Martin Möhrmann aee71dd70b cmd/compile: optimize map-clearing range idiom
replace map clears of the form:

        for k := range m {
                delete(m, k)
        }

(where m is map with key type that is reflexive for ==)
with a new runtime function that clears the maps backing
array with a memclr and reinitializes the hmap struct.

Map key types that for example contain floats are not
replaced by this optimization since NaN keys cannot
be deleted from maps using delete.

name                           old time/op  new time/op  delta
GoMapClear/Reflexive/1         92.2ns ± 1%  47.1ns ± 2%  -48.89%  (p=0.000 n=9+9)
GoMapClear/Reflexive/10         108ns ± 1%    48ns ± 2%  -55.68%  (p=0.000 n=10+10)
GoMapClear/Reflexive/100        303ns ± 2%   110ns ± 3%  -63.56%  (p=0.000 n=10+10)
GoMapClear/Reflexive/1000      3.58µs ± 3%  1.23µs ± 2%  -65.49%  (p=0.000 n=9+10)
GoMapClear/Reflexive/10000     28.2µs ± 3%  10.3µs ± 2%  -63.55%  (p=0.000 n=9+10)
GoMapClear/NonReflexive/1       121ns ± 2%   124ns ± 7%     ~     (p=0.097 n=10+10)
GoMapClear/NonReflexive/10      137ns ± 2%   139ns ± 3%   +1.53%  (p=0.033 n=10+10)
GoMapClear/NonReflexive/100     331ns ± 3%   334ns ± 2%     ~     (p=0.342 n=10+10)
GoMapClear/NonReflexive/1000   3.64µs ± 3%  3.64µs ± 2%     ~     (p=0.887 n=9+10)
GoMapClear/NonReflexive/10000  28.1µs ± 2%  28.4µs ± 3%     ~     (p=0.247 n=10+10)

Fixes #20138

Change-Id: I181332a8ef434a4f0d89659f492d8711db3f3213
Reviewed-on: https://go-review.googlesource.com/110055
Reviewed-by: Keith Randall <khr@golang.org>
2018-05-08 21:15:16 +00:00

