mirror of
https://github.com/golang/go.git
synced 2025-05-28 02:41:30 +00:00
This CL splits out ORETJMP as a new TailCallStmt node, separate from the other BranchStmt nodes. In doing so, this allows us to change it from identifying a function by *types.Sym to identifying one by directly pointing to the *ir.Func. While here, also rename the operation to OTAILCALL. Passes toolstash -cmp. Change-Id: I273e6ea5d92bf3005ae02fb59b3240a190a6cf1b Reviewed-on: https://go-review.googlesource.com/c/go/+/284227 Trust: Matthew Dempsky <mdempsky@google.com> Run-TryBot: Matthew Dempsky <mdempsky@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Cuong Manh Le <cuong.manhle.vn@gmail.com>
1205 lines
34 KiB
Go
1205 lines
34 KiB
Go
// Copyright 2011 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
//
|
|
// The inlining facility makes 2 passes: first caninl determines which
|
|
// functions are suitable for inlining, and for those that are it
|
|
// saves a copy of the body. Then InlineCalls walks each function body to
|
|
// expand calls to inlinable functions.
|
|
//
|
|
// The Debug.l flag controls the aggressiveness. Note that main() swaps level 0 and 1,
|
|
// making 1 the default and -l disable. Additional levels (beyond -l) may be buggy and
|
|
// are not supported.
|
|
// 0: disabled
|
|
// 1: 80-nodes leaf functions, oneliners, panic, lazy typechecking (default)
|
|
// 2: (unassigned)
|
|
// 3: (unassigned)
|
|
// 4: allow non-leaf functions
|
|
//
|
|
// At some point this may get another default and become switch-offable with -N.
|
|
//
|
|
// The -d typcheckinl flag enables early typechecking of all imported bodies,
|
|
// which is useful to flush out bugs.
|
|
//
|
|
// The Debug.m flag enables diagnostic output. a single -m is useful for verifying
|
|
// which calls get inlined or not, more is for debugging, and may go away at any point.
|
|
|
|
package inline
|
|
|
|
import (
|
|
"errors"
|
|
"fmt"
|
|
"go/constant"
|
|
"strings"
|
|
|
|
"cmd/compile/internal/base"
|
|
"cmd/compile/internal/ir"
|
|
"cmd/compile/internal/logopt"
|
|
"cmd/compile/internal/typecheck"
|
|
"cmd/compile/internal/types"
|
|
"cmd/internal/obj"
|
|
"cmd/internal/src"
|
|
)
|
|
|
|
// Inlining budget parameters, gathered in one place
|
|
const (
|
|
inlineMaxBudget = 80
|
|
inlineExtraAppendCost = 0
|
|
// default is to inline if there's at most one call. -l=4 overrides this by using 1 instead.
|
|
inlineExtraCallCost = 57 // 57 was benchmarked to provided most benefit with no bad surprises; see https://github.com/golang/go/issues/19348#issuecomment-439370742
|
|
inlineExtraPanicCost = 1 // do not penalize inlining panics.
|
|
inlineExtraThrowCost = inlineMaxBudget // with current (2018-05/1.11) code, inlining runtime.throw does not help.
|
|
|
|
inlineBigFunctionNodes = 5000 // Functions with this many nodes are considered "big".
|
|
inlineBigFunctionMaxCost = 20 // Max cost of inlinee when inlining into a "big" function.
|
|
)
|
|
|
|
func InlinePackage() {
|
|
// Find functions that can be inlined and clone them before walk expands them.
|
|
ir.VisitFuncsBottomUp(typecheck.Target.Decls, func(list []*ir.Func, recursive bool) {
|
|
numfns := numNonClosures(list)
|
|
for _, n := range list {
|
|
if !recursive || numfns > 1 {
|
|
// We allow inlining if there is no
|
|
// recursion, or the recursion cycle is
|
|
// across more than one function.
|
|
CanInline(n)
|
|
} else {
|
|
if base.Flag.LowerM > 1 {
|
|
fmt.Printf("%v: cannot inline %v: recursive\n", ir.Line(n), n.Nname)
|
|
}
|
|
}
|
|
InlineCalls(n)
|
|
}
|
|
})
|
|
}
|
|
|
|
// Caninl determines whether fn is inlineable.
|
|
// If so, CanInline saves fn->nbody in fn->inl and substitutes it with a copy.
|
|
// fn and ->nbody will already have been typechecked.
|
|
func CanInline(fn *ir.Func) {
|
|
if fn.Nname == nil {
|
|
base.Fatalf("CanInline no nname %+v", fn)
|
|
}
|
|
|
|
var reason string // reason, if any, that the function was not inlined
|
|
if base.Flag.LowerM > 1 || logopt.Enabled() {
|
|
defer func() {
|
|
if reason != "" {
|
|
if base.Flag.LowerM > 1 {
|
|
fmt.Printf("%v: cannot inline %v: %s\n", ir.Line(fn), fn.Nname, reason)
|
|
}
|
|
if logopt.Enabled() {
|
|
logopt.LogOpt(fn.Pos(), "cannotInlineFunction", "inline", ir.FuncName(fn), reason)
|
|
}
|
|
}
|
|
}()
|
|
}
|
|
|
|
// If marked "go:noinline", don't inline
|
|
if fn.Pragma&ir.Noinline != 0 {
|
|
reason = "marked go:noinline"
|
|
return
|
|
}
|
|
|
|
// If marked "go:norace" and -race compilation, don't inline.
|
|
if base.Flag.Race && fn.Pragma&ir.Norace != 0 {
|
|
reason = "marked go:norace with -race compilation"
|
|
return
|
|
}
|
|
|
|
// If marked "go:nocheckptr" and -d checkptr compilation, don't inline.
|
|
if base.Debug.Checkptr != 0 && fn.Pragma&ir.NoCheckPtr != 0 {
|
|
reason = "marked go:nocheckptr"
|
|
return
|
|
}
|
|
|
|
// If marked "go:cgo_unsafe_args", don't inline, since the
|
|
// function makes assumptions about its argument frame layout.
|
|
if fn.Pragma&ir.CgoUnsafeArgs != 0 {
|
|
reason = "marked go:cgo_unsafe_args"
|
|
return
|
|
}
|
|
|
|
// If marked as "go:uintptrescapes", don't inline, since the
|
|
// escape information is lost during inlining.
