mirror of
https://github.com/golang/go.git
synced 2025-05-19 22:33:25 +00:00
451 lines
11 KiB
Go
451 lines
11 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// This package implements RSA encryption as specified in PKCS#1.
|
|
package rsa
|
|
|
|
// TODO(agl): Add support for PSS padding.
|
|
|
|
import (
|
|
"big";
|
|
"bytes";
|
|
"crypto/subtle";
|
|
"hash";
|
|
"io";
|
|
"os";
|
|
)
|
|
|
|
var bigZero = big.NewInt(0)
|
|
var bigOne = big.NewInt(1)
|
|
|
|
// randomSafePrime returns a number, p, of the given size, such that p and
|
|
// (p-1)/2 are both prime with high probability.
|
|
func randomSafePrime(rand io.Reader, bits int) (p *big.Int, err os.Error) {
|
|
if bits < 1 {
|
|
err = os.EINVAL
|
|
}
|
|
|
|
bytes := make([]byte, (bits+7)/8);
|
|
p = new(big.Int);
|
|
p2 := new(big.Int);
|
|
|
|
for {
|
|
_, err = io.ReadFull(rand, bytes);
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
// Don't let the value be too small.
|
|
bytes[0] |= 0x80;
|
|
// Make the value odd since an even number this large certainly isn't prime.
|
|
bytes[len(bytes)-1] |= 1;
|
|
|
|
p.SetBytes(bytes);
|
|
if big.ProbablyPrime(p, 20) {
|
|
p2.Rsh(p, 1); // p2 = (p - 1)/2
|
|
if big.ProbablyPrime(p2, 20) {
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
// randomNumber returns a uniform random value in [0, max).
|
|
func randomNumber(rand io.Reader, max *big.Int) (n *big.Int, err os.Error) {
|
|
k := (max.Len() + 7) / 8;
|
|
|
|
// r is the number of bits in the used in the most significant byte of
|
|
// max.
|
|
r := uint(max.Len() % 8);
|
|
if r == 0 {
|
|
r = 8
|
|
}
|
|
|
|
bytes := make([]byte, k);
|
|
n = new(big.Int);
|
|
|
|
for {
|
|
_, err = io.ReadFull(rand, bytes);
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
// Clear bits in the first byte to increase the probability
|
|
// that the candidate is < max.
|
|
bytes[0] &= uint8(int(1<<r) - 1);
|
|
|
|
n.SetBytes(bytes);
|
|
if n.Cmp(max) < 0 {
|
|
return
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
// A PublicKey represents the public part of an RSA key.
|
|
type PublicKey struct {
|
|
N *big.Int; // modulus
|
|
E int; // public exponent
|
|
}
|
|
|
|
// A PrivateKey represents an RSA key
|
|
type PrivateKey struct {
|
|
PublicKey; // public part.
|
|
D *big.Int; // private exponent
|
|
P, Q *big.Int; // prime factors of N
|
|
}
|
|
|
|
// Validate performs basic sanity checks on the key.
|
|
// It returns nil if the key is valid, or else an os.Error describing a problem.
|
|
|
|
func (priv PrivateKey) Validate() os.Error {
|
|
// Check that p and q are prime. Note that this is just a sanity
|
|
// check. Since the random witnesses chosen by ProbablyPrime are
|
|
// deterministic, given the candidate number, it's easy for an attack
|
|
// to generate composites that pass this test.
|
|
if !big.ProbablyPrime(priv.P, 20) {
|
|
return os.ErrorString("P is composite")
|
|
}
|
|
if !big.ProbablyPrime(priv.Q, 20) {
|
|
return os.ErrorString("Q is composite")
|
|
}
|
|
|
|
// Check that p*q == n.
|
|
modulus := new(big.Int).Mul(priv.P, priv.Q);
|
|
if modulus.Cmp(priv.N) != 0 {
|
|
return os.ErrorString("invalid modulus")
|
|
}
|
|
// Check that e and totient(p, q) are coprime.
