mirror of
https://github.com/golang/go.git
synced 2025-05-05 15:43:04 +00:00
Change-Id: I0ee85161846c13d938213ef04d3a34f690a93e48 Reviewed-on: https://go-review.googlesource.com/c/go/+/553435 Reviewed-by: Dmitri Shuralyov <dmitshur@google.com> LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com> Reviewed-by: Ian Lance Taylor <iant@google.com> Auto-Submit: Ian Lance Taylor <iant@golang.org>
441 lines
14 KiB
Go
441 lines
14 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package ssagen
|
|
|
|
import (
|
|
"fmt"
|
|
"internal/buildcfg"
|
|
"log"
|
|
"os"
|
|
"strings"
|
|
|
|
"cmd/compile/internal/abi"
|
|
"cmd/compile/internal/base"
|
|
"cmd/compile/internal/ir"
|
|
"cmd/compile/internal/objw"
|
|
"cmd/compile/internal/typecheck"
|
|
"cmd/compile/internal/types"
|
|
"cmd/internal/obj"
|
|
"cmd/internal/obj/wasm"
|
|
)
|
|
|
|
// SymABIs records information provided by the assembler about symbol
|
|
// definition ABIs and reference ABIs.
|
|
type SymABIs struct {
|
|
defs map[string]obj.ABI
|
|
refs map[string]obj.ABISet
|
|
}
|
|
|
|
func NewSymABIs() *SymABIs {
|
|
return &SymABIs{
|
|
defs: make(map[string]obj.ABI),
|
|
refs: make(map[string]obj.ABISet),
|
|
}
|
|
}
|
|
|
|
// canonicalize returns the canonical name used for a linker symbol in
|
|
// s's maps. Symbols in this package may be written either as "".X or
|
|
// with the package's import path already in the symbol. This rewrites
|
|
// both to use the full path, which matches compiler-generated linker
|
|
// symbol names.
|
|
func (s *SymABIs) canonicalize(linksym string) string {
|
|
if strings.HasPrefix(linksym, `"".`) {
|
|
panic("non-canonical symbol name: " + linksym)
|
|
}
|
|
return linksym
|
|
}
|
|
|
|
// ReadSymABIs reads a symabis file that specifies definitions and
|
|
// references of text symbols by ABI.
|
|
//
|
|
// The symabis format is a set of lines, where each line is a sequence
|
|
// of whitespace-separated fields. The first field is a verb and is
|
|
// either "def" for defining a symbol ABI or "ref" for referencing a
|
|
// symbol using an ABI. For both "def" and "ref", the second field is
|
|
// the symbol name and the third field is the ABI name, as one of the
|
|
// named cmd/internal/obj.ABI constants.
|
|
func (s *SymABIs) ReadSymABIs(file string) {
|
|
data, err := os.ReadFile(file)
|
|
if err != nil {
|
|
log.Fatalf("-symabis: %v", err)
|
|
}
|
|
|
|
for lineNum, line := range strings.Split(string(data), "\n") {
|
|
lineNum++ // 1-based
|
|
line = strings.TrimSpace(line)
|
|
if line == "" || strings.HasPrefix(line, "#") {
|
|
continue
|
|
}
|
|
|
|
parts := strings.Fields(line)
|
|
switch parts[0] {
|
|
case "def", "ref":
|
|
// Parse line.
|
|
if len(parts) != 3 {
|
|
log.Fatalf(`%s:%d: invalid symabi: syntax is "%s sym abi"`, file, lineNum, parts[0])
|
|
}
|
|
sym, abistr := parts[1], parts[2]
|
|
abi, valid := obj.ParseABI(abistr)
|
|
if !valid {
|
|
log.Fatalf(`%s:%d: invalid symabi: unknown abi "%s"`, file, lineNum, abistr)
|
|
}
|
|
|
|
sym = s.canonicalize(sym)
|
|
|
|
// Record for later.