|
|
if fn.Pragma&ir.UintptrEscapes != 0 {
|
|
reason = "marked as having an escaping uintptr argument"
|
|
return
|
|
}
|
|
|
|
// The nowritebarrierrec checker currently works at function
|
|
// granularity, so inlining yeswritebarrierrec functions can
|
|
// confuse it (#22342). As a workaround, disallow inlining
|
|
// them for now.
|
|
if fn.Pragma&ir.Yeswritebarrierrec != 0 {
|
|
reason = "marked go:yeswritebarrierrec"
|
|
return
|
|
}
|
|
|
|
// If fn has no body (is defined outside of Go), cannot inline it.
|
|
if len(fn.Body) == 0 {
|
|
reason = "no function body"
|
|
return
|
|
}
|
|
|
|
if fn.Typecheck() == 0 {
|
|
base.Fatalf("CanInline on non-typechecked function %v", fn)
|
|
}
|
|
|
|
n := fn.Nname
|
|
if n.Func.InlinabilityChecked() {
|
|
return
|
|
}
|
|
defer n.Func.SetInlinabilityChecked(true)
|
|
|
|
cc := int32(inlineExtraCallCost)
|
|
if base.Flag.LowerL == 4 {
|
|
cc = 1 // this appears to yield better performance than 0.
|
|
}
|
|
|
|
// At this point in the game the function we're looking at may
|
|
// have "stale" autos, vars that still appear in the Dcl list, but
|
|
// which no longer have any uses in the function body (due to
|
|
// elimination by deadcode). We'd like to exclude these dead vars
|
|
// when creating the "Inline.Dcl" field below; to accomplish this,
|
|
// the hairyVisitor below builds up a map of used/referenced
|
|
// locals, and we use this map to produce a pruned Inline.Dcl
|
|
// list. See issue 25249 for more context.
|
|
|
|
visitor := hairyVisitor{
|
|
budget: inlineMaxBudget,
|
|
extraCallCost: cc,
|
|
usedLocals: make(map[*ir.Name]bool),
|
|
}
|
|
if visitor.tooHairy(fn) {
|
|
reason = visitor.reason
|
|
return
|
|
}
|
|
|
|
n.Func.Inl = &ir.Inline{
|
|
Cost: inlineMaxBudget - visitor.budget,
|
|
Dcl: pruneUnusedAutos(n.Defn.(*ir.Func).Dcl, &visitor),
|
|
Body: ir.DeepCopyList(src.NoXPos, fn.Body),
|
|
}
|
|
|
|
if base.Flag.LowerM > 1 {
|
|
fmt.Printf("%v: can inline %v with cost %d as: %v { %v }\n", ir.Line(fn), n, inlineMaxBudget-visitor.budget, fn.Type(), ir.Nodes(n.Func.Inl.Body))
|
|
} else if base.Flag.LowerM != 0 {
|
|
fmt.Printf("%v: can inline %v\n", ir.Line(fn), n)
|
|
}
|
|
if logopt.Enabled() {
|
|
logopt.LogOpt(fn.Pos(), "canInlineFunction", "inline", ir.FuncName(fn), fmt.Sprintf("cost: %d", inlineMaxBudget-visitor.budget))
|
|
}
|
|
}
|
|
|
|
// Inline_Flood marks n's inline body for export and recursively ensures
|
|
// all called functions are marked too.
|
|
func Inline_Flood(n *ir.Name, exportsym func(*ir.Name)) {
|
|
if n == nil {
|
|
return
|
|
}
|
|
if n.Op() != ir.ONAME || n.Class != ir.PFUNC {
|
|
base.Fatalf("Inline_Flood: unexpected %v, %v, %v", n, n.Op(), n.Class)
|
|
}
|
|
fn := n.Func
|
|
if fn == nil {
|
|
base.Fatalf("Inline_Flood: missing Func on %v", n)
|
|
}
|
|
if fn.Inl == nil {
|
|
return
|
|
}
|
|
|
|
if fn.ExportInline() {
|
|
return
|
|
}
|
|
fn.SetExportInline(true)
|
|
|
|
typecheck.ImportedBody(fn)
|
|
|
|
// Recursively identify all referenced functions for
|
|
// reexport. We want to include even non-called functions,
|
|
// because after inlining they might be callable.
|
|
ir.VisitList(ir.Nodes(fn.Inl.Body), func(n ir.Node) {
|
|
switch n.Op() {
|
|
case ir.OMETHEXPR, ir.ODOTMETH:
|
|
Inline_Flood(ir.MethodExprName(n), exportsym)
|
|
|
|
case ir.ONAME:
|
|
n := n.(*ir.Name)
|
|
switch n.Class {
|
|
case ir.PFUNC:
|
|
Inline_Flood(n, exportsym)
|
|
exportsym(n)
|
|
case ir.PEXTERN:
|
|
exportsym(n)
|
|
}
|
|
|
|
case ir.OCALLPART:
|
|
// Okay, because we don't yet inline indirect
|
|
// calls to method values.
|
|
case ir.OCLOSURE:
|
|
// If the closure is inlinable, we'll need to
|
|
// flood it too. But today we don't support
|
|
// inlining functions that contain closures.
|
|
//
|
|
// When we do, we'll probably want:
|
|
// inlFlood(n.Func.Closure.Func.Nname)
|
|
base.Fatalf("unexpected closure in inlinable function")
|
|
}
|
|
})
|
|
}
|
|
|
|
// hairyVisitor visits a function body to determine its inlining
|
|
// hairiness and whether or not it can be inlined.
|
|
type hairyVisitor struct {
|
|
budget int32
|
|
reason string
|
|
extraCallCost int32
|
|
usedLocals map[*ir.Name]bool
|
|
do func(ir.Node) error
|
|
}
|
|
|
|
var errBudget = errors.New("too expensive")
|
|
|
|
func (v *hairyVisitor) tooHairy(fn *ir.Func) bool {
|
|
v.do = v.doNode // cache closure
|
|
|
|
err := errChildren(fn, v.do)
|
|
if err != nil {
|
|
v.reason = err.Error()
|
|
return true
|
|
}
|
|
if v.budget < 0 {
|
|
v.reason = fmt.Sprintf("function too complex: cost %d exceeds budget %d", inlineMaxBudget-v.budget, inlineMaxBudget)
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
func (v *hairyVisitor) doNode(n ir.Node) error {
|
|
if n == nil {
|
|
return nil
|
|
}
|
|
|
|
switch n.Op() {
|
|
// Call is okay if inlinable and we have the budget for the body.
