go/src/cmd/gc/esc.c
Russ Cox 96d90d0981 cmd/gc: shorten even more temporary lifetimes
1. Use n->alloc, not n->left, to hold the allocated temp being
passed from orderstmt/orderexpr to walk.

2. Treat method values the same as closures.

3. Use killed temporary for composite literal passed to
non-escaping function argument.

4. Clean temporaries promptly in if and for statements.

5. Clean temporaries promptly in select statements.
As part of this, move all the temporary-generating logic
out of select.c into order.c, so that the temporaries can
be reclaimed.

With the new temporaries, can re-enable the 1-entry
select optimization. Fixes issue 7672.

While we're here, fix a 1-line bug in select processing
turned up by the new liveness test (but unrelated; select.c:72).
Fixes #7686.

6. Clean temporaries (but not particularly promptly) in switch
and range statements.

7. Clean temporary used during convT2E/convT2I.

8. Clean temporaries promptly during && and || expressions.

---

CL 81940043 reduced the number of ambiguously live temps
in the godoc binary from 860 to 711.

CL 83090046 reduced the number from 711 to 121.

This CL reduces the number from 121 to 23.

15 the 23 that remain are in fact ambiguously live.
The final 8 could be fixed but are not trivial and
not common enough to warrant work at this point
in the release cycle.

These numbers only count ambiguously live temps,
not ambiguously live user-declared variables.
There are 18 such variables in the godoc binary after this CL,
so a total of 41 ambiguously live temps or user-declared
variables.

The net effect is that zeroing anything on entry to a function
should now be a rare event, whereas earlier it was the
common case.

This is good enough for Go 1.3, and probably good
enough for future releases too.

Fixes #7345.

LGTM=khr
R=khr
CC=golang-codereviews
https://golang.org/cl/83000048
2014-04-02 14:09:42 -04:00

