
return ONE
case OLT:
return OGT
case OGT:
return OLT
case OLE:
return OGE
case OGE:
return OLE
}
Fatalf("brrev: no rev for %v\n", op)
return op
}
// return side effect-free n, appending side effects to init.
// result is assignable if n is.
func safeexpr(n *Node, init *Nodes) *Node {
if n == nil {
return nil
}
if n.Ninit.Len() != 0 {
walkstmtlist(n.Ninit.Slice())
init.AppendNodes(&n.Ninit)
}
switch n.Op {
case ONAME, OLITERAL:
return n
case ODOT, OLEN, OCAP:
l := safeexpr(n.Left, init)
if l == n.Left {
return n
}
r := nod(OXXX, nil, nil)
*r = *n
r.Left = l
r = typecheck(r, Erv)
r = walkexpr(r, init)
return r
case ODOTPTR, OIND:
l := safeexpr(n.Left, init)
if l == n.Left {
return n
}
a := nod(OXXX, nil, nil)
*a = *n
a.Left = l
a = walkexpr(a, init)
return a
case OINDEX, OINDEXMAP:
l := safeexpr(n.Left, init)
r := safeexpr(n.Right, init)
if l == n.Left && r == n.Right {
return n
}
a := nod(OXXX, nil, nil)
*a = *n
a.Left = l
a.Right = r
a = walkexpr(a, init)
return a
case OSTRUCTLIT, OARRAYLIT, OSLICELIT:
if isStaticCompositeLiteral(n) {
return n
}
}
// make a copy; must not be used as an lvalue
if islvalue(n) {
Fatalf("missing lvalue case in safeexpr: %v", n)
}
return cheapexpr(n, init)
}
func copyexpr(n *Node, t *Type, init *Nodes) *Node {
l := temp(t)
a := nod(OAS, l, n)
a = typecheck(a, Etop)
a = walkexpr(a, init)
init.Append(a)
return l
}
// return side-effect free and cheap n, appending side effects to init.
// result may not be assignable.
func cheapexpr(n *Node, init *Nodes) *Node {
switch n.Op {
case ONAME, OLITERAL:
return n
}
return copyexpr(n, n.Type, init)
}
// Code to resolve elided DOTs in embedded types.
// A Dlist stores a pointer to a TFIELD Type embedded within
// a TSTRUCT or TINTER Type.
type Dlist struct {
field *Field
}
// dotlist is used by adddot1 to record the path of embedded fields
// used to access a target field or method.
// Must be non-nil so that dotpath returns a non-nil slice even if d is zero.
var dotlist = make([]Dlist, 10)
// lookdot0 returns the number of fields or methods named s associated
// with Type t. If exactly one exists, it will be returned in *save
// (if save is not nil).
func lookdot0(s *Sym, t *Type, save **Field, ignorecase bool) int {
u := t
if u.IsPtr() {
u = u.Elem()
}
c := 0
if u.IsStruct() || u.IsInterface() {
for _, f := range u.Fields().Slice() {
if f.Sym == s || (ignorecase && f.Type.Etype == TFUNC && f.Type.Recv() != nil && strings.EqualFold(f.Sym.Name, s.Name)) {
if save != nil {
*save = f
}
c++
}
}
}
u = methtype(t)
if u != nil {
for _, f := range u.Methods().Slice() {
if f.Embedded == 0 && (f.Sym == s || (ignorecase && strings.EqualFold(f.Sym.Name, s.Name))) {
if save != nil {
*save = f
}
c++
}
}
}
return c
}
// adddot1 returns the number of fields or methods named s at depth d in Type t.