|
|
case ir.OCALLFUNC:
|
|
n := n.(*ir.CallExpr)
|
|
// Functions that call runtime.getcaller{pc,sp} can not be inlined
|
|
// because getcaller{pc,sp} expect a pointer to the caller's first argument.
|
|
//
|
|
// runtime.throw is a "cheap call" like panic in normal code.
|
|
if n.X.Op() == ir.ONAME {
|
|
name := n.X.(*ir.Name)
|
|
if name.Class == ir.PFUNC && types.IsRuntimePkg(name.Sym().Pkg) {
|
|
fn := name.Sym().Name
|
|
if fn == "getcallerpc" || fn == "getcallersp" {
|
|
return errors.New("call to " + fn)
|
|
}
|
|
if fn == "throw" {
|
|
v.budget -= inlineExtraThrowCost
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
if ir.IsIntrinsicCall(n) {
|
|
// Treat like any other node.
|
|
break
|
|
}
|
|
|
|
if fn := inlCallee(n.X); fn != nil && fn.Inl != nil {
|
|
v.budget -= fn.Inl.Cost
|
|
break
|
|
}
|
|
|
|
// Call cost for non-leaf inlining.
|
|
v.budget -= v.extraCallCost
|
|
|
|
// Call is okay if inlinable and we have the budget for the body.
|
|
case ir.OCALLMETH:
|
|
n := n.(*ir.CallExpr)
|
|
t := n.X.Type()
|
|
if t == nil {
|
|
base.Fatalf("no function type for [%p] %+v\n", n.X, n.X)
|
|
}
|
|
fn := ir.MethodExprName(n.X).Func
|
|
if types.IsRuntimePkg(fn.Sym().Pkg) && fn.Sym().Name == "heapBits.nextArena" {
|
|
// Special case: explicitly allow
|
|
// mid-stack inlining of
|
|
// runtime.heapBits.next even though
|
|
// it calls slow-path
|
|
// runtime.heapBits.nextArena.
|
|
break
|
|
}
|
|
if fn.Inl != nil {
|
|
v.budget -= fn.Inl.Cost
|
|
break
|
|
}
|
|
// Call cost for non-leaf inlining.
|
|
v.budget -= v.extraCallCost
|
|
|
|
// Things that are too hairy, irrespective of the budget
|
|
case ir.OCALL, ir.OCALLINTER:
|
|
// Call cost for non-leaf inlining.
|
|
v.budget -= v.extraCallCost
|
|
|
|
case ir.OPANIC:
|
|
v.budget -= inlineExtraPanicCost
|
|
|
|
case ir.ORECOVER:
|
|
// recover matches the argument frame pointer to find
|
|
// the right panic value, so it needs an argument frame.
|
|
return errors.New("call to recover")
|
|
|
|
case ir.OCLOSURE,
|
|
ir.ORANGE,
|
|
ir.OSELECT,
|
|
ir.OGO,
|
|
ir.ODEFER,
|
|
ir.ODCLTYPE, // can't print yet
|
|
ir.OTAILCALL:
|
|
return errors.New("unhandled op " + n.Op().String())
|
|
|
|
case ir.OAPPEND:
|
|
v.budget -= inlineExtraAppendCost
|
|
|
|
case ir.ODCLCONST, ir.OFALL:
|
|
// These nodes don't produce code; omit from inlining budget.
|
|
return nil
|
|
|
|
case ir.OFOR, ir.OFORUNTIL:
|
|
n := n.(*ir.ForStmt)
|
|
if n.Label != nil {
|
|
return errors.New("labeled control")
|
|
}
|
|
case ir.OSWITCH:
|
|
n := n.(*ir.SwitchStmt)
|
|
if n.Label != nil {
|
|
return errors.New("labeled control")
|
|
}
|
|
// case ir.ORANGE, ir.OSELECT in "unhandled" above
|
|
|
|
case ir.OBREAK, ir.OCONTINUE:
|
|
n := n.(*ir.BranchStmt)
|
|
if n.Label != nil {
|
|
// Should have short-circuited due to labeled control error above.
|
|
base.Fatalf("unexpected labeled break/continue: %v", n)
|
|
}
|
|
|
|
case ir.OIF:
|
|
n := n.(*ir.IfStmt)
|
|
if ir.IsConst(n.Cond, constant.Bool) {
|
|
// This if and the condition cost nothing.
|
|
// TODO(rsc): It seems strange that we visit the dead branch.
|
|
if err := errList(n.Init(), v.do); err != nil {
|
|
return err
|
|
}
|
|
if err := errList(n.Body, v.do); err != nil {
|
|
return err
|
|
}
|
|
if err := errList(n.Else, v.do); err != nil {
|
|
return err
|
|
}
|
|
return nil
|
|
}
|
|
|
|
case ir.ONAME:
|
|
n := n.(*ir.Name)
|
|
if n.Class == ir.PAUTO {
|
|
v.usedLocals[n] = true
|
|
}
|
|
|
|
case ir.OBLOCK:
|
|
// The only OBLOCK we should see at this point is an empty one.
|
|
// In any event, let the visitList(n.List()) below take care of the statements,
|
|
// and don't charge for the OBLOCK itself. The ++ undoes the -- below.
|
|
v.budget++
|
|
|
|
case ir.OCALLPART, ir.OSLICELIT:
|
|
v.budget-- // Hack for toolstash -cmp.
|
|
|
|
case ir.OMETHEXPR:
|
|
v.budget++ // Hack for toolstash -cmp.
|
|
}
|
|
|
|
v.budget--
|
|
|
|
// When debugging, don't stop early, to get full cost of inlining this function
|
|
if v.budget < 0 && base.Flag.LowerM < 2 && !logopt.Enabled() {
|
|
return errBudget
|
|
}
|
|
|
|
return errChildren(n, v.do)
|
|
}
|
|
|
|
func isBigFunc(fn *ir.Func) bool {
|
|
budget := inlineBigFunctionNodes
|
|
return ir.Any(fn, func(n ir.Node) bool {
|
|
budget--
|
|
return budget <= 0
|
|
})
|
|
}
|
|
|
|
// Inlcalls/nodelist/node walks fn's statements and expressions and substitutes any
|
|
// calls made to inlineable functions. This is the external entry point.
|
|
func InlineCalls(fn *ir.Func) {
|
|
savefn := ir.CurFunc
|
|
ir.CurFunc = fn
|
|
maxCost := int32(inlineMaxBudget)
|
|
if isBigFunc(fn) {
|
|
maxCost = inlineBigFunctionMaxCost
|
|
}
|
|
// Map to keep track of functions that have been inlined at a particular
|
|
// call site, in order to stop inlining when we reach the beginning of a
|
|
// recursion cycle again. We don't inline immediately recursive functions,
|
|
// but allow inlining if there is a recursion cycle of many functions.
