mirror of
https://github.com/golang/go.git
synced 2025-05-05 15:43:04 +00:00
This largely gets rid of the remaining direct Linksym calls, hopefully enough to discourage people from following bad existing practice until Sym.Linksym can be removed entirely. Passes toolstash -cmp. Change-Id: I5d8f8f703ace7256538fc79648891ede0d879dc2 Reviewed-on: https://go-review.googlesource.com/c/go/+/280641 Trust: Matthew Dempsky <mdempsky@google.com> Run-TryBot: Matthew Dempsky <mdempsky@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Cuong Manh Le <cuong.manhle.vn@gmail.com>
789 lines
23 KiB
Go
789 lines
23 KiB
Go
// Copyright 2016 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package reflectdata
|
|
|
|
import (
|
|
"fmt"
|
|
"sort"
|
|
|
|
"cmd/compile/internal/base"
|
|
"cmd/compile/internal/ir"
|
|
"cmd/compile/internal/objw"
|
|
"cmd/compile/internal/typecheck"
|
|
"cmd/compile/internal/types"
|
|
"cmd/internal/obj"
|
|
)
|
|
|
|
// isRegularMemory reports whether t can be compared/hashed as regular memory.
|
|
func isRegularMemory(t *types.Type) bool {
|
|
a, _ := types.AlgType(t)
|
|
return a == types.AMEM
|
|
}
|
|
|
|
// eqCanPanic reports whether == on type t could panic (has an interface somewhere).
|
|
// t must be comparable.
|
|
func eqCanPanic(t *types.Type) bool {
|
|
switch t.Kind() {
|
|
default:
|
|
return false
|
|
case types.TINTER:
|
|
return true
|
|
case types.TARRAY:
|
|
return eqCanPanic(t.Elem())
|
|
case types.TSTRUCT:
|
|
for _, f := range t.FieldSlice() {
|
|
if !f.Sym.IsBlank() && eqCanPanic(f.Type) {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
}
|
|
|
|
// AlgType is like algtype1, except it returns the fixed-width AMEMxx variants
|
|
// instead of the general AMEM kind when possible.
|
|
func AlgType(t *types.Type) types.AlgKind {
|
|
a, _ := types.AlgType(t)
|
|
if a == types.AMEM {
|
|
switch t.Width {
|
|
case 0:
|
|
return types.AMEM0
|
|
case 1:
|
|
return types.AMEM8
|
|
case 2:
|
|
return types.AMEM16
|
|
case 4:
|
|
return types.AMEM32
|
|
case 8:
|
|
return types.AMEM64
|
|
case 16:
|
|
return types.AMEM128
|
|
}
|
|
}
|
|
|
|
return a
|
|
}
|
|
|
|
// genhash returns a symbol which is the closure used to compute
|
|
// the hash of a value of type t.
|
|
// Note: the generated function must match runtime.typehash exactly.
|
|
func genhash(t *types.Type) *obj.LSym {
|
|
switch AlgType(t) {
|
|
default:
|
|
// genhash is only called for types that have equality
|
|
base.Fatalf("genhash %v", t)
|
|
case types.AMEM0:
|
|
return sysClosure("memhash0")
|
|
case types.AMEM8:
|
|
return sysClosure("memhash8")
|
|
case types.AMEM16:
|
|
return sysClosure("memhash16")
|
|
case types.AMEM32:
|
|
return sysClosure("memhash32")
|
|
case types.AMEM64:
|
|
return sysClosure("memhash64")
|
|
case types.AMEM128:
|
|
return sysClosure("memhash128")
|
|
case types.ASTRING:
|
|
return sysClosure("strhash")
|
|
case types.AINTER:
|
|
return sysClosure("interhash")
|
|
case types.ANILINTER:
|
|
return sysClosure("nilinterhash")
|
|
case types.AFLOAT32:
|
|
return sysClosure("f32hash")
|
|
case types.AFLOAT64:
|
|
return sysClosure("f64hash")
|
|
case types.ACPLX64:
|
|
return sysClosure("c64hash")
|
|
case types.ACPLX128:
|
|
return sysClosure("c128hash")
|
|
case types.AMEM:
|
|
// For other sizes of plain memory, we build a closure
|
|
// that calls memhash_varlen. The size of the memory is
|
|
// encoded in the first slot of the closure.