1224 lines
30 KiB
C

// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Escape analysis.
#include <u.h>
#include <libc.h>
#include "go.h"
// Run analysis on minimal sets of mutually recursive functions
// or single non-recursive functions, bottom up.
//
// Finding these sets is finding strongly connected components
// in the static call graph. The algorithm for doing that is taken
// from Sedgewick, Algorithms, Second Edition, p. 482, with two
// adaptations.
//
// First, a hidden closure function (n->curfn != N) cannot be the
// root of a connected component. Refusing to use it as a root
// forces it into the component of the function in which it appears.
// The analysis assumes that closures and the functions in which they
// appear are analyzed together, so that the aliasing between their
// variables can be modeled more precisely.
//
// Second, each function becomes two virtual nodes in the graph,
// with numbers n and n+1. We record the function's node number as n
// but search from node n+1. If the search tells us that the component
// number (min) is n+1, we know that this is a trivial component: one function
// plus its closures. If the search tells us that the component number is
// n, then there was a path from node n+1 back to node n, meaning that
// the function set is mutually recursive. The escape analysis can be
// more precise when analyzing a single non-recursive function than
// when analyzing a set of mutually recursive functions.
static NodeList *stack;
static uint32 visitgen;
static uint32 visit(Node*);
static uint32 visitcode(Node*, uint32);
static uint32 visitcodelist(NodeList*, uint32);
static void analyze(NodeList*, int);
enum
{
EscFuncUnknown = 0,
EscFuncPlanned,
EscFuncStarted,
EscFuncTagged,
};
void
escapes(NodeList *all)
{
NodeList *l;
for(l=all; l; l=l->next)
l->n->walkgen = 0;
visitgen = 0;
for(l=all; l; l=l->next)
if(l->n->op == ODCLFUNC && l->n->curfn == N)
visit(l->n);
for(l=all; l; l=l->next)
l->n->walkgen = 0;
}
static uint32
visit(Node *n)
{
uint32 min, recursive;
NodeList *l, *block;
if(n->walkgen > 0) {
// already visited
return n->walkgen;
}
visitgen++;
n->walkgen = visitgen;
visitgen++;
min = visitgen;
l = mal(sizeof *l);
l->next = stack;
l->n = n;
stack = l;
min = visitcodelist(n->nbody, min);
if((min == n->walkgen || min == n->walkgen+1) && n->curfn == N) {
// This node is the root of a strongly connected component.
// The original min passed to visitcodelist was n->walkgen+1.
// If visitcodelist found its way back to n->walkgen, then this
// block is a set of mutually recursive functions.
// Otherwise it's just a lone function that does not recurse.
recursive = min == n->walkgen;
// Remove connected component from stack.
// Mark walkgen so that future visits return a large number
// so as not to affect the caller's min.
block = stack;
for(l=stack; l->n != n; l=l->next)
l->n->walkgen = (uint32)~0U;
n->walkgen = (uint32)~0U;
stack = l->next;
l->next = nil;
// Run escape analysis on this set of functions.
analyze(block, recursive);
}
return min;
}
static uint32
visitcodelist(NodeList *l, uint32 min)
{
for(; l; l=l->next)
min = visitcode(l->n, min);
return min;
}
static uint32
visitcode(Node *n, uint32 min)
{
Node *fn;
uint32 m;
if(n == N)
return min;
min = visitcodelist(n->ninit, min);
min = visitcode(n->left, min);
min = visitcode(n->right, min);
min = visitcodelist(n->list, min);
min = visitcode(n->ntest, min);
min = visitcode(n->nincr, min);
min = visitcodelist(n->nbody, min);
min = visitcodelist(n->nelse, min);
min = visitcodelist(n->rlist, min);
if(n->op == OCALLFUNC || n->op == OCALLMETH) {
fn = n->left;
if(n->op == OCALLMETH)
fn = n->left->right->sym->def;
if(fn && fn->op == ONAME && fn->class == PFUNC && fn->defn)
if((m = visit(fn->defn)) < min)
min = m;
}
if(n->op == OCLOSURE)
if((m = visit(n->closure)) < min)
min = m;
return min;
}
// An escape analysis pass for a set of functions.
//
// First escfunc, esc and escassign recurse over the ast of each
// function to dig out flow(dst,src) edges between any
// pointer-containing nodes and store them in dst->escflowsrc. For
// variables assigned to a variable in an outer scope or used as a