|
|
if parts[0] == "def" {
|
|
s.defs[sym] = abi
|
|
} else {
|
|
s.refs[sym] |= obj.ABISetOf(abi)
|
|
}
|
|
default:
|
|
log.Fatalf(`%s:%d: invalid symabi type "%s"`, file, lineNum, parts[0])
|
|
}
|
|
}
|
|
}
|
|
|
|
// GenABIWrappers applies ABI information to Funcs and generates ABI
|
|
// wrapper functions where necessary.
|
|
func (s *SymABIs) GenABIWrappers() {
|
|
// For cgo exported symbols, we tell the linker to export the
|
|
// definition ABI to C. That also means that we don't want to
|
|
// create ABI wrappers even if there's a linkname.
|
|
//
|
|
// TODO(austin): Maybe we want to create the ABI wrappers, but
|
|
// ensure the linker exports the right ABI definition under
|
|
// the unmangled name?
|
|
cgoExports := make(map[string][]*[]string)
|
|
for i, prag := range typecheck.Target.CgoPragmas {
|
|
switch prag[0] {
|
|
case "cgo_export_static", "cgo_export_dynamic":
|
|
symName := s.canonicalize(prag[1])
|
|
pprag := &typecheck.Target.CgoPragmas[i]
|
|
cgoExports[symName] = append(cgoExports[symName], pprag)
|
|
}
|
|
}
|
|
|
|
// Apply ABI defs and refs to Funcs and generate wrappers.
|
|
//
|
|
// This may generate new decls for the wrappers, but we
|
|
// specifically *don't* want to visit those, lest we create
|
|
// wrappers for wrappers.
|
|
for _, fn := range typecheck.Target.Funcs {
|
|
nam := fn.Nname
|
|
if ir.IsBlank(nam) {
|
|
continue
|
|
}
|
|
sym := nam.Sym()
|
|
|
|
symName := sym.Linkname
|
|
if symName == "" {
|
|
symName = sym.Pkg.Prefix + "." + sym.Name
|
|
}
|
|
symName = s.canonicalize(symName)
|
|
|
|
// Apply definitions.
|
|
defABI, hasDefABI := s.defs[symName]
|
|
if hasDefABI {
|
|
if len(fn.Body) != 0 {
|
|
base.ErrorfAt(fn.Pos(), 0, "%v defined in both Go and assembly", fn)
|
|
}
|
|
fn.ABI = defABI
|
|
}
|
|
|
|
if fn.Pragma&ir.CgoUnsafeArgs != 0 {
|
|
// CgoUnsafeArgs indicates the function (or its callee) uses
|
|
// offsets to dispatch arguments, which currently using ABI0
|
|
// frame layout. Pin it to ABI0.
|
|
fn.ABI = obj.ABI0
|
|
}
|
|
|
|
// If cgo-exported, add the definition ABI to the cgo
|
|
// pragmas.
|
|
cgoExport := cgoExports[symName]
|
|
for _, pprag := range cgoExport {
|
|
// The export pragmas have the form:
|
|
//
|
|
// cgo_export_* <local> [<remote>]
|
|
//
|
|
// If <remote> is omitted, it's the same as
|
|
// <local>.
|
|
//
|
|
// Expand to
|
|
//
|
|
// cgo_export_* <local> <remote> <ABI>
|
|
if len(*pprag) == 2 {
|
|
*pprag = append(*pprag, (*pprag)[1])
|
|
}
|
|
// Add the ABI argument.
|
|
*pprag = append(*pprag, fn.ABI.String())
|
|
}
|
|
|
|
// Apply references.
|
|
if abis, ok := s.refs[symName]; ok {
|
|
fn.ABIRefs |= abis
|
|
}
|
|
// Assume all functions are referenced at least as
|
|
// ABIInternal, since they may be referenced from
|
|
// other packages.
|
|
fn.ABIRefs.Set(obj.ABIInternal, true)
|
|
|
|
// If a symbol is defined in this package (either in
|
|
// Go or assembly) and given a linkname, it may be
|
|
// referenced from another package, so make it
|
|
// callable via any ABI. It's important that we know
|
|
// it's defined in this package since other packages
|
|
// may "pull" symbols using linkname and we don't want
|
|
// to create duplicate ABI wrappers.
|
|
//
|
|
// However, if it's given a linkname for exporting to
|
|
// C, then we don't make ABI wrappers because the cgo
|
|
// tool wants the original definition.