|
|
closure := TypeLinksymLookup(fmt.Sprintf(".hashfunc%d", t.Width))
|
|
if len(closure.P) > 0 { // already generated
|
|
return closure
|
|
}
|
|
if memhashvarlen == nil {
|
|
memhashvarlen = typecheck.LookupRuntimeFunc("memhash_varlen")
|
|
}
|
|
ot := 0
|
|
ot = objw.SymPtr(closure, ot, memhashvarlen, 0)
|
|
ot = objw.Uintptr(closure, ot, uint64(t.Width)) // size encoded in closure
|
|
objw.Global(closure, int32(ot), obj.DUPOK|obj.RODATA)
|
|
return closure
|
|
case types.ASPECIAL:
|
|
break
|
|
}
|
|
|
|
closure := TypeLinksymPrefix(".hashfunc", t)
|
|
if len(closure.P) > 0 { // already generated
|
|
return closure
|
|
}
|
|
|
|
// Generate hash functions for subtypes.
|
|
// There are cases where we might not use these hashes,
|
|
// but in that case they will get dead-code eliminated.
|
|
// (And the closure generated by genhash will also get
|
|
// dead-code eliminated, as we call the subtype hashers
|
|
// directly.)
|
|
switch t.Kind() {
|
|
case types.TARRAY:
|
|
genhash(t.Elem())
|
|
case types.TSTRUCT:
|
|
for _, f := range t.FieldSlice() {
|
|
genhash(f.Type)
|
|
}
|
|
}
|
|
|
|
sym := TypeSymPrefix(".hash", t)
|
|
if base.Flag.LowerR != 0 {
|
|
fmt.Printf("genhash %v %v %v\n", closure, sym, t)
|
|
}
|
|
|
|
base.Pos = base.AutogeneratedPos // less confusing than end of input
|
|
typecheck.DeclContext = ir.PEXTERN
|
|
|
|
// func sym(p *T, h uintptr) uintptr
|
|
args := []*ir.Field{
|
|
ir.NewField(base.Pos, typecheck.Lookup("p"), nil, types.NewPtr(t)),
|
|
ir.NewField(base.Pos, typecheck.Lookup("h"), nil, types.Types[types.TUINTPTR]),
|
|
}
|
|
results := []*ir.Field{ir.NewField(base.Pos, nil, nil, types.Types[types.TUINTPTR])}
|
|
tfn := ir.NewFuncType(base.Pos, nil, args, results)
|
|
|
|
fn := typecheck.DeclFunc(sym, tfn)
|
|
np := ir.AsNode(tfn.Type().Params().Field(0).Nname)
|
|
nh := ir.AsNode(tfn.Type().Params().Field(1).Nname)
|
|
|
|
switch t.Kind() {
|
|
case types.TARRAY:
|
|
// An array of pure memory would be handled by the
|
|
// standard algorithm, so the element type must not be
|
|
// pure memory.
|
|
hashel := hashfor(t.Elem())
|
|
|
|
// for i := 0; i < nelem; i++
|
|
ni := typecheck.Temp(types.Types[types.TINT])
|
|
init := ir.NewAssignStmt(base.Pos, ni, ir.NewInt(0))
|
|
cond := ir.NewBinaryExpr(base.Pos, ir.OLT, ni, ir.NewInt(t.NumElem()))
|
|
post := ir.NewAssignStmt(base.Pos, ni, ir.NewBinaryExpr(base.Pos, ir.OADD, ni, ir.NewInt(1)))
|
|
loop := ir.NewForStmt(base.Pos, nil, cond, post, nil)
|
|
loop.PtrInit().Append(init)
|
|
|
|
// h = hashel(&p[i], h)
|
|
call := ir.NewCallExpr(base.Pos, ir.OCALL, hashel, nil)
|
|
|
|
nx := ir.NewIndexExpr(base.Pos, np, ni)
|
|
nx.SetBounded(true)
|
|
na := typecheck.NodAddr(nx)
|
|
call.Args.Append(na)
|
|
call.Args.Append(nh)
|
|
loop.Body.Append(ir.NewAssignStmt(base.Pos, nh, call))
|
|
|
|
fn.Body.Append(loop)
|
|
|
|
case types.TSTRUCT:
|
|
// Walk the struct using memhash for runs of AMEM
|
|
// and calling specific hash functions for the others.
|
|
for i, fields := 0, t.FieldSlice(); i < len(fields); {
|
|
f := fields[i]
|
|
|
|
// Skip blank fields.
|
|
if f.Sym.IsBlank() {
|
|
i++
|
|
continue
|
|
}
|
|
|
|
// Hash non-memory fields with appropriate hash function.
|
|
if !isRegularMemory(f.Type) {
|
|
hashel := hashfor(f.Type)
|
|
call := ir.NewCallExpr(base.Pos, ir.OCALL, hashel, nil)
|
|
nx := ir.NewSelectorExpr(base.Pos, ir.OXDOT, np, f.Sym) // TODO: fields from other packages?