// return value, they store a flow(theSink, src) edge to a fake node
// 'the Sink'. For variables referenced in closures, an edge
// flow(closure, &var) is recorded and the flow of a closure itself to
// an outer scope is tracked the same way as other variables.
//
// Then escflood walks the graph starting at theSink and tags all
// variables of it can reach an & node as escaping and all function
// parameters it can reach as leaking.
//
// If a value's address is taken but the address does not escape,
// then the value can stay on the stack. If the value new(T) does
// not escape, then new(T) can be rewritten into a stack allocation.
// The same is true of slice literals.
//
// If optimizations are disabled (-N), this code is not used.
// Instead, the compiler assumes that any value whose address
// is taken without being immediately dereferenced
// needs to be moved to the heap, and new(T) and slice
// literals are always real allocations.
typedef struct EscState EscState;
static void escfunc(EscState*, Node *func);
static void esclist(EscState*, NodeList *l);
static void esc(EscState*, Node *n);
static void escloopdepthlist(EscState*, NodeList *l);
static void escloopdepth(EscState*, Node *n);
static void escassign(EscState*, Node *dst, Node *src);
static void esccall(EscState*, Node*);
static void escflows(EscState*, Node *dst, Node *src);
static void escflood(EscState*, Node *dst);
static void escwalk(EscState*, int level, Node *dst, Node *src);
static void esctag(EscState*, Node *func);
struct EscState {
// Fake node that all
// - return values and output variables
// - parameters on imported functions not marked 'safe'
// - assignments to global variables
// flow to.
Node theSink;
NodeList* dsts; // all dst nodes
int loopdepth; // for detecting nested loop scopes
int pdepth; // for debug printing in recursions.
int dstcount, edgecount; // diagnostic
NodeList* noesc; // list of possible non-escaping nodes, for printing
int recursive; // recursive function or group of mutually recursive functions.
};
static Strlit *tags[16];
static Strlit*
mktag(int mask)
{
Strlit *s;
char buf[40];
switch(mask&EscMask) {
case EscNone:
case EscReturn:
break;
default:
fatal("escape mktag");
}
mask >>= EscBits;
if(mask < nelem(tags) && tags[mask] != nil)
return tags[mask];
snprint(buf, sizeof buf, "esc:0x%x", mask);
s = strlit(buf);
if(mask < nelem(tags))
tags[mask] = s;
return s;
}
static int
parsetag(Strlit *note)
{
int em;
if(note == nil)
return EscUnknown;
if(strncmp(note->s, "esc:", 4) != 0)
return EscUnknown;
em = atoi(note->s + 4);
if (em == 0)
return EscNone;
return EscReturn | (em << EscBits);
}
static void
analyze(NodeList *all, int recursive)
{
NodeList *l;
EscState es, *e;
memset(&es, 0, sizeof es);
e = &es;
e->theSink.op = ONAME;
e->theSink.orig = &e->theSink;
e->theSink.class = PEXTERN;
e->theSink.sym = lookup(".sink");
e->theSink.escloopdepth = -1;
e->recursive = recursive;
for(l=all; l; l=l->next)
if(l->n->op == ODCLFUNC)
l->n->esc = EscFuncPlanned;
// flow-analyze functions
for(l=all; l; l=l->next)
if(l->n->op == ODCLFUNC)
escfunc(e, l->n);
// print("escapes: %d e->dsts, %d edges\n", e->dstcount, e->edgecount);
// visit the upstream of each dst, mark address nodes with
// addrescapes, mark parameters unsafe
for(l = e->dsts; l; l=l->next)
escflood(e, l->n);
// for all top level functions, tag the typenodes corresponding to the param nodes
for(l=all; l; l=l->next)
if(l->n->op == ODCLFUNC)
esctag(e, l->n);
if(debug['m']) {
for(l=e->noesc; l; l=l->next)
if(l->n->esc == EscNone)
warnl(l->n->lineno, "%S %hN does not escape",
(l->n->curfn && l->n->curfn->nname) ? l->n->curfn->nname->sym : S,
l->n);
}
}
static void
escfunc(EscState *e, Node *func)
{
Node *savefn;
NodeList *ll;
int saveld;
// print("escfunc %N %s\n", func->nname, e->recursive?"(recursive)":"");
if(func->esc != 1)
fatal("repeat escfunc %N", func->nname);
func->esc = EscFuncStarted;
saveld = e->loopdepth;
e->loopdepth = 1;
savefn = curfn;
curfn = func;
for(ll=curfn->dcl; ll; ll=ll->next) {
if(ll->n->op != ONAME)
continue;
switch (ll->n->class) {
case PPARAMOUT:
// out params are in a loopdepth between the sink and all local variables