// If exactly one exists, it will be returned in *save (if save is not nil),
// and dotlist will contain the path of embedded fields traversed to find it,
// in reverse order. If none exist, more will indicate whether t contains any
// embedded fields at depth d, so callers can decide whether to retry at
// a greater depth.
func adddot1(s *Sym, t *Type, d int, save **Field, ignorecase bool) (c int, more bool) {
if t.Trecur != 0 {
return
}
t.Trecur = 1
var u *Type
d--
if d < 0 {
// We've reached our target depth. If t has any fields/methods
// named s, then we're done. Otherwise, we still need to check
// below for embedded fields.
c = lookdot0(s, t, save, ignorecase)
if c != 0 {
goto out
}
}
u = t
if u.IsPtr() {
u = u.Elem()
}
if !u.IsStruct() && !u.IsInterface() {
goto out
}
for _, f := range u.Fields().Slice() {
if f.Embedded == 0 || f.Sym == nil {
continue
}
if d < 0 {
// Found an embedded field at target depth.
more = true
goto out
}
a, more1 := adddot1(s, f.Type, d, save, ignorecase)
if a != 0 && c == 0 {
dotlist[d].field = f
}
c += a
if more1 {
more = true
}
}
out:
t.Trecur = 0
return c, more
}
// dotpath computes the unique shortest explicit selector path to fully qualify
// a selection expression x.f, where x is of type t and f is the symbol s.
// If no such path exists, dotpath returns nil.
// If there are multiple shortest paths to the same depth, ambig is true.
func dotpath(s *Sym, t *Type, save **Field, ignorecase bool) (path []Dlist, ambig bool) {
// The embedding of types within structs imposes a tree structure onto
// types: structs parent the types they embed, and types parent their
// fields or methods. Our goal here is to find the shortest path to
// a field or method named s in the subtree rooted at t. To accomplish
// that, we iteratively perform depth-first searches of increasing depth
// until we either find the named field/method or exhaust the tree.
for d := 0; ; d++ {
if d > len(dotlist) {
dotlist = append(dotlist, Dlist{})
}
if c, more := adddot1(s, t, d, save, ignorecase); c == 1 {
return dotlist[:d], false
} else if c > 1 {
return nil, true
} else if !more {
return nil, false
}
}
}
// in T.field
// find missing fields that
// will give shortest unique addressing.
// modify the tree with missing type names.
func adddot(n *Node) *Node {
n.Left = typecheck(n.Left, Etype|Erv)
n.Diag |= n.Left.Diag
t := n.Left.Type
if t == nil {
return n
}
if n.Left.Op == OTYPE {
return n
}
s := n.Sym
if s == nil {
return n
}
switch path, ambig := dotpath(s, t, nil, false); {
case path != nil:
// rebuild elided dots
for c := len(path) - 1; c >= 0; c-- {
n.Left = nodSym(ODOT, n.Left, path[c].field.Sym)
n.Left.Implicit = true
}
case ambig:
yyerror("ambiguous selector %v", n)
n.Left = nil
}
return n
}
// code to help generate trampoline
// functions for methods on embedded
// subtypes.
// these are approx the same as
// the corresponding adddot routines
// except that they expect to be called
// with unique tasks and they return
// the actual methods.
type Symlink struct {
field *Field
followptr bool
}
var slist []Symlink
func expand0(t *Type, followptr bool) {
u := t
if u.IsPtr() {
followptr = true
u = u.Elem()
}
if u.IsInterface() {
for _, f := range u.Fields().Slice() {
if f.Sym.Flags&SymUniq != 0 {
continue
}
f.Sym.Flags |= SymUniq
slist = append(slist, Symlink{field: f, followptr: followptr})
}
return
}
u = methtype(t)
if u != nil {
for _, f := range u.Methods().Slice() {
if f.Sym.Flags&SymUniq != 0 {
continue
}
f.Sym.Flags |= SymUniq
slist = append(slist, Symlink{field: f, followptr: followptr})
}
}
}
func expand1(t *Type, top, followptr bool) {
if t.Trecur != 0 {
return
}
t.Trecur = 1
if !top {
expand0(t, followptr)
}
u := t
if u.IsPtr() {
followptr = true
u = u.Elem()
}
if !u.IsStruct() && !u.IsInterface() {
goto out
}
for _, f := range u.Fields().Slice() {
if f.Embedded == 0 {
continue
}
if f.Sym == nil {
continue
}
expand1(f.Type, false, followptr)
}
out:
t.Trecur = 0
}
func expandmeth(t *Type) {
if t == nil || t.AllMethods().Len() != 0 {
return
}
// mark top-level method symbols
// so that expand1 doesn't consider them.