|
|
na := typecheck.NodAddr(nx)
|
|
call.Args.Append(na)
|
|
call.Args.Append(nh)
|
|
fn.Body.Append(ir.NewAssignStmt(base.Pos, nh, call))
|
|
i++
|
|
continue
|
|
}
|
|
|
|
// Otherwise, hash a maximal length run of raw memory.
|
|
size, next := memrun(t, i)
|
|
|
|
// h = hashel(&p.first, size, h)
|
|
hashel := hashmem(f.Type)
|
|
call := ir.NewCallExpr(base.Pos, ir.OCALL, hashel, nil)
|
|
nx := ir.NewSelectorExpr(base.Pos, ir.OXDOT, np, f.Sym) // TODO: fields from other packages?
|
|
na := typecheck.NodAddr(nx)
|
|
call.Args.Append(na)
|
|
call.Args.Append(nh)
|
|
call.Args.Append(ir.NewInt(size))
|
|
fn.Body.Append(ir.NewAssignStmt(base.Pos, nh, call))
|
|
|
|
i = next
|
|
}
|
|
}
|
|
|
|
r := ir.NewReturnStmt(base.Pos, nil)
|
|
r.Results.Append(nh)
|
|
fn.Body.Append(r)
|
|
|
|
if base.Flag.LowerR != 0 {
|
|
ir.DumpList("genhash body", fn.Body)
|
|
}
|
|
|
|
typecheck.FinishFuncBody()
|
|
|
|
fn.SetDupok(true)
|
|
typecheck.Func(fn)
|
|
|
|
ir.CurFunc = fn
|
|
typecheck.Stmts(fn.Body)
|
|
ir.CurFunc = nil
|
|
|
|
if base.Debug.DclStack != 0 {
|
|
types.CheckDclstack()
|
|
}
|
|
|
|
fn.SetNilCheckDisabled(true)
|
|
typecheck.Target.Decls = append(typecheck.Target.Decls, fn)
|
|
|
|
// Build closure. It doesn't close over any variables, so
|
|
// it contains just the function pointer.
|
|
objw.SymPtr(closure, 0, fn.Linksym(), 0)
|
|
objw.Global(closure, int32(types.PtrSize), obj.DUPOK|obj.RODATA)
|
|
|
|
return closure
|
|
}
|
|
|
|
func hashfor(t *types.Type) ir.Node {
|
|
var sym *types.Sym
|
|
|
|
switch a, _ := types.AlgType(t); a {
|
|
case types.AMEM:
|
|
base.Fatalf("hashfor with AMEM type")
|
|
case types.AINTER:
|
|
sym = ir.Pkgs.Runtime.Lookup("interhash")
|
|
case types.ANILINTER:
|
|
sym = ir.Pkgs.Runtime.Lookup("nilinterhash")
|
|
case types.ASTRING:
|
|
sym = ir.Pkgs.Runtime.Lookup("strhash")
|
|
case types.AFLOAT32:
|
|
sym = ir.Pkgs.Runtime.Lookup("f32hash")
|
|
case types.AFLOAT64:
|
|
sym = ir.Pkgs.Runtime.Lookup("f64hash")
|
|
case types.ACPLX64:
|
|
sym = ir.Pkgs.Runtime.Lookup("c64hash")
|
|
case types.ACPLX128:
|
|
sym = ir.Pkgs.Runtime.Lookup("c128hash")
|
|
default:
|
|
// Note: the caller of hashfor ensured that this symbol
|
|
// exists and has a body by calling genhash for t.
|
|
sym = TypeSymPrefix(".hash", t)
|
|
}
|
|
|
|
n := typecheck.NewName(sym)
|
|
ir.MarkFunc(n)
|
|
n.SetType(types.NewSignature(types.NoPkg, nil, []*types.Field{
|
|
types.NewField(base.Pos, nil, types.NewPtr(t)),
|
|
types.NewField(base.Pos, nil, types.Types[types.TUINTPTR]),
|
|
}, []*types.Field{
|
|
types.NewField(base.Pos, nil, types.Types[types.TUINTPTR]),
|
|
}))
|
|
return n
|
|
}
|
|
|
|
// sysClosure returns a closure which will call the
|
|
// given runtime function (with no closed-over variables).
|
|
func sysClosure(name string) *obj.LSym {
|
|
s := typecheck.LookupRuntimeVar(name + "·f")
|
|
if len(s.P) == 0 {
|
|
f := typecheck.LookupRuntimeFunc(name)
|
|
objw.SymPtr(s, 0, f, 0)
|
|
objw.Global(s, int32(types.PtrSize), obj.DUPOK|obj.RODATA)
|
|
}
|
|
return s
|
|
}
|
|
|
|
// geneq returns a symbol which is the closure used to compute
|
|
// equality for two objects of type t.