|
|
pminus1 := new(big.Int).Sub(priv.P, bigOne);
|
|
qminus1 := new(big.Int).Sub(priv.Q, bigOne);
|
|
totient := new(big.Int).Mul(pminus1, qminus1);
|
|
e := big.NewInt(int64(priv.E));
|
|
gcd := new(big.Int);
|
|
x := new(big.Int);
|
|
y := new(big.Int);
|
|
big.GcdInt(gcd, x, y, totient, e);
|
|
if gcd.Cmp(bigOne) != 0 {
|
|
return os.ErrorString("invalid public exponent E")
|
|
}
|
|
// Check that de ≡ 1 (mod totient(p, q))
|
|
de := new(big.Int).Mul(priv.D, e);
|
|
de.Mod(de, totient);
|
|
if de.Cmp(bigOne) != 0 {
|
|
return os.ErrorString("invalid private exponent D")
|
|
}
|
|
return nil;
|
|
}
|
|
|
|
// GenerateKeyPair generates an RSA keypair of the given bit size.
|
|
func GenerateKey(rand io.Reader, bits int) (priv *PrivateKey, err os.Error) {
|
|
priv = new(PrivateKey);
|
|
// Smaller public exponents lead to faster public key
|
|
// operations. Since the exponent must be coprime to
|
|
// (p-1)(q-1), the smallest possible value is 3. Some have
|
|
// suggested that a larger exponent (often 2**16+1) be used
|
|
// since previous implementation bugs[1] were avoided when this
|
|
// was the case. However, there are no current reasons not to use
|
|
// small exponents.
|
|
// [1] http://marc.info/?l=cryptography&m=115694833312008&w=2
|
|
priv.E = 3;
|
|
|
|
pminus1 := new(big.Int);
|
|
qminus1 := new(big.Int);
|
|
totient := new(big.Int);
|
|
|
|
for {
|
|
p, err := randomSafePrime(rand, bits/2);
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
q, err := randomSafePrime(rand, bits/2);
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
if p.Cmp(q) == 0 {
|
|
continue
|
|
}
|
|
|
|
n := new(big.Int).Mul(p, q);
|
|
pminus1.Sub(p, bigOne);
|
|
qminus1.Sub(q, bigOne);
|
|
totient.Mul(pminus1, qminus1);
|
|
|
|
g := new(big.Int);
|
|
priv.D = new(big.Int);
|
|
y := new(big.Int);
|
|
e := big.NewInt(int64(priv.E));
|
|
big.GcdInt(g, priv.D, y, e, totient);
|
|
|
|
if g.Cmp(bigOne) == 0 {
|
|
priv.D.Add(priv.D, totient);
|
|
priv.P = p;
|
|
priv.Q = q;
|
|
priv.N = n;
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
// incCounter increments a four byte, big-endian counter.
|
|
func incCounter(c *[4]byte) {
|
|
if c[3]++; c[3] != 0 {
|
|
return
|
|
}
|
|
if c[2]++; c[2] != 0 {
|
|
return
|
|
}
|
|
if c[1]++; c[1] != 0 {
|
|
return
|
|
}
|
|
c[0]++;
|
|
}
|
|
|
|
// mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function
|
|
// specified in PKCS#1 v2.1.
|
|
func mgf1XOR(out []byte, hash hash.Hash, seed []byte) {
|
|
var counter [4]byte;
|
|
|
|
done := 0;
|
|
for done < len(out) {
|
|
hash.Write(seed);
|
|
hash.Write(counter[0:4]);
|
|
digest := hash.Sum();
|
|
hash.Reset();
|
|
|
|
for i := 0; i < len(digest) && done < len(out); i++ {
|
|
out[done] ^= digest[i];
|
|
done++;
|
|
}
|
|
incCounter(&counter);
|
|
}
|
|
}
|
|
|
|
// MessageTooLongError is returned when attempting to encrypt a message which
|
|
// is too large for the size of the public key.