ll->n->escloopdepth = 0;
break;
case PPARAM:
ll->n->escloopdepth = 1;
if(ll->n->type && !haspointers(ll->n->type))
break;
if(curfn->nbody == nil && !curfn->noescape)
ll->n->esc = EscHeap;
else
ll->n->esc = EscNone; // prime for escflood later
e->noesc = list(e->noesc, ll->n);
break;
}
}
// in a mutually recursive group we lose track of the return values
if(e->recursive)
for(ll=curfn->dcl; ll; ll=ll->next)
if(ll->n->op == ONAME && ll->n->class == PPARAMOUT)
escflows(e, &e->theSink, ll->n);
escloopdepthlist(e, curfn->nbody);
esclist(e, curfn->nbody);
curfn = savefn;
e->loopdepth = saveld;
}
// Mark labels that have no backjumps to them as not increasing e->loopdepth.
// Walk hasn't generated (goto|label)->left->sym->label yet, so we'll cheat
// and set it to one of the following two. Then in esc we'll clear it again.
static Label looping;
static Label nonlooping;
static void
escloopdepthlist(EscState *e, NodeList *l)
{
for(; l; l=l->next)
escloopdepth(e, l->n);
}
static void
escloopdepth(EscState *e, Node *n)
{
if(n == N)
return;
escloopdepthlist(e, n->ninit);
switch(n->op) {
case OLABEL:
if(!n->left || !n->left->sym)
fatal("esc:label without label: %+N", n);
// Walk will complain about this label being already defined, but that's not until
// after escape analysis. in the future, maybe pull label & goto analysis out of walk and put before esc
// if(n->left->sym->label != nil)
// fatal("escape analysis messed up analyzing label: %+N", n);
n->left->sym->label = &nonlooping;
break;
case OGOTO:
if(!n->left || !n->left->sym)
fatal("esc:goto without label: %+N", n);
// If we come past one that's uninitialized, this must be a (harmless) forward jump
// but if it's set to nonlooping the label must have preceded this goto.
if(n->left->sym->label == &nonlooping)
n->left->sym->label = &looping;
break;
}
escloopdepth(e, n->left);
escloopdepth(e, n->right);
escloopdepthlist(e, n->list);
escloopdepth(e, n->ntest);
escloopdepth(e, n->nincr);
escloopdepthlist(e, n->nbody);
escloopdepthlist(e, n->nelse);
escloopdepthlist(e, n->rlist);
}
static void
esclist(EscState *e, NodeList *l)
{
for(; l; l=l->next)
esc(e, l->n);
}
static void
esc(EscState *e, Node *n)
{
int lno;
NodeList *ll, *lr;
Node *a;
if(n == N)
return;
lno = setlineno(n);
// ninit logically runs at a different loopdepth than the rest of the for loop.
esclist(e, n->ninit);
if(n->op == OFOR || n->op == ORANGE)
e->loopdepth++;
esc(e, n->left);
esc(e, n->right);
esc(e, n->ntest);
esc(e, n->nincr);
esclist(e, n->nbody);
esclist(e, n->nelse);
esclist(e, n->list);
esclist(e, n->rlist);
if(n->op == OFOR || n->op == ORANGE)
e->loopdepth--;
if(debug['m'] > 1)
print("%L:[%d] %S esc: %N\n", lineno, e->loopdepth,
(curfn && curfn->nname) ? curfn->nname->sym : S, n);
switch(n->op) {
case ODCL:
// Record loop depth at declaration.
if(n->left)
n->left->escloopdepth = e->loopdepth;
break;
case OLABEL:
if(n->left->sym->label == &nonlooping) {
if(debug['m'] > 1)
print("%L:%N non-looping label\n", lineno, n);
} else if(n->left->sym->label == &looping) {
if(debug['m'] > 1)
print("%L: %N looping label\n", lineno, n);
e->loopdepth++;
}
// See case OLABEL in escloopdepth above
// else if(n->left->sym->label == nil)
// fatal("escape analysis missed or messed up a label: %+N", n);
n->left->sym->label = nil;
break;
case ORANGE:
// Everything but fixed array is a dereference.
if(isfixedarray(n->type) && n->list->next)
escassign(e, n->list->next->n, n->right);
break;
case OSWITCH:
if(n->ntest && n->ntest->op == OTYPESW) {
for(ll=n->list; ll; ll=ll->next) { // cases
// ntest->right is the argument of the .(type),
// ll->n->nname is the variable per case
escassign(e, ll->n->nname, n->ntest->right);
}
}
break;
case OAS:
case OASOP:
escassign(e, n->left, n->right);
break;
case OAS2: // x,y = a,b
if(count(n->list) == count(n->rlist))
for(ll=n->list, lr=n->rlist; ll; ll=ll->next, lr=lr->next)
escassign(e, ll->n, lr->n);
break;
case OAS2RECV: // v, ok = <-ch
case OAS2MAPR: // v, ok = m[k]
case OAS2DOTTYPE: // v, ok = x.(type)
escassign(e, n->list->n, n->rlist->n);
break;
case OSEND: // ch <- x
escassign(e, &e->theSink, n->right);
break;
case ODEFER:
if(e->loopdepth == 1) // top level
break;