|
|
func geneq(t *types.Type) *obj.LSym {
|
|
switch AlgType(t) {
|
|
case types.ANOEQ:
|
|
// The runtime will panic if it tries to compare
|
|
// a type with a nil equality function.
|
|
return nil
|
|
case types.AMEM0:
|
|
return sysClosure("memequal0")
|
|
case types.AMEM8:
|
|
return sysClosure("memequal8")
|
|
case types.AMEM16:
|
|
return sysClosure("memequal16")
|
|
case types.AMEM32:
|
|
return sysClosure("memequal32")
|
|
case types.AMEM64:
|
|
return sysClosure("memequal64")
|
|
case types.AMEM128:
|
|
return sysClosure("memequal128")
|
|
case types.ASTRING:
|
|
return sysClosure("strequal")
|
|
case types.AINTER:
|
|
return sysClosure("interequal")
|
|
case types.ANILINTER:
|
|
return sysClosure("nilinterequal")
|
|
case types.AFLOAT32:
|
|
return sysClosure("f32equal")
|
|
case types.AFLOAT64:
|
|
return sysClosure("f64equal")
|
|
case types.ACPLX64:
|
|
return sysClosure("c64equal")
|
|
case types.ACPLX128:
|
|
return sysClosure("c128equal")
|
|
case types.AMEM:
|
|
// make equality closure. The size of the type
|
|
// is encoded in the closure.
|
|
closure := TypeLinksymLookup(fmt.Sprintf(".eqfunc%d", t.Width))
|
|
if len(closure.P) != 0 {
|
|
return closure
|
|
}
|
|
if memequalvarlen == nil {
|
|
memequalvarlen = typecheck.LookupRuntimeVar("memequal_varlen") // asm func
|
|
}
|
|
ot := 0
|
|
ot = objw.SymPtr(closure, ot, memequalvarlen, 0)
|
|
ot = objw.Uintptr(closure, ot, uint64(t.Width))
|
|
objw.Global(closure, int32(ot), obj.DUPOK|obj.RODATA)
|
|
return closure
|
|
case types.ASPECIAL:
|
|
break
|
|
}
|
|
|
|
closure := TypeLinksymPrefix(".eqfunc", t)
|
|
if len(closure.P) > 0 { // already generated
|
|
return closure
|
|
}
|
|
sym := TypeSymPrefix(".eq", t)
|
|
if base.Flag.LowerR != 0 {
|
|
fmt.Printf("geneq %v\n", t)
|
|
}
|
|
|
|
// Autogenerate code for equality of structs and arrays.
|
|
|
|
base.Pos = base.AutogeneratedPos // less confusing than end of input
|
|
typecheck.DeclContext = ir.PEXTERN
|
|
|
|
// func sym(p, q *T) bool
|
|
tfn := ir.NewFuncType(base.Pos, nil,
|
|
[]*ir.Field{ir.NewField(base.Pos, typecheck.Lookup("p"), nil, types.NewPtr(t)), ir.NewField(base.Pos, typecheck.Lookup("q"), nil, types.NewPtr(t))},
|
|
[]*ir.Field{ir.NewField(base.Pos, typecheck.Lookup("r"), nil, types.Types[types.TBOOL])})
|
|
|
|
fn := typecheck.DeclFunc(sym, tfn)
|
|
np := ir.AsNode(tfn.Type().Params().Field(0).Nname)
|
|
nq := ir.AsNode(tfn.Type().Params().Field(1).Nname)
|
|
nr := ir.AsNode(tfn.Type().Results().Field(0).Nname)
|
|
|
|
// Label to jump to if an equality test fails.
|
|
neq := typecheck.AutoLabel(".neq")
|
|
|
|
// We reach here only for types that have equality but
|
|
// cannot be handled by the standard algorithms,
|
|
// so t must be either an array or a struct.
|
|
switch t.Kind() {
|
|
default:
|
|
base.Fatalf("geneq %v", t)
|
|
|
|
case types.TARRAY:
|
|
nelem := t.NumElem()
|
|
|
|
// checkAll generates code to check the equality of all array elements.
|
|
// If unroll is greater than nelem, checkAll generates:
|
|
//
|
|
// if eq(p[0], q[0]) && eq(p[1], q[1]) && ... {
|
|
// } else {
|
|
// return
|
|
// }
|
|
//
|
|
// And so on.