|
|
type MessageTooLongError struct{}
|
|
|
|
func (MessageTooLongError) String() string {
|
|
return "message too long for RSA public key size"
|
|
}
|
|
|
|
func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int {
|
|
e := big.NewInt(int64(pub.E));
|
|
c.Exp(m, e, pub.N);
|
|
return c;
|
|
}
|
|
|
|
// EncryptOAEP encrypts the given message with RSA-OAEP.
|
|
// The message must be no longer than the length of the public modulus less
|
|
// twice the hash length plus 2.
|
|
func EncryptOAEP(hash hash.Hash, rand io.Reader, pub *PublicKey, msg []byte, label []byte) (out []byte, err os.Error) {
|
|
hash.Reset();
|
|
k := (pub.N.Len() + 7) / 8;
|
|
if len(msg) > k-2*hash.Size()-2 {
|
|
err = MessageTooLongError{};
|
|
return;
|
|
}
|
|
|
|
hash.Write(label);
|
|
lHash := hash.Sum();
|
|
hash.Reset();
|
|
|
|
em := make([]byte, k);
|
|
seed := em[1 : 1+hash.Size()];
|
|
db := em[1+hash.Size() : len(em)];
|
|
|
|
bytes.Copy(db[0:hash.Size()], lHash);
|
|
db[len(db)-len(msg)-1] = 1;
|
|
bytes.Copy(db[len(db)-len(msg):len(db)], msg);
|
|
|
|
_, err = io.ReadFull(rand, seed);
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
mgf1XOR(db, hash, seed);
|
|
mgf1XOR(seed, hash, db);
|
|
|
|
m := new(big.Int);
|
|
m.SetBytes(em);
|
|
c := encrypt(new(big.Int), pub, m);
|
|
out = c.Bytes();
|
|
return;
|
|
}
|
|
|
|
// A DecryptionError represents a failure to decrypt a message.
|
|
// It is deliberately vague to avoid adaptive attacks.
|
|
type DecryptionError struct{}
|
|
|
|
func (DecryptionError) String() string { return "RSA decryption error" }
|
|
|
|
// A VerificationError represents a failure to verify a signature.
|
|
// It is deliberately vague to avoid adaptive attacks.
|
|
type VerificationError struct{}
|
|
|
|
func (VerificationError) String() string { return "RSA verification error" }
|
|
|
|
// modInverse returns ia, the inverse of a in the multiplicative group of prime
|
|
// order n. It requires that a be a member of the group (i.e. less than n).
|
|
func modInverse(a, n *big.Int) (ia *big.Int, ok bool) {
|
|
g := new(big.Int);
|
|
x := new(big.Int);
|
|
y := new(big.Int);
|
|
big.GcdInt(g, x, y, a, n);
|
|
if g.Cmp(bigOne) != 0 {
|
|
// In this case, a and n aren't coprime and we cannot calculate
|
|
// the inverse. This happens because the values of n are nearly
|
|
// prime (being the product of two primes) rather than truly
|
|
// prime.
|
|
return
|
|
}
|
|
|
|
if x.Cmp(bigOne) < 0 {
|
|
// 0 is not the multiplicative inverse of any element so, if x
|
|
// < 1, then x is negative.
|
|
x.Add(x, n)
|
|
}
|
|
|
|
return x, true;
|
|
}
|
|
|
|
// decrypt performs an RSA decryption, resulting in a plaintext integer. If a
|
|
// random source is given, RSA blinding is used.
|
|
func decrypt(rand io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err os.Error) {
|
|
// TODO(agl): can we get away with reusing blinds?
|
|
if c.Cmp(priv.N) > 0 {
|
|
err = DecryptionError{};
|
|
return;
|
|
}
|
|
|
|
var ir *big.Int;
|
|
if rand != nil {
|
|
// Blinding enabled. Blinding involves multiplying c by r^e.
|
|
// Then the decryption operation performs (m^e * r^e)^d mod n
|
|
// which equals mr mod n. The factor of r can then be removed
|
|
// by multipling by the multiplicative inverse of r.