|
|
hasBody := len(fn.Body) != 0
|
|
if sym.Linkname != "" && (hasBody || hasDefABI) && len(cgoExport) == 0 {
|
|
fn.ABIRefs |= obj.ABISetCallable
|
|
}
|
|
|
|
// Double check that cgo-exported symbols don't get
|
|
// any wrappers.
|
|
if len(cgoExport) > 0 && fn.ABIRefs&^obj.ABISetOf(fn.ABI) != 0 {
|
|
base.Fatalf("cgo exported function %v cannot have ABI wrappers", fn)
|
|
}
|
|
|
|
if !buildcfg.Experiment.RegabiWrappers {
|
|
continue
|
|
}
|
|
|
|
forEachWrapperABI(fn, makeABIWrapper)
|
|
}
|
|
}
|
|
|
|
func forEachWrapperABI(fn *ir.Func, cb func(fn *ir.Func, wrapperABI obj.ABI)) {
|
|
need := fn.ABIRefs &^ obj.ABISetOf(fn.ABI)
|
|
if need == 0 {
|
|
return
|
|
}
|
|
|
|
for wrapperABI := obj.ABI(0); wrapperABI < obj.ABICount; wrapperABI++ {
|
|
if !need.Get(wrapperABI) {
|
|
continue
|
|
}
|
|
cb(fn, wrapperABI)
|
|
}
|
|
}
|
|
|
|
// makeABIWrapper creates a new function that will be called with
|
|
// wrapperABI and calls "f" using f.ABI.
|
|
func makeABIWrapper(f *ir.Func, wrapperABI obj.ABI) {
|
|
if base.Debug.ABIWrap != 0 {
|
|
fmt.Fprintf(os.Stderr, "=-= %v to %v wrapper for %v\n", wrapperABI, f.ABI, f)
|
|
}
|
|
|
|
// Q: is this needed?
|
|
savepos := base.Pos
|
|
savedcurfn := ir.CurFunc
|
|
|
|
pos := base.AutogeneratedPos
|
|
base.Pos = pos
|
|
|
|
// At the moment we don't support wrapping a method, we'd need machinery
|
|
// below to handle the receiver. Panic if we see this scenario.
|
|
ft := f.Nname.Type()
|
|
if ft.NumRecvs() != 0 {
|
|
base.ErrorfAt(f.Pos(), 0, "makeABIWrapper support for wrapping methods not implemented")
|
|
return
|
|
}
|
|
|
|
// Reuse f's types.Sym to create a new ODCLFUNC/function.
|
|
// TODO(mdempsky): Means we can't set sym.Def in Declfunc, ugh.
|
|
fn := ir.NewFunc(pos, pos, f.Sym(), types.NewSignature(nil,
|
|
typecheck.NewFuncParams(ft.Params()),
|
|
typecheck.NewFuncParams(ft.Results())))
|
|
fn.ABI = wrapperABI
|
|
typecheck.DeclFunc(fn)
|
|
|
|
fn.SetABIWrapper(true)
|
|
fn.SetDupok(true)
|
|
|
|
// ABI0-to-ABIInternal wrappers will be mainly loading params from
|
|
// stack into registers (and/or storing stack locations back to
|
|
// registers after the wrapped call); in most cases they won't
|
|
// need to allocate stack space, so it should be OK to mark them
|
|
// as NOSPLIT in these cases. In addition, my assumption is that
|
|
// functions written in assembly are NOSPLIT in most (but not all)
|
|
// cases. In the case of an ABIInternal target that has too many
|
|
// parameters to fit into registers, the wrapper would need to
|
|
// allocate stack space, but this seems like an unlikely scenario.
|
|
// Hence: mark these wrappers NOSPLIT.