|
|
//
|
|
// Otherwise it generates:
|
|
//
|
|
// for i := 0; i < nelem; i++ {
|
|
// if eq(p[i], q[i]) {
|
|
// } else {
|
|
// goto neq
|
|
// }
|
|
// }
|
|
//
|
|
// TODO(josharian): consider doing some loop unrolling
|
|
// for larger nelem as well, processing a few elements at a time in a loop.
|
|
checkAll := func(unroll int64, last bool, eq func(pi, qi ir.Node) ir.Node) {
|
|
// checkIdx generates a node to check for equality at index i.
|
|
checkIdx := func(i ir.Node) ir.Node {
|
|
// pi := p[i]
|
|
pi := ir.NewIndexExpr(base.Pos, np, i)
|
|
pi.SetBounded(true)
|
|
pi.SetType(t.Elem())
|
|
// qi := q[i]
|
|
qi := ir.NewIndexExpr(base.Pos, nq, i)
|
|
qi.SetBounded(true)
|
|
qi.SetType(t.Elem())
|
|
return eq(pi, qi)
|
|
}
|
|
|
|
if nelem <= unroll {
|
|
if last {
|
|
// Do last comparison in a different manner.
|
|
nelem--
|
|
}
|
|
// Generate a series of checks.
|
|
for i := int64(0); i < nelem; i++ {
|
|
// if check {} else { goto neq }
|
|
nif := ir.NewIfStmt(base.Pos, checkIdx(ir.NewInt(i)), nil, nil)
|
|
nif.Else.Append(ir.NewBranchStmt(base.Pos, ir.OGOTO, neq))
|
|
fn.Body.Append(nif)
|
|
}
|
|
if last {
|
|
fn.Body.Append(ir.NewAssignStmt(base.Pos, nr, checkIdx(ir.NewInt(nelem))))
|
|
}
|
|
} else {
|
|
// Generate a for loop.
|
|
// for i := 0; i < nelem; i++
|
|
i := typecheck.Temp(types.Types[types.TINT])
|
|
init := ir.NewAssignStmt(base.Pos, i, ir.NewInt(0))
|
|
cond := ir.NewBinaryExpr(base.Pos, ir.OLT, i, ir.NewInt(nelem))
|
|
post := ir.NewAssignStmt(base.Pos, i, ir.NewBinaryExpr(base.Pos, ir.OADD, i, ir.NewInt(1)))
|
|
loop := ir.NewForStmt(base.Pos, nil, cond, post, nil)
|
|
loop.PtrInit().Append(init)
|
|
// if eq(pi, qi) {} else { goto neq }
|
|
nif := ir.NewIfStmt(base.Pos, checkIdx(i), nil, nil)
|
|
nif.Else.Append(ir.NewBranchStmt(base.Pos, ir.OGOTO, neq))
|
|
loop.Body.Append(nif)
|
|
fn.Body.Append(loop)
|
|
if last {
|
|
fn.Body.Append(ir.NewAssignStmt(base.Pos, nr, ir.NewBool(true)))
|
|
}
|
|
}
|
|
}
|
|
|
|
switch t.Elem().Kind() {
|
|
case types.TSTRING:
|
|
// Do two loops. First, check that all the lengths match (cheap).
|
|
// Second, check that all the contents match (expensive).
|
|
// TODO: when the array size is small, unroll the length match checks.
|
|
checkAll(3, false, func(pi, qi ir.Node) ir.Node {
|
|
// Compare lengths.
|
|
eqlen, _ := EqString(pi, qi)
|
|
return eqlen
|
|
})
|
|
checkAll(1, true, func(pi, qi ir.Node) ir.Node {
|
|
// Compare contents.
|
|
_, eqmem := EqString(pi, qi)
|
|
return eqmem
|
|
})
|
|
case types.TFLOAT32, types.TFLOAT64:
|
|
checkAll(2, true, func(pi, qi ir.Node) ir.Node {
|
|
// p[i] == q[i]
|
|
return ir.NewBinaryExpr(base.Pos, ir.OEQ, pi, qi)
|
|
})
|
|
// TODO: pick apart structs, do them piecemeal too
|
|
default:
|
|
checkAll(1, true, func(pi, qi ir.Node) ir.Node {
|
|
// p[i] == q[i]
|
|
return ir.NewBinaryExpr(base.Pos, ir.OEQ, pi, qi)
|
|
})
|
|
}
|
|
|
|
case types.TSTRUCT:
|
|
// Build a list of conditions to satisfy.
|
|
// The conditions are a list-of-lists. Conditions are reorderable
|
|
// within each inner list. The outer lists must be evaluated in order.