// arguments leak out of scope
// TODO: leak to a dummy node instead
// fallthrough
case OPROC:
// go f(x) - f and x escape
escassign(e, &e->theSink, n->left->left);
escassign(e, &e->theSink, n->left->right); // ODDDARG for call
for(ll=n->left->list; ll; ll=ll->next)
escassign(e, &e->theSink, ll->n);
break;
case OCALLMETH:
case OCALLFUNC:
case OCALLINTER:
esccall(e, n);
break;
case OAS2FUNC: // x,y = f()
// esccall already done on n->rlist->n. tie it's escretval to n->list
lr=n->rlist->n->escretval;
for(ll=n->list; lr && ll; lr=lr->next, ll=ll->next)
escassign(e, ll->n, lr->n);
if(lr || ll)
fatal("esc oas2func");
break;
case ORETURN:
ll=n->list;
if(count(n->list) == 1 && curfn->type->outtuple > 1) {
// OAS2FUNC in disguise
// esccall already done on n->list->n
// tie n->list->n->escretval to curfn->dcl PPARAMOUT's
ll = n->list->n->escretval;
}
for(lr = curfn->dcl; lr && ll; lr=lr->next) {
if (lr->n->op != ONAME || lr->n->class != PPARAMOUT)
continue;
escassign(e, lr->n, ll->n);
ll = ll->next;
}
if (ll != nil)
fatal("esc return list");
break;
case OPANIC:
// Argument could leak through recover.
escassign(e, &e->theSink, n->left);
break;
case OAPPEND:
if(!n->isddd)
for(ll=n->list->next; ll; ll=ll->next)
escassign(e, &e->theSink, ll->n); // lose track of assign to dereference
break;
case OCONV:
case OCONVNOP:
case OCONVIFACE:
escassign(e, n, n->left);
break;
case OARRAYLIT:
if(isslice(n->type)) {
n->esc = EscNone; // until proven otherwise
e->noesc = list(e->noesc, n);
n->escloopdepth = e->loopdepth;
// Values make it to memory, lose track.
for(ll=n->list; ll; ll=ll->next)
escassign(e, &e->theSink, ll->n->right);
} else {
// Link values to array.
for(ll=n->list; ll; ll=ll->next)
escassign(e, n, ll->n->right);
}
break;
case OSTRUCTLIT:
// Link values to struct.
for(ll=n->list; ll; ll=ll->next)
escassign(e, n, ll->n->right);
break;
case OPTRLIT:
n->esc = EscNone; // until proven otherwise
e->noesc = list(e->noesc, n);
n->escloopdepth = e->loopdepth;
// Contents make it to memory, lose track.
escassign(e, &e->theSink, n->left);
break;
case OCALLPART:
n->esc = EscNone; // until proven otherwise
e->noesc = list(e->noesc, n);
n->escloopdepth = e->loopdepth;
// Contents make it to memory, lose track.
escassign(e, &e->theSink, n->left);
break;
case OMAPLIT:
n->esc = EscNone; // until proven otherwise
e->noesc = list(e->noesc, n);
n->escloopdepth = e->loopdepth;
// Keys and values make it to memory, lose track.
for(ll=n->list; ll; ll=ll->next) {
escassign(e, &e->theSink, ll->n->left);
escassign(e, &e->theSink, ll->n->right);
}
break;
case OCLOSURE:
// Link addresses of captured variables to closure.
for(ll=n->cvars; ll; ll=ll->next) {
if(ll->n->op == OXXX) // unnamed out argument; see dcl.c:/^funcargs
continue;
a = nod(OADDR, ll->n->closure, N);
a->lineno = ll->n->lineno;
a->escloopdepth = e->loopdepth;
typecheck(&a, Erv);
escassign(e, n, a);
}
// fallthrough
case OMAKECHAN:
case OMAKEMAP:
case OMAKESLICE:
case ONEW:
n->escloopdepth = e->loopdepth;
n->esc = EscNone; // until proven otherwise
e->noesc = list(e->noesc, n);
break;
case OADDR:
n->esc = EscNone; // until proven otherwise
e->noesc = list(e->noesc, n);
// current loop depth is an upper bound on actual loop depth
// of addressed value.
n->escloopdepth = e->loopdepth;
// for &x, use loop depth of x.
if(n->left->op == ONAME) {
switch(n->left->class) {
case PAUTO:
case PPARAM:
case PPARAMOUT:
n->escloopdepth = n->left->escloopdepth;
break;
}
}
break;
}
lineno = lno;
}
// Assert that expr somehow gets assigned to dst, if non nil. for
// dst==nil, any name node expr still must be marked as being
// evaluated in curfn. For expr==nil, dst must still be examined for
// evaluations inside it (e.g *f(x) = y)
static void
escassign(EscState *e, Node *dst, Node *src)
{
int lno;
NodeList *ll;
if(isblank(dst) || dst == N || src == N || src->op == ONONAME || src->op == OXXX)
return;
if(debug['m'] > 1)
print("%L:[%d] %S escassign: %hN(%hJ) = %hN(%hJ)\n", lineno, e->loopdepth,
(curfn && curfn->nname) ? curfn->nname->sym : S, dst, dst, src, src);
setlineno(dst);
// Analyze lhs of assignment.
// Replace dst with e->theSink if we can't track it.
switch(dst->op) {
default:
dump("dst", dst);
fatal("escassign: unexpected dst");
case OARRAYLIT:
case OCLOSURE:
case OCONV:
case OCONVIFACE:
case OCONVNOP:
case OMAPLIT:
case OSTRUCTLIT:
case OCALLPART:
break;
case ONAME:
if(dst->class == PEXTERN)
dst = &e->theSink;
break;
case ODOT: // treat "dst.x = src" as "dst = src"
escassign(e, dst->left, src);
return;
case OINDEX:
if(isfixedarray(dst->left->type)) {
escassign(e, dst->left, src);
return;
}
dst = &e->theSink; // lose track of dereference
break;
case OIND:
case ODOTPTR:
dst = &e->theSink; // lose track of dereference
break;
case OINDEXMAP:
// lose track of key and value
escassign(e, &e->theSink, dst->right);
dst = &e->theSink;
break;
}
lno = setlineno(src);
e->pdepth++;
switch(src->op) {
case OADDR: // dst = &x
case OIND: // dst = *x
case ODOTPTR: // dst = (*x).f
case ONAME:
case OPARAM:
case ODDDARG:
case OPTRLIT:
case OARRAYLIT:
case OMAPLIT:
case OSTRUCTLIT:
case OMAKECHAN:
case OMAKEMAP:
case OMAKESLICE:
case ONEW:
case OCLOSURE:
case OCALLPART:
escflows(e, dst, src);
break;
case OCALLMETH:
case OCALLFUNC:
case OCALLINTER:
// Flowing multiple returns to a single dst happens when
// analyzing "go f(g())": here g() flows to sink (issue 4529).
for(ll=src->escretval; ll; ll=ll->next)
escflows(e, dst, ll->n);
break;
case ODOT:
// A non-pointer escaping from a struct does not concern us.
if(src->type && !haspointers(src->type))
break;
// fallthrough
case OCONV:
case OCONVIFACE:
case OCONVNOP:
case ODOTMETH: // treat recv.meth as a value with recv in it, only happens in ODEFER and OPROC
// iface.method already leaks iface in esccall, no need to put in extra ODOTINTER edge here
case ODOTTYPE:
case ODOTTYPE2:
case OSLICE:
case OSLICEARR:
case OSLICE3:
case OSLICE3ARR:
// Conversions, field access, slice all preserve the input value.
escassign(e, dst, src->left);
break;
case OAPPEND:
// Append returns first argument.
escassign(e, dst, src->list->n);
break;
case OINDEX:
// Index of array preserves input value.
if(isfixedarray(src->left->type))
escassign(e, dst, src->left);
break;
case OADD:
case OSUB:
case OOR:
case OXOR:
case OMUL:
case ODIV:
case OMOD:
case OLSH:
case ORSH:
case OAND:
case OANDNOT:
case OPLUS:
case OMINUS:
case OCOM:
// Might be pointer arithmetic, in which case
// the operands flow into the result.
// TODO(rsc): Decide what the story is here. This is unsettling.
escassign(e, dst, src->left);
escassign(e, dst, src->right);
break;
}
e->pdepth--;
lineno = lno;
}
static int
escassignfromtag(EscState *e, Strlit *note, NodeList *dsts, Node *src)
{
int em, em0;
em = parsetag(note);
if(em == EscUnknown) {
escassign(e, &e->theSink, src);
return em;
}
if(em == EscNone)
return em;
em0 = em;
for(em >>= EscBits; em && dsts; em >>= 1, dsts=dsts->next)
if(em & 1)
escassign(e, dsts->n, src);
if (em != 0 && dsts == nil)
fatal("corrupt esc tag %Z or messed up escretval list\n", note);
return em0;
}
// This is a bit messier than fortunate, pulled out of esc's big
// switch for clarity. We either have the paramnodes, which may be
// connected to other things through flows or we have the parameter type
// nodes, which may be marked "noescape". Navigating the ast is slightly
// different for methods vs plain functions and for imported vs
// this-package
static void
esccall(EscState *e, Node *n)
{
NodeList *ll, *lr;
Node *a, *fn, *src;
Type *t, *fntype;
char buf[40];
int i;
fn = N;
switch(n->op) {
default:
fatal("esccall");
case OCALLFUNC:
fn = n->left;
fntype = fn->type;
break;
case OCALLMETH:
fn = n->left->right->sym->def;
if(fn)
fntype = fn->type;
else
fntype = n->left->type;
break;
case OCALLINTER:
fntype = n->left->type;
break;
}
ll = n->list;
if(n->list != nil && n->list->next == nil) {
a = n->list->n;
if(a->type->etype == TSTRUCT && a->type->funarg) // f(g()).
ll = a->escretval;
}
if(fn && fn->op == ONAME && fn->class == PFUNC && fn->defn && fn->defn->nbody && fn->ntype && fn->defn->esc < EscFuncTagged) {
// function in same mutually recursive group. Incorporate into flow graph.
// print("esc local fn: %N\n", fn->ntype);
if(fn->defn->esc == EscFuncUnknown || n->escretval != nil)
fatal("graph inconsistency");
// set up out list on this call node