|
|
//
|
|
// ABIInternal-to-ABI0 wrappers on the other hand will be taking
|
|
// things in registers and pushing them onto the stack prior to
|
|
// the ABI0 call, meaning that they will always need to allocate
|
|
// stack space. If the compiler marks them as NOSPLIT this seems
|
|
// as though it could lead to situations where the linker's
|
|
// nosplit-overflow analysis would trigger a link failure. On the
|
|
// other hand if they not tagged NOSPLIT then this could cause
|
|
// problems when building the runtime (since there may be calls to
|
|
// asm routine in cases where it's not safe to grow the stack). In
|
|
// most cases the wrapper would be (in effect) inlined, but are
|
|
// there (perhaps) indirect calls from the runtime that could run
|
|
// into trouble here.
|
|
// FIXME: at the moment all.bash does not pass when I leave out
|
|
// NOSPLIT for these wrappers, so all are currently tagged with NOSPLIT.
|
|
fn.Pragma |= ir.Nosplit
|
|
|
|
// Generate call. Use tail call if no params and no returns,
|
|
// but a regular call otherwise.
|
|
//
|
|
// Note: ideally we would be using a tail call in cases where
|
|
// there are params but no returns for ABI0->ABIInternal wrappers,
|
|
// provided that all params fit into registers (e.g. we don't have
|
|
// to allocate any stack space). Doing this will require some
|
|
// extra work in typecheck/walk/ssa, might want to add a new node
|
|
// OTAILCALL or something to this effect.
|
|
tailcall := fn.Type().NumResults() == 0 && fn.Type().NumParams() == 0 && fn.Type().NumRecvs() == 0
|
|
if base.Ctxt.Arch.Name == "ppc64le" && base.Ctxt.Flag_dynlink {
|
|
// cannot tailcall on PPC64 with dynamic linking, as we need
|
|
// to restore R2 after call.
|
|
tailcall = false
|
|
}
|
|
if base.Ctxt.Arch.Name == "amd64" && wrapperABI == obj.ABIInternal {
|
|
// cannot tailcall from ABIInternal to ABI0 on AMD64, as we need
|
|
// to special registers (X15) when returning to ABIInternal.
|
|
tailcall = false
|
|
}
|
|
|
|
var tail ir.Node
|
|
call := ir.NewCallExpr(base.Pos, ir.OCALL, f.Nname, nil)
|
|
call.Args = ir.ParamNames(fn.Type())
|
|
call.IsDDD = fn.Type().IsVariadic()
|
|
tail = call
|
|
if tailcall {
|
|
tail = ir.NewTailCallStmt(base.Pos, call)
|
|
} else if fn.Type().NumResults() > 0 {
|
|
n := ir.NewReturnStmt(base.Pos, nil)
|
|
n.Results = []ir.Node{call}
|
|
tail = n
|
|
}
|
|
fn.Body.Append(tail)
|
|
|
|
typecheck.FinishFuncBody()
|
|
|
|
ir.CurFunc = fn
|
|
typecheck.Stmts(fn.Body)
|
|
|
|
// Restore previous context.
|
|
base.Pos = savepos
|
|
ir.CurFunc = savedcurfn
|
|
}
|
|
|
|
// CreateWasmImportWrapper creates a wrapper for imported WASM functions to
|
|
// adapt them to the Go calling convention. The body for this function is
|
|
// generated in cmd/internal/obj/wasm/wasmobj.go
|
|
func CreateWasmImportWrapper(fn *ir.Func) bool {
|
|
if fn.WasmImport == nil {
|
|
return false
|
|
}
|
|
if buildcfg.GOARCH != "wasm" {
|
|
base.FatalfAt(fn.Pos(), "CreateWasmImportWrapper call not supported on %s: func was %v", buildcfg.GOARCH, fn)
|
|
}
|
|
|
|
ir.InitLSym(fn, true)
|
|
|
|
setupWasmABI(fn)
|
|
|
|
pp := objw.NewProgs(fn, 0)