|
|
var conds [][]ir.Node
|
|
conds = append(conds, []ir.Node{})
|
|
and := func(n ir.Node) {
|
|
i := len(conds) - 1
|
|
conds[i] = append(conds[i], n)
|
|
}
|
|
|
|
// Walk the struct using memequal for runs of AMEM
|
|
// and calling specific equality tests for the others.
|
|
for i, fields := 0, t.FieldSlice(); i < len(fields); {
|
|
f := fields[i]
|
|
|
|
// Skip blank-named fields.
|
|
if f.Sym.IsBlank() {
|
|
i++
|
|
continue
|
|
}
|
|
|
|
// Compare non-memory fields with field equality.
|
|
if !isRegularMemory(f.Type) {
|
|
if eqCanPanic(f.Type) {
|
|
// Enforce ordering by starting a new set of reorderable conditions.
|
|
conds = append(conds, []ir.Node{})
|
|
}
|
|
p := ir.NewSelectorExpr(base.Pos, ir.OXDOT, np, f.Sym)
|
|
q := ir.NewSelectorExpr(base.Pos, ir.OXDOT, nq, f.Sym)
|
|
switch {
|
|
case f.Type.IsString():
|
|
eqlen, eqmem := EqString(p, q)
|
|
and(eqlen)
|
|
and(eqmem)
|
|
default:
|
|
and(ir.NewBinaryExpr(base.Pos, ir.OEQ, p, q))
|
|
}
|
|
if eqCanPanic(f.Type) {
|
|
// Also enforce ordering after something that can panic.
|
|
conds = append(conds, []ir.Node{})
|
|
}
|
|
i++
|
|
continue
|
|
}
|
|
|
|
// Find maximal length run of memory-only fields.
|
|
size, next := memrun(t, i)
|
|
|
|
// TODO(rsc): All the calls to newname are wrong for
|
|
// cross-package unexported fields.
|
|
if s := fields[i:next]; len(s) <= 2 {
|
|
// Two or fewer fields: use plain field equality.
|
|
for _, f := range s {
|
|
and(eqfield(np, nq, f.Sym))
|
|
}
|
|
} else {
|
|
// More than two fields: use memequal.
|
|
and(eqmem(np, nq, f.Sym, size))
|
|
}
|
|
i = next
|
|
}
|
|
|
|
// Sort conditions to put runtime calls last.
|
|
// Preserve the rest of the ordering.
|
|
var flatConds []ir.Node
|
|
for _, c := range conds {
|
|
isCall := func(n ir.Node) bool {
|
|
return n.Op() == ir.OCALL || n.Op() == ir.OCALLFUNC
|
|
}
|
|
sort.SliceStable(c, func(i, j int) bool {
|
|
return !isCall(c[i]) && isCall(c[j])
|
|
})
|
|
flatConds = append(flatConds, c...)
|
|
}
|
|
|
|
if len(flatConds) == 0 {
|
|
fn.Body.Append(ir.NewAssignStmt(base.Pos, nr, ir.NewBool(true)))
|
|
} else {
|
|
for _, c := range flatConds[:len(flatConds)-1] {
|
|
// if cond {} else { goto neq }
|
|
n := ir.NewIfStmt(base.Pos, c, nil, nil)
|
|
n.Else.Append(ir.NewBranchStmt(base.Pos, ir.OGOTO, neq))
|
|
fn.Body.Append(n)
|
|
}
|
|
fn.Body.Append(ir.NewAssignStmt(base.Pos, nr, flatConds[len(flatConds)-1]))
|
|
}
|
|
}
|
|
|
|
// ret:
|
|
// return
|
|
ret := typecheck.AutoLabel(".ret")
|
|
fn.Body.Append(ir.NewLabelStmt(base.Pos, ret))
|
|
fn.Body.Append(ir.NewReturnStmt(base.Pos, nil))
|
|
|
|
// neq:
|
|
// r = false
|
|
// return (or goto ret)
|
|
fn.Body.Append(ir.NewLabelStmt(base.Pos, neq))
|
|
fn.Body.Append(ir.NewAssignStmt(base.Pos, nr, ir.NewBool(false)))
|
|
if eqCanPanic(t) || anyCall(fn) {
|
|
// Epilogue is large, so share it with the equal case.
|
|
fn.Body.Append(ir.NewBranchStmt(base.Pos, ir.OGOTO, ret))
|
|
} else {
|
|
// Epilogue is small, so don't bother sharing.
|
|
fn.Body.Append(ir.NewReturnStmt(base.Pos, nil))
|
|
}
|
|
// TODO(khr): the epilogue size detection condition above isn't perfect.
|
|
// We should really do a generic CL that shares epilogues across
|
|
// the board. See #24936.