|
|
// Most likely, the inlining will stop before we even hit the beginning of
|
|
// the cycle again, but the map catches the unusual case.
|
|
inlMap := make(map[*ir.Func]bool)
|
|
var edit func(ir.Node) ir.Node
|
|
edit = func(n ir.Node) ir.Node {
|
|
return inlnode(n, maxCost, inlMap, edit)
|
|
}
|
|
ir.EditChildren(fn, edit)
|
|
ir.CurFunc = savefn
|
|
}
|
|
|
|
// Turn an OINLCALL into a statement.
|
|
func inlconv2stmt(inlcall *ir.InlinedCallExpr) ir.Node {
|
|
n := ir.NewBlockStmt(inlcall.Pos(), nil)
|
|
n.List = inlcall.Init()
|
|
n.List.Append(inlcall.Body.Take()...)
|
|
return n
|
|
}
|
|
|
|
// Turn an OINLCALL into a single valued expression.
|
|
// The result of inlconv2expr MUST be assigned back to n, e.g.
|
|
// n.Left = inlconv2expr(n.Left)
|
|
func inlconv2expr(n *ir.InlinedCallExpr) ir.Node {
|
|
r := n.ReturnVars[0]
|
|
return ir.InitExpr(append(n.Init(), n.Body...), r)
|
|
}
|
|
|
|
// Turn the rlist (with the return values) of the OINLCALL in
|
|
// n into an expression list lumping the ninit and body
|
|
// containing the inlined statements on the first list element so
|
|
// order will be preserved. Used in return, oas2func and call
|
|
// statements.
|
|
func inlconv2list(n *ir.InlinedCallExpr) []ir.Node {
|
|
if n.Op() != ir.OINLCALL || len(n.ReturnVars) == 0 {
|
|
base.Fatalf("inlconv2list %+v\n", n)
|
|
}
|
|
|
|
s := n.ReturnVars
|
|
s[0] = ir.InitExpr(append(n.Init(), n.Body...), s[0])
|
|
return s
|
|
}
|
|
|
|
// inlnode recurses over the tree to find inlineable calls, which will
|
|
// be turned into OINLCALLs by mkinlcall. When the recursion comes
|
|
// back up will examine left, right, list, rlist, ninit, ntest, nincr,
|
|
// nbody and nelse and use one of the 4 inlconv/glue functions above
|
|
// to turn the OINLCALL into an expression, a statement, or patch it
|
|
// in to this nodes list or rlist as appropriate.
|
|
// NOTE it makes no sense to pass the glue functions down the
|
|
// recursion to the level where the OINLCALL gets created because they
|
|
// have to edit /this/ n, so you'd have to push that one down as well,
|
|
// but then you may as well do it here. so this is cleaner and
|
|
// shorter and less complicated.
|
|
// The result of inlnode MUST be assigned back to n, e.g.
|
|
// n.Left = inlnode(n.Left)
|
|
func inlnode(n ir.Node, maxCost int32, inlMap map[*ir.Func]bool, edit func(ir.Node) ir.Node) ir.Node {
|
|
if n == nil {
|
|
return n
|
|
}
|
|
|
|
switch n.Op() {
|
|
case ir.ODEFER, ir.OGO:
|
|
n := n.(*ir.GoDeferStmt)
|
|
switch call := n.Call; call.Op() {
|
|
case ir.OCALLFUNC, ir.OCALLMETH:
|
|
call := call.(*ir.CallExpr)
|
|
call.NoInline = true
|
|
}
|
|
|
|
// TODO do them here (or earlier),
|
|
// so escape analysis can avoid more heapmoves.
|
|
case ir.OCLOSURE:
|
|
return n
|
|
case ir.OCALLMETH:
|
|
// Prevent inlining some reflect.Value methods when using checkptr,
|
|
// even when package reflect was compiled without it (#35073).
|
|
n := n.(*ir.CallExpr)
|
|
if s := ir.MethodExprName(n.X).Sym(); base.Debug.Checkptr != 0 && types.IsReflectPkg(s.Pkg) && (s.Name == "Value.UnsafeAddr" || s.Name == "Value.Pointer") {
|
|
return n
|
|
}
|
|
}
|
|
|
|
lno := ir.SetPos(n)
|
|
|
|
ir.EditChildren(n, edit)
|
|
|
|
if as := n; as.Op() == ir.OAS2FUNC {
|
|
as := as.(*ir.AssignListStmt)
|
|
if as.Rhs[0].Op() == ir.OINLCALL {
|
|
as.Rhs = inlconv2list(as.Rhs[0].(*ir.InlinedCallExpr))
|
|
as.SetOp(ir.OAS2)
|
|
as.SetTypecheck(0)
|
|
n = typecheck.Stmt(as)
|
|
}
|
|
}
|
|
|
|
// with all the branches out of the way, it is now time to
|
|
// transmogrify this node itself unless inhibited by the
|
|
// switch at the top of this function.
|
|
switch n.Op() {
|
|
case ir.OCALLFUNC, ir.OCALLMETH:
|
|
n := n.(*ir.CallExpr)
|
|
if n.NoInline {
|
|
return n
|
|
}
|
|
}
|
|
|
|
var call *ir.CallExpr
|
|
switch n.Op() {
|
|
case ir.OCALLFUNC:
|
|
call = n.(*ir.CallExpr)
|
|
if base.Flag.LowerM > 3 {
|
|
fmt.Printf("%v:call to func %+v\n", ir.Line(n), call.X)
|
|
}
|
|
if ir.IsIntrinsicCall(call) {
|
|
break
|
|
}
|
|
if fn := inlCallee(call.X); fn != nil && fn.Inl != nil {
|
|
n = mkinlcall(call, fn, maxCost, inlMap, edit)
|
|
}
|
|
|
|
case ir.OCALLMETH:
|
|
call = n.(*ir.CallExpr)
|
|
if base.Flag.LowerM > 3 {
|
|
fmt.Printf("%v:call to meth %v\n", ir.Line(n), call.X.(*ir.SelectorExpr).Sel)
|
|
}
|
|
|
|
// typecheck should have resolved ODOTMETH->type, whose nname points to the actual function.