|
|
defer pp.Free()
|
|
pp.Text.To.Type = obj.TYPE_TEXTSIZE
|
|
pp.Text.To.Val = int32(types.RoundUp(fn.Type().ArgWidth(), int64(types.RegSize)))
|
|
// Wrapper functions never need their own stack frame
|
|
pp.Text.To.Offset = 0
|
|
pp.Flush()
|
|
|
|
return true
|
|
}
|
|
|
|
func paramsToWasmFields(f *ir.Func, result *abi.ABIParamResultInfo, abiParams []abi.ABIParamAssignment) []obj.WasmField {
|
|
wfs := make([]obj.WasmField, len(abiParams))
|
|
for i, p := range abiParams {
|
|
t := p.Type
|
|
switch t.Kind() {
|
|
case types.TINT32, types.TUINT32:
|
|
wfs[i].Type = obj.WasmI32
|
|
case types.TINT64, types.TUINT64:
|
|
wfs[i].Type = obj.WasmI64
|
|
case types.TFLOAT32:
|
|
wfs[i].Type = obj.WasmF32
|
|
case types.TFLOAT64:
|
|
wfs[i].Type = obj.WasmF64
|
|
case types.TUNSAFEPTR:
|
|
wfs[i].Type = obj.WasmPtr
|
|
default:
|
|
base.ErrorfAt(f.Pos(), 0, "go:wasmimport %s %s: unsupported parameter type %s", f.WasmImport.Module, f.WasmImport.Name, t.String())
|
|
}
|
|
wfs[i].Offset = p.FrameOffset(result)
|
|
}
|
|
return wfs
|
|
}
|
|
|
|
func resultsToWasmFields(f *ir.Func, result *abi.ABIParamResultInfo, abiParams []abi.ABIParamAssignment) []obj.WasmField {
|
|
if len(abiParams) > 1 {
|
|
base.ErrorfAt(f.Pos(), 0, "go:wasmimport %s %s: too many return values", f.WasmImport.Module, f.WasmImport.Name)
|
|
return nil
|
|
}
|
|
wfs := make([]obj.WasmField, len(abiParams))
|
|
for i, p := range abiParams {
|
|
t := p.Type
|
|
switch t.Kind() {
|
|
case types.TINT32, types.TUINT32:
|
|
wfs[i].Type = obj.WasmI32
|
|
case types.TINT64, types.TUINT64:
|
|
wfs[i].Type = obj.WasmI64
|
|
case types.TFLOAT32:
|
|
wfs[i].Type = obj.WasmF32
|
|
case types.TFLOAT64:
|
|
wfs[i].Type = obj.WasmF64
|
|
default:
|
|
base.ErrorfAt(f.Pos(), 0, "go:wasmimport %s %s: unsupported result type %s", f.WasmImport.Module, f.WasmImport.Name, t.String())
|
|
}
|
|
wfs[i].Offset = p.FrameOffset(result)
|
|
}
|
|
return wfs
|
|
}
|
|
|
|
// setupWasmABI calculates the params and results in terms of WebAssembly values for the given function.
|
|
func setupWasmABI(f *ir.Func) {
|
|
wi := obj.WasmImport{
|
|
Module: f.WasmImport.Module,
|
|
Name: f.WasmImport.Name,
|
|
}
|
|
if wi.Module == wasm.GojsModule {
|
|
// Functions that are imported from the "gojs" module use a special
|
|
// ABI that just accepts the stack pointer.
|
|
// Example:
|
|
//
|
|
// //go:wasmimport gojs add
|
|
// func importedAdd(a, b uint) uint
|
|
//
|
|
// will roughly become
|
|
//
|
|
// (import "gojs" "add" (func (param i32)))
|
|
wi.Params = []obj.WasmField{{Type: obj.WasmI32}}
|
|
} else {
|
|
// All other imported functions use the normal WASM ABI.
|
|
// Example:
|
|
//
|
|
// //go:wasmimport a_module add
|
|
// func importedAdd(a, b uint) uint
|
|
//
|
|
// will roughly become
|
|
//
|
|
// (import "a_module" "add" (func (param i32 i32) (result i32)))
|
|
abiConfig := AbiForBodylessFuncStackMap(f)
|
|
abiInfo := abiConfig.ABIAnalyzeFuncType(f.Type())
|
|
wi.Params = paramsToWasmFields(f, abiInfo, abiInfo.InParams())
|
|
wi.Results = resultsToWasmFields(f, abiInfo, abiInfo.OutParams())
|
|
}
|
|
f.LSym.Func().WasmImport = &wi
|
|
}
|