|
|
|
|
var r *big.Int;
|
|
|
|
for {
|
|
r, err = randomNumber(rand, priv.N);
|
|
if err != nil {
|
|
return
|
|
}
|
|
if r.Cmp(bigZero) == 0 {
|
|
r = bigOne
|
|
}
|
|
var ok bool;
|
|
ir, ok = modInverse(r, priv.N);
|
|
if ok {
|
|
break
|
|
}
|
|
}
|
|
bigE := big.NewInt(int64(priv.E));
|
|
rpowe := new(big.Int).Exp(r, bigE, priv.N);
|
|
c.Mul(c, rpowe);
|
|
c.Mod(c, priv.N);
|
|
}
|
|
|
|
m = new(big.Int).Exp(c, priv.D, priv.N);
|
|
|
|
if ir != nil {
|
|
// Unblind.
|
|
m.Mul(m, ir);
|
|
m.Mod(m, priv.N);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
// DecryptOAEP decrypts ciphertext using RSA-OAEP.
|
|
// If rand != nil, DecryptOAEP uses RSA blinding to avoid timing side-channel attacks.
|
|
func DecryptOAEP(hash hash.Hash, rand io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) (msg []byte, err os.Error) {
|
|
k := (priv.N.Len() + 7) / 8;
|
|
if len(ciphertext) > k ||
|
|
k < hash.Size()*2+2 {
|
|
err = DecryptionError{};
|
|
return;
|
|
}
|
|
|
|
c := new(big.Int).SetBytes(ciphertext);
|
|
|
|
m, err := decrypt(rand, priv, c);
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
hash.Write(label);
|
|
lHash := hash.Sum();
|
|
hash.Reset();
|
|
|
|
// Converting the plaintext number to bytes will strip any
|
|
// leading zeros so we may have to left pad. We do this unconditionally
|
|
// to avoid leaking timing information. (Although we still probably
|
|
// leak the number of leading zeros. It's not clear that we can do
|
|
// anything about this.)
|
|
em := leftPad(m.Bytes(), k);
|
|
|
|
firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0);
|
|
|
|
seed := em[1 : hash.Size()+1];
|
|
db := em[hash.Size()+1 : len(em)];
|
|
|
|
mgf1XOR(seed, hash, db);
|
|
mgf1XOR(db, hash, seed);
|
|
|
|
lHash2 := db[0:hash.Size()];
|
|
|
|
// We have to validate the plaintext in contanst time in order to avoid
|
|
// attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal
|
|
// Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1
|
|
// v2.0. In J. Kilian, editor, Advances in Cryptology.
|
|
lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2);
|
|
|
|
// The remainder of the plaintext must be zero or more 0x00, followed
|
|
// by 0x01, followed by the message.
|
|
// lookingForIndex: 1 iff we are still looking for the 0x01
|
|
// index: the offset of the first 0x01 byte
|
|
// invalid: 1 iff we saw a non-zero byte before the 0x01.
|
|
var lookingForIndex, index, invalid int;
|
|
lookingForIndex = 1;
|
|
rest := db[hash.Size():len(db)];
|
|
|
|
for i := 0; i < len(rest); i++ {
|
|
equals0 := subtle.ConstantTimeByteEq(rest[i], 0);
|
|
equals1 := subtle.ConstantTimeByteEq(rest[i], 1);
|
|
index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index);
|
|
lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex);
|
|
invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid);
|
|
}
|
|
|
|
if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 {
|
|
err = DecryptionError{};
|
|
return;
|
|
}
|
|
|
|
msg = rest[index+1 : len(rest)];
|
|
return;
|
|
}
|
|
|
|
// leftPad returns a new slice of length size. The contents of input are right
|
|
// aligned in the new slice.
|
|
func leftPad(input []byte, size int) (out []byte) {
|
|
n := len(input);
|
|
if n > size {
|
|
n = size
|
|
}
|
|
out = make([]byte, size);
|
|
bytes.Copy(out[len(out)-n:len(out)], input);
|
|
return;
|
|
}
|