|
|
if call.X.Type() == nil {
|
|
base.Fatalf("no function type for [%p] %+v\n", call.X, call.X)
|
|
}
|
|
|
|
n = mkinlcall(call, ir.MethodExprName(call.X).Func, maxCost, inlMap, edit)
|
|
}
|
|
|
|
base.Pos = lno
|
|
|
|
if n.Op() == ir.OINLCALL {
|
|
ic := n.(*ir.InlinedCallExpr)
|
|
switch call.Use {
|
|
default:
|
|
ir.Dump("call", call)
|
|
base.Fatalf("call missing use")
|
|
case ir.CallUseExpr:
|
|
n = inlconv2expr(ic)
|
|
case ir.CallUseStmt:
|
|
n = inlconv2stmt(ic)
|
|
case ir.CallUseList:
|
|
// leave for caller to convert
|
|
}
|
|
}
|
|
|
|
return n
|
|
}
|
|
|
|
// inlCallee takes a function-typed expression and returns the underlying function ONAME
|
|
// that it refers to if statically known. Otherwise, it returns nil.
|
|
func inlCallee(fn ir.Node) *ir.Func {
|
|
fn = ir.StaticValue(fn)
|
|
switch fn.Op() {
|
|
case ir.OMETHEXPR:
|
|
fn := fn.(*ir.SelectorExpr)
|
|
n := ir.MethodExprName(fn)
|
|
// Check that receiver type matches fn.X.
|
|
// TODO(mdempsky): Handle implicit dereference
|
|
// of pointer receiver argument?
|
|
if n == nil || !types.Identical(n.Type().Recv().Type, fn.X.Type()) {
|
|
return nil
|
|
}
|
|
return n.Func
|
|
case ir.ONAME:
|
|
fn := fn.(*ir.Name)
|
|
if fn.Class == ir.PFUNC {
|
|
return fn.Func
|
|
}
|
|
case ir.OCLOSURE:
|
|
fn := fn.(*ir.ClosureExpr)
|
|
c := fn.Func
|
|
CanInline(c)
|
|
return c
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func inlParam(t *types.Field, as ir.InitNode, inlvars map[*ir.Name]*ir.Name) ir.Node {
|
|
if t.Nname == nil {
|
|
return ir.BlankNode
|
|
}
|
|
n := t.Nname.(*ir.Name)
|
|
if ir.IsBlank(n) {
|
|
return ir.BlankNode
|
|
}
|
|
inlvar := inlvars[n]
|
|
if inlvar == nil {
|
|
base.Fatalf("missing inlvar for %v", n)
|
|
}
|
|
as.PtrInit().Append(ir.NewDecl(base.Pos, ir.ODCL, inlvar))
|
|
inlvar.Name().Defn = as
|
|
return inlvar
|
|
}
|
|
|
|
var inlgen int
|
|
|
|
// SSADumpInline gives the SSA back end a chance to dump the function
|
|
// when producing output for debugging the compiler itself.
|
|
var SSADumpInline = func(*ir.Func) {}
|
|
|
|
// If n is a call node (OCALLFUNC or OCALLMETH), and fn is an ONAME node for a
|
|
// function with an inlinable body, return an OINLCALL node that can replace n.
|
|
// The returned node's Ninit has the parameter assignments, the Nbody is the
|
|
// inlined function body, and (List, Rlist) contain the (input, output)
|
|
// parameters.
|
|
// The result of mkinlcall MUST be assigned back to n, e.g.
|
|
// n.Left = mkinlcall(n.Left, fn, isddd)
|
|
func mkinlcall(n *ir.CallExpr, fn *ir.Func, maxCost int32, inlMap map[*ir.Func]bool, edit func(ir.Node) ir.Node) ir.Node {
|
|
if fn.Inl == nil {
|
|
if logopt.Enabled() {
|
|
logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(ir.CurFunc),
|
|
fmt.Sprintf("%s cannot be inlined", ir.PkgFuncName(fn)))
|
|
}
|
|
return n
|
|
}
|
|
if fn.Inl.Cost > maxCost {
|
|
// The inlined function body is too big. Typically we use this check to restrict
|
|
// inlining into very big functions. See issue 26546 and 17566.
|
|
if logopt.Enabled() {
|
|
logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(ir.CurFunc),
|
|
fmt.Sprintf("cost %d of %s exceeds max large caller cost %d", fn.Inl.Cost, ir.PkgFuncName(fn), maxCost))
|
|
}
|
|
return n
|
|
}
|
|
|
|
if fn == ir.CurFunc {
|
|
// Can't recursively inline a function into itself.
|
|
if logopt.Enabled() {
|
|
logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", fmt.Sprintf("recursive call to %s", ir.FuncName(ir.CurFunc)))
|
|
}
|
|
return n
|
|
}
|
|
|
|
if base.Flag.Cfg.Instrumenting && types.IsRuntimePkg(fn.Sym().Pkg) {
|
|
// Runtime package must not be instrumented.
|
|
// Instrument skips runtime package. However, some runtime code can be
|
|
// inlined into other packages and instrumented there. To avoid this,
|
|
// we disable inlining of runtime functions when instrumenting.
|
|
// The example that we observed is inlining of LockOSThread,
|
|
// which lead to false race reports on m contents.
|
|
return n
|
|
}
|
|
|
|
if inlMap[fn] {
|
|
if base.Flag.LowerM > 1 {
|
|
fmt.Printf("%v: cannot inline %v into %v: repeated recursive cycle\n", ir.Line(n), fn, ir.FuncName(ir.CurFunc))
|
|
}
|
|
return n
|
|
}
|
|
inlMap[fn] = true
|
|
defer func() {
|
|
inlMap[fn] = false
|
|
}()
|
|
if base.Debug.TypecheckInl == 0 {
|
|
typecheck.ImportedBody(fn)
|
|
}
|
|
|
|
// We have a function node, and it has an inlineable body.
|
|
if base.Flag.LowerM > 1 {
|
|
fmt.Printf("%v: inlining call to %v %v { %v }\n", ir.Line(n), fn.Sym(), fn.Type(), ir.Nodes(fn.Inl.Body))
|
|
} else if base.Flag.LowerM != 0 {
|
|
fmt.Printf("%v: inlining call to %v\n", ir.Line(n), fn)
|
|
}
|
|
if base.Flag.LowerM > 2 {
|
|
fmt.Printf("%v: Before inlining: %+v\n", ir.Line(n), n)
|
|
}
|
|
|
|
SSADumpInline(fn)
|
|
|
|
ninit := n.Init()
|
|
|
|
// For normal function calls, the function callee expression
|
|
// may contain side effects (e.g., added by addinit during
|
|
// inlconv2expr or inlconv2list). Make sure to preserve these,
|
|
// if necessary (#42703).