|
|
|
|
if base.Flag.LowerR != 0 {
|
|
ir.DumpList("geneq body", fn.Body)
|
|
}
|
|
|
|
typecheck.FinishFuncBody()
|
|
|
|
fn.SetDupok(true)
|
|
typecheck.Func(fn)
|
|
|
|
ir.CurFunc = fn
|
|
typecheck.Stmts(fn.Body)
|
|
ir.CurFunc = nil
|
|
|
|
if base.Debug.DclStack != 0 {
|
|
types.CheckDclstack()
|
|
}
|
|
|
|
// Disable checknils while compiling this code.
|
|
// We are comparing a struct or an array,
|
|
// neither of which can be nil, and our comparisons
|
|
// are shallow.
|
|
fn.SetNilCheckDisabled(true)
|
|
typecheck.Target.Decls = append(typecheck.Target.Decls, fn)
|
|
|
|
// Generate a closure which points at the function we just generated.
|
|
objw.SymPtr(closure, 0, fn.Linksym(), 0)
|
|
objw.Global(closure, int32(types.PtrSize), obj.DUPOK|obj.RODATA)
|
|
return closure
|
|
}
|
|
|
|
func anyCall(fn *ir.Func) bool {
|
|
return ir.Any(fn, func(n ir.Node) bool {
|
|
// TODO(rsc): No methods?
|
|
op := n.Op()
|
|
return op == ir.OCALL || op == ir.OCALLFUNC
|
|
})
|
|
}
|
|
|
|
// eqfield returns the node
|
|
// p.field == q.field
|
|
func eqfield(p ir.Node, q ir.Node, field *types.Sym) ir.Node {
|
|
nx := ir.NewSelectorExpr(base.Pos, ir.OXDOT, p, field)
|
|
ny := ir.NewSelectorExpr(base.Pos, ir.OXDOT, q, field)
|
|
ne := ir.NewBinaryExpr(base.Pos, ir.OEQ, nx, ny)
|
|
return ne
|
|
}
|
|
|
|
// EqString returns the nodes
|
|
// len(s) == len(t)
|
|
// and
|
|
// memequal(s.ptr, t.ptr, len(s))
|
|
// which can be used to construct string equality comparison.
|
|
// eqlen must be evaluated before eqmem, and shortcircuiting is required.
|
|
func EqString(s, t ir.Node) (eqlen *ir.BinaryExpr, eqmem *ir.CallExpr) {
|
|
s = typecheck.Conv(s, types.Types[types.TSTRING])
|
|
t = typecheck.Conv(t, types.Types[types.TSTRING])
|
|
sptr := ir.NewUnaryExpr(base.Pos, ir.OSPTR, s)
|
|
tptr := ir.NewUnaryExpr(base.Pos, ir.OSPTR, t)
|
|
slen := typecheck.Conv(ir.NewUnaryExpr(base.Pos, ir.OLEN, s), types.Types[types.TUINTPTR])
|
|
tlen := typecheck.Conv(ir.NewUnaryExpr(base.Pos, ir.OLEN, t), types.Types[types.TUINTPTR])
|
|
|
|
fn := typecheck.LookupRuntime("memequal")
|
|
fn = typecheck.SubstArgTypes(fn, types.Types[types.TUINT8], types.Types[types.TUINT8])
|
|
call := ir.NewCallExpr(base.Pos, ir.OCALL, fn, []ir.Node{sptr, tptr, ir.Copy(slen)})
|
|
typecheck.Call(call)
|
|
|
|
cmp := ir.NewBinaryExpr(base.Pos, ir.OEQ, slen, tlen)
|
|
cmp = typecheck.Expr(cmp).(*ir.BinaryExpr)
|
|
cmp.SetType(types.Types[types.TBOOL])
|
|
return cmp, call
|
|
}
|
|
|
|
// EqInterface returns the nodes
|
|
// s.tab == t.tab (or s.typ == t.typ, as appropriate)
|
|
// and
|
|
// ifaceeq(s.tab, s.data, t.data) (or efaceeq(s.typ, s.data, t.data), as appropriate)
|
|
// which can be used to construct interface equality comparison.
|
|
// eqtab must be evaluated before eqdata, and shortcircuiting is required.