1277 lines
34 KiB
Go

// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"cmd/compile/internal/types"
"cmd/internal/src"
"fmt"
)
// Rewrite tree to use separate statements to enforce
// order of evaluation. Makes walk easier, because it
// can (after this runs) reorder at will within an expression.
//
// Rewrite m[k] op= r into m[k] = m[k] op r if op is / or %.
//
// Introduce temporaries as needed by runtime routines.
// For example, the map runtime routines take the map key
// by reference, so make sure all map keys are addressable
// by copying them to temporaries as needed.
// The same is true for channel operations.
//
// Arrange that map index expressions only appear in direct
// assignments x = m[k] or m[k] = x, never in larger expressions.
//
// Arrange that receive expressions only appear in direct assignments
// x = <-c or as standalone statements <-c, never in larger expressions.
// TODO(rsc): The temporary introduction during multiple assignments
// should be moved into this file, so that the temporaries can be cleaned
// and so that conversions implicit in the OAS2FUNC and OAS2RECV
// nodes can be made explicit and then have their temporaries cleaned.
// TODO(rsc): Goto and multilevel break/continue can jump over
// inserted VARKILL annotations. Work out a way to handle these.
// The current implementation is safe, in that it will execute correctly.
// But it won't reuse temporaries as aggressively as it might, and
// it can result in unnecessary zeroing of those variables in the function
// prologue.
// Order holds state during the ordering process.
type Order struct {
out []*Node // list of generated statements
temp []*Node // stack of temporary variables
}
// Order rewrites fn.Nbody to apply the ordering constraints
// described in the comment at the top of the file.
func order(fn *Node) {
if Debug['W'] > 1 {
s := fmt.Sprintf("\nbefore order %v", fn.Func.Nname.Sym)
dumplist(s, fn.Nbody)
}
orderBlock(&fn.Nbody)
}
// newTemp allocates a new temporary with the given type,
// pushes it onto the temp stack, and returns it.
// If clear is true, newTemp emits code to zero the temporary.
func (o *Order) newTemp(t *types.Type, clear bool) *Node {
v := temp(t)
if clear {
a := nod(OAS, v, nil)
a = typecheck(a, Etop)
o.out = append(o.out, a)
}
o.temp = append(o.temp, v)
return v
}
// copyExpr behaves like ordertemp but also emits
// code to initialize the temporary to the value n.
//
// The clear argument is provided for use when the evaluation
// of tmp = n turns into a function call that is passed a pointer
// to the temporary as the output space. If the call blocks before
// tmp has been written, the garbage collector will still treat the
// temporary as live, so we must zero it before entering that call.
// Today, this only happens for channel receive operations.
// (The other candidate would be map access, but map access
// returns a pointer to the result data instead of taking a pointer
// to be filled in.)
func (o *Order) copyExpr(n *Node, t *types.Type, clear bool) *Node {
v := o.newTemp(t, clear)
a := nod(OAS, v, n)
a = typecheck(a, Etop)
o.out = append(o.out, a)
return v
}
// cheapExpr returns a cheap version of n.
// The definition of cheap is that n is a variable or constant.
// If not, cheapExpr allocates a new tmp, emits tmp = n,
// and then returns tmp.
func (o *Order) cheapExpr(n *Node) *Node {
if n == nil {
return nil
}
switch n.Op {
case ONAME, OLITERAL:
return n
case OLEN, OCAP:
l := o.cheapExpr(n.Left)
if l == n.Left {
return n
}
a := n.copy()
a.Orig = a
a.Left = l
return typecheck(a, Erv)
}
return o.copyExpr(n, n.Type, false)
}
// safeExpr returns a safe version of n.
// The definition of safe is that n can appear multiple times
// without violating the semantics of the original program,
// and that assigning to the safe version has the same effect
// as assigning to the original n.
//
// The intended use is to apply to x when rewriting x += y into x = x + y.
func (o *Order) safeExpr(n *Node) *Node {
switch n.Op {
case ONAME, OLITERAL:
return n
case ODOT, OLEN, OCAP:
l := o.safeExpr(n.Left)
if l == n.Left {
return n
}
a := n.copy()
a.Orig = a
a.Left = l
return typecheck(a, Erv)
case ODOTPTR, OIND:
l := o.cheapExpr(n.Left)
if l == n.Left {
return n
}
a := n.copy()
a.Orig = a
a.Left = l
return typecheck(a, Erv)
case OINDEX, OINDEXMAP:
var l *Node
if n.Left.Type.IsArray() {
l = o.safeExpr(n.Left)
} else {
l = o.cheapExpr(n.Left)
}
r := o.cheapExpr(n.Right)
if l == n.Left && r == n.Right {