for _, f := range t.Methods().Slice() {
f.Sym.Flags |= SymUniq
}
// generate all reachable methods
slist = slist[:0]
expand1(t, true, false)
// check each method to be uniquely reachable
var ms []*Field
for i, sl := range slist {
slist[i].field = nil
sl.field.Sym.Flags &^= SymUniq
var f *Field
if path, _ := dotpath(sl.field.Sym, t, &f, false); path == nil {
continue
}
// dotpath may have dug out arbitrary fields, we only want methods.
if f.Type.Etype != TFUNC || f.Type.Recv() == nil {
continue
}
// add it to the base type method list
f = f.Copy()
f.Embedded = 1 // needs a trampoline
if sl.followptr {
f.Embedded = 2
}
ms = append(ms, f)
}
for _, f := range t.Methods().Slice() {
f.Sym.Flags &^= SymUniq
}
ms = append(ms, t.Methods().Slice()...)
t.AllMethods().Set(ms)
}
// Given funarg struct list, return list of ODCLFIELD Node fn args.
func structargs(tl *Type, mustname bool) []*Node {
var args []*Node
gen := 0
for _, t := range tl.Fields().Slice() {
var n *Node
if mustname && (t.Sym == nil || t.Sym.Name == "_") {
// invent a name so that we can refer to it in the trampoline
buf := fmt.Sprintf(".anon%d", gen)
gen++
n = newname(lookup(buf))
} else if t.Sym != nil {
n = newname(t.Sym)
}
a := nod(ODCLFIELD, n, typenod(t.Type))
a.Isddd = t.Isddd
if n != nil {
n.Isddd = t.Isddd
}
args = append(args, a)
}
return args
}
// Generate a wrapper function to convert from
// a receiver of type T to a receiver of type U.
// That is,
//
// func (t T) M() {
// ...
// }
//
// already exists; this function generates
//
// func (u U) M() {
// u.M()
// }
//
// where the types T and U are such that u.M() is valid
// and calls the T.M method.
// The resulting function is for use in method tables.
//
// rcvr - U
// method - M func (t T)(), a TFIELD type struct
// newnam - the eventual mangled name of this function
var genwrapper_linehistdone int = 0
func genwrapper(rcvr *Type, method *Field, newnam *Sym, iface int) {
if false && Debug['r'] != 0 {
fmt.Printf("genwrapper rcvrtype=%v method=%v newnam=%v\n", rcvr, method, newnam)
}
lexlineno++
lineno = lexlineno
if genwrapper_linehistdone == 0 {
// All the wrappers can share the same linehist entry.
linehistpush("<autogenerated>")
genwrapper_linehistdone = 1
}
dclcontext = PEXTERN
markdcl()
this := nod(ODCLFIELD, newname(lookup(".this")), typenod(rcvr))
this.Left.Name.Param.Ntype = this.Right
in := structargs(method.Type.Params(), true)
out := structargs(method.Type.Results(), false)
t := nod(OTFUNC, nil, nil)
l := []*Node{this}
if iface != 0 && rcvr.Width < Types[Tptr].Width {
// Building method for interface table and receiver
// is smaller than the single pointer-sized word
// that the interface call will pass in.
// Add a dummy padding argument after the
// receiver to make up the difference.
tpad := typArray(Types[TUINT8], Types[Tptr].Width-rcvr.Width)
pad := nod(ODCLFIELD, newname(lookup(".pad")), typenod(tpad))
l = append(l, pad)
}
t.List.Set(append(l, in...))
t.Rlist.Set(out)
fn := nod(ODCLFUNC, nil, nil)
fn.Func.Nname = newname(newnam)
fn.Func.Nname.Name.Defn = fn
fn.Func.Nname.Name.Param.Ntype = t
declare(fn.Func.Nname, PFUNC)
funchdr(fn)
// arg list
var args []*Node
isddd := false
for _, n := range in {
args = append(args, n.Left)
isddd = n.Left.Isddd
}
methodrcvr := method.Type.Recv().Type
// generate nil pointer check for better error
if rcvr.IsPtr() && rcvr.Elem() == methodrcvr {
// generating wrapper from *T to T.