for(lr=fn->ntype->rlist; lr; lr=lr->next)
n->escretval = list(n->escretval, lr->n->left); // type.rlist -> dclfield -> ONAME (PPARAMOUT)
// Receiver.
if(n->op != OCALLFUNC)
escassign(e, fn->ntype->left->left, n->left->left);
for(lr=fn->ntype->list; ll && lr; ll=ll->next, lr=lr->next) {
src = ll->n;
if(lr->n->isddd && !n->isddd) {
// Introduce ODDDARG node to represent ... allocation.
src = nod(ODDDARG, N, N);
src->type = typ(TARRAY);
src->type->type = lr->n->type->type;
src->type->bound = count(ll);
src->escloopdepth = e->loopdepth;
src->lineno = n->lineno;
src->esc = EscNone; // until we find otherwise
e->noesc = list(e->noesc, src);
n->right = src;
}
if(lr->n->left != N)
escassign(e, lr->n->left, src);
if(src != ll->n)
break;
}
// "..." arguments are untracked
for(; ll; ll=ll->next)
escassign(e, &e->theSink, ll->n);
return;
}
// Imported or completely analyzed function. Use the escape tags.
if(n->escretval != nil)
fatal("esc already decorated call %+N\n", n);
// set up out list on this call node with dummy auto ONAMES in the current (calling) function.
i = 0;
for(t=getoutargx(fntype)->type; t; t=t->down) {
src = nod(ONAME, N, N);
snprint(buf, sizeof buf, ".dum%d", i++);
src->sym = lookup(buf);
src->type = t->type;
src->class = PAUTO;
src->curfn = curfn;
src->escloopdepth = e->loopdepth;
src->used = 1;
src->lineno = n->lineno;
n->escretval = list(n->escretval, src);
}
// print("esc analyzed fn: %#N (%+T) returning (%+H)\n", fn, fntype, n->escretval);
// Receiver.
if(n->op != OCALLFUNC) {
t = getthisx(fntype)->type;
src = n->left->left;
if(haspointers(t->type))
escassignfromtag(e, t->note, n->escretval, src);
}
for(t=getinargx(fntype)->type; ll; ll=ll->next) {
src = ll->n;
if(t->isddd && !n->isddd) {
// Introduce ODDDARG node to represent ... allocation.
src = nod(ODDDARG, N, N);
src->escloopdepth = e->loopdepth;
src->lineno = n->lineno;
src->type = typ(TARRAY);
src->type->type = t->type->type;
src->type->bound = count(ll);
src->esc = EscNone; // until we find otherwise
e->noesc = list(e->noesc, src);
n->right = src;
}
if(haspointers(t->type)) {
if(escassignfromtag(e, t->note, n->escretval, src) == EscNone) {
a = src;
while(a->op == OCONVNOP)
a = a->left;
switch(a->op) {
case OCALLPART:
case OCLOSURE:
case ODDDARG:
case OARRAYLIT:
case OPTRLIT:
case OSTRUCTLIT:
// The callee has already been analyzed, so its arguments have esc tags.
// The argument is marked as not escaping at all.
// Record that fact so that any temporary used for
// synthesizing this expression can be reclaimed when
// the function returns.
// This 'noescape' is even stronger than the usual esc == EscNone.
// src->esc == EscNone means that src does not escape the current function.
// src->noescape = 1 here means that src does not escape this statement
// in the current function.
a->noescape = 1;
break;
}
}
}
if(src != ll->n)
break;
t = t->down;
}
// "..." arguments are untracked
for(; ll; ll=ll->next)
escassign(e, &e->theSink, ll->n);
}
// Store the link src->dst in dst, throwing out some quick wins.
static void
escflows(EscState *e, Node *dst, Node *src)
{
if(dst == nil || src == nil || dst == src)
return;
// Don't bother building a graph for scalars.
if(src->type && !haspointers(src->type))
return;
if(debug['m']>2)
print("%L::flows:: %hN <- %hN\n", lineno, dst, src);
if(dst->escflowsrc == nil) {
e->dsts = list(e->dsts, dst);
e->dstcount++;
}
e->edgecount++;
dst->escflowsrc = list(dst->escflowsrc, src);
}
// Whenever we hit a reference node, the level goes up by one, and whenever
// we hit an OADDR, the level goes down by one. as long as we're on a level > 0
// finding an OADDR just means we're following the upstream of a dereference,
// so this address doesn't leak (yet).
// If level == 0, it means the /value/ of this node can reach the root of this flood.
// so if this node is an OADDR, it's argument should be marked as escaping iff
// it's currfn/e->loopdepth are different from the flood's root.
// Once an object has been moved to the heap, all of it's upstream should be considered
// escaping to the global scope.
static void
escflood(EscState *e, Node *dst)
{
NodeList *l;
switch(dst->op) {
case ONAME:
case OCLOSURE:
break;
default:
return;