|
|
if n.Op() == ir.OCALLFUNC {
|
|
callee := n.X
|
|
for callee.Op() == ir.OCONVNOP {
|
|
conv := callee.(*ir.ConvExpr)
|
|
ninit.Append(ir.TakeInit(conv)...)
|
|
callee = conv.X
|
|
}
|
|
if callee.Op() != ir.ONAME && callee.Op() != ir.OCLOSURE && callee.Op() != ir.OMETHEXPR {
|
|
base.Fatalf("unexpected callee expression: %v", callee)
|
|
}
|
|
}
|
|
|
|
// Make temp names to use instead of the originals.
|
|
inlvars := make(map[*ir.Name]*ir.Name)
|
|
|
|
// record formals/locals for later post-processing
|
|
var inlfvars []*ir.Name
|
|
|
|
for _, ln := range fn.Inl.Dcl {
|
|
if ln.Op() != ir.ONAME {
|
|
continue
|
|
}
|
|
if ln.Class == ir.PPARAMOUT { // return values handled below.
|
|
continue
|
|
}
|
|
inlf := typecheck.Expr(inlvar(ln)).(*ir.Name)
|
|
inlvars[ln] = inlf
|
|
if base.Flag.GenDwarfInl > 0 {
|
|
if ln.Class == ir.PPARAM {
|
|
inlf.Name().SetInlFormal(true)
|
|
} else {
|
|
inlf.Name().SetInlLocal(true)
|
|
}
|
|
inlf.SetPos(ln.Pos())
|
|
inlfvars = append(inlfvars, inlf)
|
|
}
|
|
}
|
|
|
|
nreturns := 0
|
|
ir.VisitList(ir.Nodes(fn.Inl.Body), func(n ir.Node) {
|
|
if n != nil && n.Op() == ir.ORETURN {
|
|
nreturns++
|
|
}
|
|
})
|
|
|
|
// We can delay declaring+initializing result parameters if:
|
|
// (1) there's only one "return" statement in the inlined
|
|
// function, and (2) the result parameters aren't named.
|
|
delayretvars := nreturns == 1
|
|
|
|
// temporaries for return values.
|
|
var retvars []ir.Node
|
|
for i, t := range fn.Type().Results().Fields().Slice() {
|
|
var m *ir.Name
|
|
if nn := t.Nname; nn != nil && !ir.IsBlank(nn.(*ir.Name)) && !strings.HasPrefix(nn.Sym().Name, "~r") {
|
|
n := nn.(*ir.Name)
|
|
m = inlvar(n)
|
|
m = typecheck.Expr(m).(*ir.Name)
|
|
inlvars[n] = m
|
|
delayretvars = false // found a named result parameter
|
|
} else {
|
|
// anonymous return values, synthesize names for use in assignment that replaces return
|
|
m = retvar(t, i)
|
|
}
|
|
|
|
if base.Flag.GenDwarfInl > 0 {
|
|
// Don't update the src.Pos on a return variable if it
|
|
// was manufactured by the inliner (e.g. "~R2"); such vars
|
|
// were not part of the original callee.
|
|
if !strings.HasPrefix(m.Sym().Name, "~R") {
|
|
m.Name().SetInlFormal(true)
|
|
m.SetPos(t.Pos)
|
|
inlfvars = append(inlfvars, m)
|
|
}
|
|
}
|
|
|
|
retvars = append(retvars, m)
|
|
}
|
|
|
|
// Assign arguments to the parameters' temp names.
|
|
as := ir.NewAssignListStmt(base.Pos, ir.OAS2, nil, nil)
|
|
as.Def = true
|
|
if n.Op() == ir.OCALLMETH {
|
|
sel := n.X.(*ir.SelectorExpr)
|
|
if sel.X == nil {
|
|
base.Fatalf("method call without receiver: %+v", n)
|
|
}
|
|
as.Rhs.Append(sel.X)
|
|
}
|
|
as.Rhs.Append(n.Args...)
|
|
|
|
// For non-dotted calls to variadic functions, we assign the
|
|
// variadic parameter's temp name separately.
|
|
var vas *ir.AssignStmt
|
|
|
|
if recv := fn.Type().Recv(); recv != nil {
|
|
as.Lhs.Append(inlParam(recv, as, inlvars))
|
|
}
|
|
for _, param := range fn.Type().Params().Fields().Slice() {
|
|
// For ordinary parameters or variadic parameters in
|
|
// dotted calls, just add the variable to the
|
|
// assignment list, and we're done.
|
|
if !param.IsDDD() || n.IsDDD {
|
|
as.Lhs.Append(inlParam(param, as, inlvars))
|
|
continue
|
|
}
|
|
|
|
// Otherwise, we need to collect the remaining values
|
|
// to pass as a slice.
|
|
|
|
x := len(as.Lhs)
|
|
for len(as.Lhs) < len(as.Rhs) {
|
|
as.Lhs.Append(argvar(param.Type, len(as.Lhs)))
|
|
}
|
|
varargs := as.Lhs[x:]
|
|
|
|
vas = ir.NewAssignStmt(base.Pos, nil, nil)
|
|
vas.X = inlParam(param, vas, inlvars)
|
|
if len(varargs) == 0 {
|
|
vas.Y = typecheck.NodNil()
|
|
vas.Y.SetType(param.Type)
|
|
} else {
|
|
lit := ir.NewCompLitExpr(base.Pos, ir.OCOMPLIT, ir.TypeNode(param.Type), nil)
|
|
lit.List = varargs
|
|
vas.Y = lit
|
|
}
|
|
}
|
|
|
|
if len(as.Rhs) != 0 {
|
|
ninit.Append(typecheck.Stmt(as))
|
|
}
|
|
|
|
if vas != nil {
|
|
ninit.Append(typecheck.Stmt(vas))
|
|
}
|
|
|
|
if !delayretvars {
|
|
// Zero the return parameters.