n := nod(OIF, nil, nil)
n.Left = nod(OEQ, this.Left, nodnil())
// these strings are already in the reflect tables,
// so no space cost to use them here.
var l []*Node
var v Val
v.U = rcvr.Elem().Sym.Pkg.Name // package name
l = append(l, nodlit(v))
v.U = rcvr.Elem().Sym.Name // type name
l = append(l, nodlit(v))
v.U = method.Sym.Name
l = append(l, nodlit(v)) // method name
call := nod(OCALL, syslook("panicwrap"), nil)
call.List.Set(l)
n.Nbody.Set1(call)
fn.Nbody.Append(n)
}
dot := adddot(nodSym(OXDOT, this.Left, method.Sym))
// generate call
// It's not possible to use a tail call when dynamic linking on ppc64le. The
// bad scenario is when a local call is made to the wrapper: the wrapper will
// call the implementation, which might be in a different module and so set
// the TOC to the appropriate value for that module. But if it returns
// directly to the wrapper's caller, nothing will reset it to the correct
// value for that function.
if !instrumenting && rcvr.IsPtr() && methodrcvr.IsPtr() && method.Embedded != 0 && !isifacemethod(method.Type) && !(Thearch.LinkArch.Name == "ppc64le" && Ctxt.Flag_dynlink) {
// generate tail call: adjust pointer receiver and jump to embedded method.
dot = dot.Left // skip final .M
// TODO(mdempsky): Remove dependency on dotlist.
if !dotlist[0].field.Type.IsPtr() {
dot = nod(OADDR, dot, nil)
}
as := nod(OAS, this.Left, nod(OCONVNOP, dot, nil))
as.Right.Type = rcvr
fn.Nbody.Append(as)
n := nod(ORETJMP, nil, nil)
n.Left = newname(methodsym(method.Sym, methodrcvr, 0))
fn.Nbody.Append(n)
} else {
fn.Func.Wrapper = true // ignore frame for panic+recover matching
call := nod(OCALL, dot, nil)
call.List.Set(args)
call.Isddd = isddd
if method.Type.Results().NumFields() > 0 {
n := nod(ORETURN, nil, nil)
n.List.Set1(call)
call = n
}
fn.Nbody.Append(call)
}
if false && Debug['r'] != 0 {
dumplist("genwrapper body", fn.Nbody)
}
funcbody(fn)
Curfn = fn
popdcl()
testdclstack()
// wrappers where T is anonymous (struct or interface) can be duplicated.
if rcvr.IsStruct() || rcvr.IsInterface() || rcvr.IsPtr() && rcvr.Elem().IsStruct() {
fn.Func.Dupok = true
}
fn = typecheck(fn, Etop)
typecheckslice(fn.Nbody.Slice(), Etop)
inlcalls(fn)
escAnalyze([]*Node{fn}, false)
Curfn = nil
funccompile(fn)
}
func hashmem(t *Type) *Node {
sym := Pkglookup("memhash", Runtimepkg)
n := newname(sym)
n.Class = PFUNC
tfn := nod(OTFUNC, nil, nil)
tfn.List.Append(nod(ODCLFIELD, nil, typenod(ptrto(t))))
tfn.List.Append(nod(ODCLFIELD, nil, typenod(Types[TUINTPTR])))
tfn.List.Append(nod(ODCLFIELD, nil, typenod(Types[TUINTPTR])))
tfn.Rlist.Append(nod(ODCLFIELD, nil, typenod(Types[TUINTPTR])))
tfn = typecheck(tfn, Etype)
n.Type = tfn.Type
return n
}
func ifacelookdot(s *Sym, t *Type, followptr *bool, ignorecase bool) *Field {
*followptr = false
if t == nil {
return nil
}
var m *Field
path, ambig := dotpath(s, t, &m, ignorecase)
if path == nil {
if ambig {
yyerror("%v.%v is ambiguous", t, s)
}
return nil
}
for _, d := range path {
if d.field.Type.IsPtr() {
*followptr = true
break
}
}
if m.Type.Etype != TFUNC || m.Type.Recv() == nil {
yyerror("%v.%v is a field, not a method", t, s)
return nil
}
return m
}
func implements(t, iface *Type, m, samename **Field, ptr *int) bool {
t0 := t
if t == nil {
return false
}
// if this is too slow,
// could sort these first
// and then do one loop.