|
|
func EqInterface(s, t ir.Node) (eqtab *ir.BinaryExpr, eqdata *ir.CallExpr) {
|
|
if !types.Identical(s.Type(), t.Type()) {
|
|
base.Fatalf("eqinterface %v %v", s.Type(), t.Type())
|
|
}
|
|
// func ifaceeq(tab *uintptr, x, y unsafe.Pointer) (ret bool)
|
|
// func efaceeq(typ *uintptr, x, y unsafe.Pointer) (ret bool)
|
|
var fn ir.Node
|
|
if s.Type().IsEmptyInterface() {
|
|
fn = typecheck.LookupRuntime("efaceeq")
|
|
} else {
|
|
fn = typecheck.LookupRuntime("ifaceeq")
|
|
}
|
|
|
|
stab := ir.NewUnaryExpr(base.Pos, ir.OITAB, s)
|
|
ttab := ir.NewUnaryExpr(base.Pos, ir.OITAB, t)
|
|
sdata := ir.NewUnaryExpr(base.Pos, ir.OIDATA, s)
|
|
tdata := ir.NewUnaryExpr(base.Pos, ir.OIDATA, t)
|
|
sdata.SetType(types.Types[types.TUNSAFEPTR])
|
|
tdata.SetType(types.Types[types.TUNSAFEPTR])
|
|
sdata.SetTypecheck(1)
|
|
tdata.SetTypecheck(1)
|
|
|
|
call := ir.NewCallExpr(base.Pos, ir.OCALL, fn, []ir.Node{stab, sdata, tdata})
|
|
typecheck.Call(call)
|
|
|
|
cmp := ir.NewBinaryExpr(base.Pos, ir.OEQ, stab, ttab)
|
|
cmp = typecheck.Expr(cmp).(*ir.BinaryExpr)
|
|
cmp.SetType(types.Types[types.TBOOL])
|
|
return cmp, call
|
|
}
|
|
|
|
// eqmem returns the node
|
|
// memequal(&p.field, &q.field [, size])
|
|
func eqmem(p ir.Node, q ir.Node, field *types.Sym, size int64) ir.Node {
|
|
nx := typecheck.Expr(typecheck.NodAddr(ir.NewSelectorExpr(base.Pos, ir.OXDOT, p, field)))
|
|
ny := typecheck.Expr(typecheck.NodAddr(ir.NewSelectorExpr(base.Pos, ir.OXDOT, q, field)))
|
|
|
|
fn, needsize := eqmemfunc(size, nx.Type().Elem())
|
|
call := ir.NewCallExpr(base.Pos, ir.OCALL, fn, nil)
|
|
call.Args.Append(nx)
|
|
call.Args.Append(ny)
|
|
if needsize {
|
|
call.Args.Append(ir.NewInt(size))
|
|
}
|
|
|
|
return call
|
|
}
|
|
|
|
func eqmemfunc(size int64, t *types.Type) (fn *ir.Name, needsize bool) {
|
|
switch size {
|
|
default:
|
|
fn = typecheck.LookupRuntime("memequal")
|
|
needsize = true
|
|
case 1, 2, 4, 8, 16:
|
|
buf := fmt.Sprintf("memequal%d", int(size)*8)
|
|
fn = typecheck.LookupRuntime(buf)
|
|
}
|
|
|
|
fn = typecheck.SubstArgTypes(fn, t, t)
|
|
return fn, needsize
|
|
}
|
|
|
|
// memrun finds runs of struct fields for which memory-only algs are appropriate.
|
|
// t is the parent struct type, and start is the field index at which to start the run.
|
|
// size is the length in bytes of the memory included in the run.
|
|
// next is the index just after the end of the memory run.
|
|
func memrun(t *types.Type, start int) (size int64, next int) {
|
|
next = start
|
|
for {
|
|
next++
|
|
if next == t.NumFields() {
|
|
break
|
|
}
|
|
// Stop run after a padded field.
|
|
if types.IsPaddedField(t, next-1) {
|
|
break
|
|
}
|
|
// Also, stop before a blank or non-memory field.
|
|
if f := t.Field(next); f.Sym.IsBlank() || !isRegularMemory(f.Type) {
|
|
break
|
|
}
|
|
}
|
|
return t.Field(next-1).End() - t.Field(start).Offset, next
|
|
}
|
|
|
|
func hashmem(t *types.Type) ir.Node {
|
|
sym := ir.Pkgs.Runtime.Lookup("memhash")
|
|
|
|
n := typecheck.NewName(sym)
|
|
ir.MarkFunc(n)
|
|
n.SetType(types.NewSignature(types.NoPkg, nil, []*types.Field{
|
|
types.NewField(base.Pos, nil, types.NewPtr(t)),
|
|
types.NewField(base.Pos, nil, types.Types[types.TUINTPTR]),
|
|
types.NewField(base.Pos, nil, types.Types[types.TUINTPTR]),
|
|
}, []*types.Field{
|
|
types.NewField(base.Pos, nil, types.Types[types.TUINTPTR]),
|
|
}))
|
|
return n
|
|
}
|