|
|
for _, n := range retvars {
|
|
ninit.Append(ir.NewDecl(base.Pos, ir.ODCL, n.(*ir.Name)))
|
|
ras := ir.NewAssignStmt(base.Pos, n, nil)
|
|
ninit.Append(typecheck.Stmt(ras))
|
|
}
|
|
}
|
|
|
|
retlabel := typecheck.AutoLabel(".i")
|
|
|
|
inlgen++
|
|
|
|
parent := -1
|
|
if b := base.Ctxt.PosTable.Pos(n.Pos()).Base(); b != nil {
|
|
parent = b.InliningIndex()
|
|
}
|
|
|
|
sym := fn.Linksym()
|
|
newIndex := base.Ctxt.InlTree.Add(parent, n.Pos(), sym)
|
|
|
|
// Add an inline mark just before the inlined body.
|
|
// This mark is inline in the code so that it's a reasonable spot
|
|
// to put a breakpoint. Not sure if that's really necessary or not
|
|
// (in which case it could go at the end of the function instead).
|
|
// Note issue 28603.
|
|
inlMark := ir.NewInlineMarkStmt(base.Pos, types.BADWIDTH)
|
|
inlMark.SetPos(n.Pos().WithIsStmt())
|
|
inlMark.Index = int64(newIndex)
|
|
ninit.Append(inlMark)
|
|
|
|
if base.Flag.GenDwarfInl > 0 {
|
|
if !sym.WasInlined() {
|
|
base.Ctxt.DwFixups.SetPrecursorFunc(sym, fn)
|
|
sym.Set(obj.AttrWasInlined, true)
|
|
}
|
|
}
|
|
|
|
subst := inlsubst{
|
|
retlabel: retlabel,
|
|
retvars: retvars,
|
|
delayretvars: delayretvars,
|
|
inlvars: inlvars,
|
|
bases: make(map[*src.PosBase]*src.PosBase),
|
|
newInlIndex: newIndex,
|
|
}
|
|
subst.edit = subst.node
|
|
|
|
body := subst.list(ir.Nodes(fn.Inl.Body))
|
|
|
|
lab := ir.NewLabelStmt(base.Pos, retlabel)
|
|
body = append(body, lab)
|
|
|
|
typecheck.Stmts(body)
|
|
|
|
if base.Flag.GenDwarfInl > 0 {
|
|
for _, v := range inlfvars {
|
|
v.SetPos(subst.updatedPos(v.Pos()))
|
|
}
|
|
}
|
|
|
|
//dumplist("ninit post", ninit);
|
|
|
|
call := ir.NewInlinedCallExpr(base.Pos, nil, nil)
|
|
*call.PtrInit() = ninit
|
|
call.Body = body
|
|
call.ReturnVars = retvars
|
|
call.SetType(n.Type())
|
|
call.SetTypecheck(1)
|
|
|
|
// transitive inlining
|
|
// might be nice to do this before exporting the body,
|
|
// but can't emit the body with inlining expanded.
|
|
// instead we emit the things that the body needs
|
|
// and each use must redo the inlining.
|
|
// luckily these are small.
|
|
ir.EditChildren(call, edit)
|
|
|
|
if base.Flag.LowerM > 2 {
|
|
fmt.Printf("%v: After inlining %+v\n\n", ir.Line(call), call)
|
|
}
|
|
|
|
return call
|
|
}
|
|
|
|
// Every time we expand a function we generate a new set of tmpnames,
|
|
// PAUTO's in the calling functions, and link them off of the
|
|
// PPARAM's, PAUTOS and PPARAMOUTs of the called function.
|
|
func inlvar(var_ *ir.Name) *ir.Name {
|
|
if base.Flag.LowerM > 3 {
|
|
fmt.Printf("inlvar %+v\n", var_)
|
|
}
|
|
|
|
n := typecheck.NewName(var_.Sym())
|
|
n.SetType(var_.Type())
|
|
n.Class = ir.PAUTO
|
|
n.SetUsed(true)
|
|
n.Curfn = ir.CurFunc // the calling function, not the called one
|
|
n.SetAddrtaken(var_.Addrtaken())
|
|
|
|
ir.CurFunc.Dcl = append(ir.CurFunc.Dcl, n)
|
|
return n
|
|
}
|
|
|
|
// Synthesize a variable to store the inlined function's results in.
|
|
func retvar(t *types.Field, i int) *ir.Name {
|
|
n := typecheck.NewName(typecheck.LookupNum("~R", i))
|
|
n.SetType(t.Type)
|
|
n.Class = ir.PAUTO
|
|
n.SetUsed(true)
|
|
n.Curfn = ir.CurFunc // the calling function, not the called one
|
|
ir.CurFunc.Dcl = append(ir.CurFunc.Dcl, n)
|
|
return n
|
|
}
|
|
|
|
// Synthesize a variable to store the inlined function's arguments
|
|
// when they come from a multiple return call.
|
|
func argvar(t *types.Type, i int) ir.Node {
|
|
n := typecheck.NewName(typecheck.LookupNum("~arg", i))
|
|
n.SetType(t.Elem())
|
|
n.Class = ir.PAUTO
|
|
n.SetUsed(true)
|
|
n.Curfn = ir.CurFunc // the calling function, not the called one
|
|
ir.CurFunc.Dcl = append(ir.CurFunc.Dcl, n)
|
|
return n
|
|
}
|
|
|
|
// The inlsubst type implements the actual inlining of a single
|
|
// function call.
|
|
type inlsubst struct {
|
|
// Target of the goto substituted in place of a return.
|
|
retlabel *types.Sym
|
|
|
|
// Temporary result variables.
|
|
retvars []ir.Node
|
|
|
|
// Whether result variables should be initialized at the
|
|
// "return" statement.
|
|
delayretvars bool
|
|
|
|
inlvars map[*ir.Name]*ir.Name
|
|
|
|
// bases maps from original PosBase to PosBase with an extra
|
|
// inlined call frame.
|
|
bases map[*src.PosBase]*src.PosBase
|
|
|
|
// newInlIndex is the index of the inlined call frame to
|
|
// insert for inlined nodes.
|
|
newInlIndex int
|
|
|
|
edit func(ir.Node) ir.Node // cached copy of subst.node method value closure
|
|
}
|
|
|
|
// list inlines a list of nodes.
|
|
func (subst *inlsubst) list(ll ir.Nodes) []ir.Node {
|
|
s := make([]ir.Node, 0, len(ll))
|
|
for _, n := range ll {
|
|
s = append(s, subst.node(n))
|
|
}
|
|
return s
|
|
}
|
|
|
|
// node recursively copies a node from the saved pristine body of the
|
|
// inlined function, substituting references to input/output
|
|
// parameters with ones to the tmpnames, and substituting returns with
|
|
// assignments to the output.