if t.IsInterface() {
for _, im := range iface.Fields().Slice() {
for _, tm := range t.Fields().Slice() {
if tm.Sym == im.Sym {
if eqtype(tm.Type, im.Type) {
goto found
}
*m = im
*samename = tm
*ptr = 0
return false
}
}
*m = im
*samename = nil
*ptr = 0
return false
found:
}
return true
}
t = methtype(t)
if t != nil {
expandmeth(t)
}
for _, im := range iface.Fields().Slice() {
if im.Broke {
continue
}
var followptr bool
tm := ifacelookdot(im.Sym, t, &followptr, false)
if tm == nil || tm.Nointerface || !eqtype(tm.Type, im.Type) {
if tm == nil {
tm = ifacelookdot(im.Sym, t, &followptr, true)
}
*m = im
*samename = tm
*ptr = 0
return false
}
// if pointer receiver in method,
// the method does not exist for value types.
rcvr := tm.Type.Recv().Type
if rcvr.IsPtr() && !t0.IsPtr() && !followptr && !isifacemethod(tm.Type) {
if false && Debug['r'] != 0 {
yyerror("interface pointer mismatch")
}
*m = im
*samename = nil
*ptr = 1
return false
}
}
return true
}
// even simpler simtype; get rid of ptr, bool.
// assuming that the front end has rejected
// all the invalid conversions (like ptr -> bool)
func Simsimtype(t *Type) EType {
if t == nil {
return 0
}
et := simtype[t.Etype]
switch et {
case TPTR32:
et = TUINT32
case TPTR64:
et = TUINT64
case TBOOL:
et = TUINT8
}
return et
}
func listtreecopy(l []*Node, lineno int32) []*Node {
var out []*Node
for _, n := range l {
out = append(out, treecopy(n, lineno))
}
return out
}
func liststmt(l []*Node) *Node {
n := nod(OBLOCK, nil, nil)
n.List.Set(l)
if len(l) != 0 {
n.Lineno = l[0].Lineno
}
return n
}
// return power of 2 of the constant
// operand. -1 if it is not a power of 2.
// 1000+ if it is a -(power of 2)
func powtwo(n *Node) int {
if n == nil || n.Op != OLITERAL || n.Type == nil {
return -1
}
if !n.Type.IsInteger() {
return -1
}
v := uint64(n.Int64())
b := uint64(1)
for i := 0; i < 64; i++ {
if b == v {
return i
}
b = b << 1
}
if !n.Type.IsSigned() {
return -1
}
v = -v
b = 1
for i := 0; i < 64; i++ {
if b == v {
return i + 1000
}
b = b << 1
}
return -1
}
func ngotype(n *Node) *Sym {
if n.Type != nil {
return typenamesym(n.Type)
}
return nil
}
// Convert raw string to the prefix that will be used in the symbol
// table. All control characters, space, '%' and '"', as well as
// non-7-bit clean bytes turn into %xx. The period needs escaping
// only in the last segment of the path, and it makes for happier
// users if we escape that as little as possible.
//
// If you edit this, edit ../../debug/goobj/read.go:/importPathToPrefix too.
func pathtoprefix(s string) string {
slash := strings.LastIndex(s, "/")
for i := 0; i < len(s); i++ {
c := s[i]
if c <= ' ' || i >= slash && c == '.' || c == '%' || c == '"' || c >= 0x7F {
var buf bytes.Buffer
for i := 0; i < len(s); i++ {
c := s[i]
if c <= ' ' || i >= slash && c == '.' || c == '%' || c == '"' || c >= 0x7F {
fmt.Fprintf(&buf, "%%%02x", c)
continue
}
buf.WriteByte(c)
}
return buf.String()
}
}
return s
}
var pkgMap = make(map[string]*Pkg)
var pkgs []*Pkg
func mkpkg(path string) *Pkg {
if p := pkgMap[path]; p != nil {
return p
}
p := new(Pkg)
p.Path = path
p.Prefix = pathtoprefix(path)
p.Syms = make(map[string]*Sym)
pkgMap[path] = p
pkgs = append(pkgs, p)
return p
}
// The result of addinit MUST be assigned back to n, e.g.