}
if(debug['m']>1)
print("\nescflood:%d: dst %hN scope:%S[%d]\n", walkgen, dst,
(dst->curfn && dst->curfn->nname) ? dst->curfn->nname->sym : S,
dst->escloopdepth);
for(l = dst->escflowsrc; l; l=l->next) {
walkgen++;
escwalk(e, 0, dst, l->n);
}
}
// There appear to be some loops in the escape graph, causing
// arbitrary recursion into deeper and deeper levels.
// Cut this off safely by making minLevel sticky: once you
// get that deep, you cannot go down any further but you also
// cannot go up any further. This is a conservative fix.
// Making minLevel smaller (more negative) would handle more
// complex chains of indirections followed by address-of operations,
// at the cost of repeating the traversal once for each additional
// allowed level when a loop is encountered. Using -2 suffices to
// pass all the tests we have written so far, which we assume matches
// the level of complexity we want the escape analysis code to handle.
#define MinLevel (-2)
static void
escwalk(EscState *e, int level, Node *dst, Node *src)
{
NodeList *ll;
int leaks, newlevel;
if(src->walkgen == walkgen && src->esclevel <= level)
return;
src->walkgen = walkgen;
src->esclevel = level;
if(debug['m']>1)
print("escwalk: level:%d depth:%d %.*s %hN(%hJ) scope:%S[%d]\n",
level, e->pdepth, e->pdepth, "\t\t\t\t\t\t\t\t\t\t", src, src,
(src->curfn && src->curfn->nname) ? src->curfn->nname->sym : S, src->escloopdepth);
e->pdepth++;
// Input parameter flowing to output parameter?
if(dst->op == ONAME && dst->class == PPARAMOUT && dst->vargen <= 20) {
if(src->op == ONAME && src->class == PPARAM && level == 0 && src->curfn == dst->curfn) {
if(src->esc != EscScope && src->esc != EscHeap) {
if(debug['m'])
warnl(src->lineno, "leaking param: %hN to result %S", src, dst->sym);
if((src->esc&EscMask) != EscReturn)
src->esc = EscReturn;
src->esc |= 1<<((dst->vargen-1) + EscBits);
goto recurse;
}
}
}
leaks = (level <= 0) && (dst->escloopdepth < src->escloopdepth);
switch(src->op) {
case ONAME:
if(src->class == PPARAM && (leaks || dst->escloopdepth < 0) && src->esc != EscHeap) {
src->esc = EscScope;
if(debug['m'])
warnl(src->lineno, "leaking param: %hN", src);
}
// Treat a PPARAMREF closure variable as equivalent to the
// original variable.
if(src->class == PPARAMREF) {
if(leaks && debug['m'])
warnl(src->lineno, "leaking closure reference %hN", src);
escwalk(e, level, dst, src->closure);
}
break;
case OPTRLIT:
case OADDR:
if(leaks) {
src->esc = EscHeap;
addrescapes(src->left);
if(debug['m'])
warnl(src->lineno, "%hN escapes to heap", src);
}
newlevel = level;
if(level > MinLevel)
newlevel--;
escwalk(e, newlevel, dst, src->left);
break;
case OARRAYLIT:
if(isfixedarray(src->type))
break;
// fall through
case ODDDARG:
case OMAKECHAN:
case OMAKEMAP:
case OMAKESLICE:
case OMAPLIT:
case ONEW:
case OCLOSURE:
case OCALLPART:
if(leaks) {
src->esc = EscHeap;
if(debug['m'])
warnl(src->lineno, "%hN escapes to heap", src);
}
break;
case ODOT:
escwalk(e, level, dst, src->left);
break;
case OINDEX:
if(isfixedarray(src->left->type)) {
escwalk(e, level, dst, src->left);
break;
}
// fall through
case OSLICE:
case ODOTPTR:
case OINDEXMAP:
case OIND:
newlevel = level;
if(level > MinLevel)
newlevel++;
escwalk(e, newlevel, dst, src->left);
}
recurse:
for(ll=src->escflowsrc; ll; ll=ll->next)
escwalk(e, level, dst, ll->n);
e->pdepth--;
}
static void
esctag(EscState *e, Node *func)
{
Node *savefn;
NodeList *ll;
Type *t;
USED(e);
func->esc = EscFuncTagged;
// External functions are assumed unsafe,
// unless //go:noescape is given before the declaration.
if(func->nbody == nil) {
if(func->noescape) {
for(t=getinargx(func->type)->type; t; t=t->down)
if(haspointers(t->type))
t->note = mktag(EscNone);
}
return;
}
savefn = curfn;
curfn = func;
for(ll=curfn->dcl; ll; ll=ll->next) {
if(ll->n->op != ONAME || ll->n->class != PPARAM)
continue;
switch (ll->n->esc&EscMask) {
case EscNone: // not touched by escflood
case EscReturn:
if(haspointers(ll->n->type)) // don't bother tagging for scalars
ll->n->paramfld->note = mktag(ll->n->esc);
break;
case EscHeap: // touched by escflood, moved to heap
case EscScope: // touched by escflood, value leaves scope
break;
}
}
curfn = savefn;
}