|
|
func (subst *inlsubst) node(n ir.Node) ir.Node {
|
|
if n == nil {
|
|
return nil
|
|
}
|
|
|
|
switch n.Op() {
|
|
case ir.ONAME:
|
|
n := n.(*ir.Name)
|
|
|
|
// Handle captured variables when inlining closures.
|
|
if n.IsClosureVar() {
|
|
o := n.Outer
|
|
|
|
// make sure the outer param matches the inlining location
|
|
// NB: if we enabled inlining of functions containing OCLOSURE or refined
|
|
// the reassigned check via some sort of copy propagation this would most
|
|
// likely need to be changed to a loop to walk up to the correct Param
|
|
if o == nil || o.Curfn != ir.CurFunc {
|
|
base.Fatalf("%v: unresolvable capture %v\n", ir.Line(n), n)
|
|
}
|
|
|
|
if base.Flag.LowerM > 2 {
|
|
fmt.Printf("substituting captured name %+v -> %+v\n", n, o)
|
|
}
|
|
return o
|
|
}
|
|
|
|
if inlvar := subst.inlvars[n]; inlvar != nil { // These will be set during inlnode
|
|
if base.Flag.LowerM > 2 {
|
|
fmt.Printf("substituting name %+v -> %+v\n", n, inlvar)
|
|
}
|
|
return inlvar
|
|
}
|
|
|
|
if base.Flag.LowerM > 2 {
|
|
fmt.Printf("not substituting name %+v\n", n)
|
|
}
|
|
return n
|
|
|
|
case ir.OMETHEXPR:
|
|
n := n.(*ir.SelectorExpr)
|
|
return n
|
|
|
|
case ir.OLITERAL, ir.ONIL, ir.OTYPE:
|
|
// If n is a named constant or type, we can continue
|
|
// using it in the inline copy. Otherwise, make a copy
|
|
// so we can update the line number.
|
|
if n.Sym() != nil {
|
|
return n
|
|
}
|
|
|
|
case ir.ORETURN:
|
|
// Since we don't handle bodies with closures,
|
|
// this return is guaranteed to belong to the current inlined function.
|
|
n := n.(*ir.ReturnStmt)
|
|
init := subst.list(n.Init())
|
|
if len(subst.retvars) != 0 && len(n.Results) != 0 {
|
|
as := ir.NewAssignListStmt(base.Pos, ir.OAS2, nil, nil)
|
|
|
|
// Make a shallow copy of retvars.
|
|
// Otherwise OINLCALL.Rlist will be the same list,
|
|
// and later walk and typecheck may clobber it.
|
|
for _, n := range subst.retvars {
|
|
as.Lhs.Append(n)
|
|
}
|
|
as.Rhs = subst.list(n.Results)
|
|
|
|
if subst.delayretvars {
|
|
for _, n := range as.Lhs {
|
|
as.PtrInit().Append(ir.NewDecl(base.Pos, ir.ODCL, n.(*ir.Name)))
|
|
n.Name().Defn = as
|
|
}
|
|
}
|
|
|
|
init = append(init, typecheck.Stmt(as))
|
|
}
|
|
init = append(init, ir.NewBranchStmt(base.Pos, ir.OGOTO, subst.retlabel))
|
|
typecheck.Stmts(init)
|
|
return ir.NewBlockStmt(base.Pos, init)
|
|
|
|
case ir.OGOTO:
|
|
n := n.(*ir.BranchStmt)
|
|
m := ir.Copy(n).(*ir.BranchStmt)
|
|
m.SetPos(subst.updatedPos(m.Pos()))
|
|
*m.PtrInit() = nil
|
|
p := fmt.Sprintf("%s·%d", n.Label.Name, inlgen)
|
|
m.Label = typecheck.Lookup(p)
|
|
return m
|
|
|
|
case ir.OLABEL:
|
|
n := n.(*ir.LabelStmt)
|
|
m := ir.Copy(n).(*ir.LabelStmt)
|
|
m.SetPos(subst.updatedPos(m.Pos()))
|
|
*m.PtrInit() = nil
|
|
p := fmt.Sprintf("%s·%d", n.Label.Name, inlgen)
|
|
m.Label = typecheck.Lookup(p)
|
|
return m
|
|
}
|
|
|
|
if n.Op() == ir.OCLOSURE {
|
|
base.Fatalf("cannot inline function containing closure: %+v", n)
|
|
}
|
|
|
|
m := ir.Copy(n)
|
|
m.SetPos(subst.updatedPos(m.Pos()))
|
|
ir.EditChildren(m, subst.edit)
|
|
return m
|
|
}
|
|
|
|
func (subst *inlsubst) updatedPos(xpos src.XPos) src.XPos {
|
|
pos := base.Ctxt.PosTable.Pos(xpos)
|
|
oldbase := pos.Base() // can be nil
|
|
newbase := subst.bases[oldbase]
|
|
if newbase == nil {
|
|
newbase = src.NewInliningBase(oldbase, subst.newInlIndex)
|
|
subst.bases[oldbase] = newbase
|
|
}
|
|
pos.SetBase(newbase)
|
|
return base.Ctxt.PosTable.XPos(pos)
|
|
}
|
|
|
|
func pruneUnusedAutos(ll []*ir.Name, vis *hairyVisitor) []*ir.Name {
|
|
s := make([]*ir.Name, 0, len(ll))
|
|
for _, n := range ll {
|
|
if n.Class == ir.PAUTO {
|
|
if _, found := vis.usedLocals[n]; !found {
|
|
continue
|
|
}
|
|
}
|
|
s = append(s, n)
|
|
}
|
|
return s
|
|
}
|
|
|
|
// numNonClosures returns the number of functions in list which are not closures.
|
|
func numNonClosures(list []*ir.Func) int {
|
|
count := 0
|
|
for _, fn := range list {
|
|
if fn.OClosure == nil {
|
|
count++
|
|
}
|
|
}
|
|
return count
|
|
}
|
|
|
|
// TODO(mdempsky): Update inl.go to use ir.DoChildren directly.
|
|
func errChildren(n ir.Node, do func(ir.Node) error) (err error) {
|
|
ir.DoChildren(n, func(x ir.Node) bool {
|
|
err = do(x)
|
|
return err != nil
|
|
})
|
|
return
|
|
}
|
|
func errList(list []ir.Node, do func(ir.Node) error) error {
|
|
for _, x := range list {
|
|
if x != nil {
|
|
if err := do(x); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
}
|
|
return nil
|
|
}
|