// n.Left = addinit(n.Left, init)
func addinit(n *Node, init []*Node) *Node {
if len(init) == 0 {
return n
}
switch n.Op {
// There may be multiple refs to this node;
// introduce OCONVNOP to hold init list.
case ONAME, OLITERAL:
n = nod(OCONVNOP, n, nil)
n.Type = n.Left.Type
n.Typecheck = 1
}
n.Ninit.Prepend(init...)
n.Ullman = UINF
return n
}
var reservedimports = []string{
"go",
"type",
}
func isbadimport(path string) bool {
if strings.Contains(path, "\x00") {
yyerror("import path contains NUL")
return true
}
for _, ri := range reservedimports {
if path == ri {
yyerror("import path %q is reserved and cannot be used", path)
return true
}
}
for _, r := range path {
if r == utf8.RuneError {
yyerror("import path contains invalid UTF-8 sequence: %q", path)
return true
}
if r < 0x20 || r == 0x7f {
yyerror("import path contains control character: %q", path)
return true
}
if r == '\\' {
yyerror("import path contains backslash; use slash: %q", path)
return true
}
if unicode.IsSpace(r) {
yyerror("import path contains space character: %q", path)
return true
}
if strings.ContainsRune("!\"#$%&'()*,:;<=>?[]^`{|}", r) {
yyerror("import path contains invalid character '%c': %q", r, path)
return true
}
}
return false
}
func checknil(x *Node, init *Nodes) {
x = walkexpr(x, nil) // caller has not done this yet
if x.Type.IsInterface() {
x = nod(OITAB, x, nil)
x = typecheck(x, Erv)
}
n := nod(OCHECKNIL, x, nil)
n.Typecheck = 1
init.Append(n)
}
// Can this type be stored directly in an interface word?
// Yes, if the representation is a single pointer.
func isdirectiface(t *Type) bool {
switch t.Etype {
case TPTR32,
TPTR64,
TCHAN,
TMAP,
TFUNC,
TUNSAFEPTR:
return true
case TARRAY:
// Array of 1 direct iface type can be direct.
return t.NumElem() == 1 && isdirectiface(t.Elem())
case TSTRUCT:
// Struct with 1 field of direct iface type can be direct.
return t.NumFields() == 1 && isdirectiface(t.Field(0).Type)
}
return false
}
// itabType loads the _type field from a runtime.itab struct.
func itabType(itab *Node) *Node {
typ := nodSym(ODOTPTR, itab, nil)
typ.Type = ptrto(Types[TUINT8])
typ.Typecheck = 1
typ.Xoffset = int64(Widthptr) // offset of _type in runtime.itab
typ.Bounded = true // guaranteed not to fault
return typ
}
// ifaceData loads the data field from an interface.
// The concrete type must be known to have type t.
// It follows the pointer if !isdirectiface(t).
func ifaceData(n *Node, t *Type) *Node {
ptr := nodSym(OIDATA, n, nil)
if isdirectiface(t) {
ptr.Type = t
ptr.Typecheck = 1
return ptr
}
ptr.Type = ptrto(t)
ptr.Bounded = true
ptr.Typecheck = 1
ind := nod(OIND, ptr, nil)
ind.Type = t
ind.Typecheck = 1
return ind
}
// iet returns 'T' if t is a concrete type,
// 'I' if t is an interface type, and 'E' if t is an empty interface type.
// It is used to build calls to the conv* and assert* runtime routines.
func (t *Type) iet() byte {
if t.IsEmptyInterface() {
return 'E'
}
if t.IsInterface() {
return 'I'
}
return 'T'
}