return n
}
a := n.copy()
a.Orig = a
a.Left = l
a.Right = r
return typecheck(a, Erv)
default:
Fatalf("ordersafeexpr %v", n.Op)
return nil // not reached
}
}
// Isaddrokay reports whether it is okay to pass n's address to runtime routines.
// Taking the address of a variable makes the liveness and optimization analyses
// lose track of where the variable's lifetime ends. To avoid hurting the analyses
// of ordinary stack variables, those are not 'isaddrokay'. Temporaries are okay,
// because we emit explicit VARKILL instructions marking the end of those
// temporaries' lifetimes.
func isaddrokay(n *Node) bool {
return islvalue(n) && (n.Op != ONAME || n.Class() == PEXTERN || n.IsAutoTmp())
}
// addrTemp ensures that n is okay to pass by address to runtime routines.
// If the original argument n is not okay, addrTemp creates a tmp, emits
// tmp = n, and then returns tmp.
// The result of addrTemp MUST be assigned back to n, e.g.
// n.Left = o.addrTemp(n.Left)
func (o *Order) addrTemp(n *Node) *Node {
if consttype(n) > 0 {
// TODO: expand this to all static composite literal nodes?
n = defaultlit(n, nil)
dowidth(n.Type)
vstat := staticname(n.Type)
vstat.Name.SetReadonly(true)
var out []*Node
staticassign(vstat, n, &out)
if out != nil {
Fatalf("staticassign of const generated code: %+v", n)
}
vstat = typecheck(vstat, Erv)
return vstat
}
if isaddrokay(n) {
return n
}
return o.copyExpr(n, n.Type, false)
}
// mapKeyTemp prepares n to be a key in a map runtime call and returns n.
// It should only be used for map runtime calls which have *_fast* versions.
func (o *Order) mapKeyTemp(t *types.Type, n *Node) *Node {
// Most map calls need to take the address of the key.
// Exception: map*_fast* calls. See golang.org/issue/19015.
if mapfast(t) == mapslow {
return o.addrTemp(n)
}
return n
}
type ordermarker int
// Marktemp returns the top of the temporary variable stack.
func (o *Order) markTemp() ordermarker {
return ordermarker(len(o.temp))
}
// Poptemp pops temporaries off the stack until reaching the mark,
// which must have been returned by marktemp.
func (o *Order) popTemp(mark ordermarker) {
o.temp = o.temp[:mark]
}
// Cleantempnopop emits VARKILL and if needed VARLIVE instructions
// to *out for each temporary above the mark on the temporary stack.
// It does not pop the temporaries from the stack.
func (o *Order) cleanTempNoPop(mark ordermarker) []*Node {
var out []*Node
for i := len(o.temp) - 1; i >= int(mark); i-- {
n := o.temp[i]
if n.Name.Keepalive() {
n.Name.SetKeepalive(false)
n.SetAddrtaken(true) // ensure SSA keeps the n variable
live := nod(OVARLIVE, n, nil)
live = typecheck(live, Etop)
out = append(out, live)
}
kill := nod(OVARKILL, n, nil)
kill = typecheck(kill, Etop)
out = append(out, kill)
}
return out
}
// cleanTemp emits VARKILL instructions for each temporary above the
// mark on the temporary stack and removes them from the stack.
func (o *Order) cleanTemp(top ordermarker) {
o.out = append(o.out, o.cleanTempNoPop(top)...)
o.popTemp(top)
}
// stmtList orders each of the statements in the list.
func (o *Order) stmtList(l Nodes) {
for _, n := range l.Slice() {
o.stmt(n)
}
}
// orderBlock orders the block of statements in n into a new slice,
// and then replaces the old slice in n with the new slice.
func orderBlock(n *Nodes) {
var order Order
mark := order.markTemp()
order.stmtList(*n)
order.cleanTemp(mark)
n.Set(order.out)
}
// exprInPlace orders the side effects in *np and
// leaves them as the init list of the final *np.
// The result of exprInPlace MUST be assigned back to n, e.g.
// n.Left = o.exprInPlace(n.Left)
func (o *Order) exprInPlace(n *Node) *Node {
var order Order
n = order.expr(n, nil)
n = addinit(n, order.out)
// insert new temporaries from order
// at head of outer list.
o.temp = append(o.temp, order.temp...)
return n
}
// orderStmtInPlace orders the side effects of the single statement *np
// and replaces it with the resulting statement list.
// The result of orderStmtInPlace MUST be assigned back to n, e.g.
// n.Left = orderStmtInPlace(n.Left)
func orderStmtInPlace(n *Node) *Node {
var order Order
mark := order.markTemp()
order.stmt(n)
order.cleanTemp(mark)
return liststmt(order.out)
}
// init moves n's init list to o.out.
func (o *Order) init(n *Node) {
if n.mayBeShared() {
// For concurrency safety, don't mutate potentially shared nodes.
// First, ensure that no work is required here.
if n.Ninit.Len() > 0 {
Fatalf("orderinit shared node with ninit")
}
return
}
o.stmtList(n.Ninit)
n.Ninit.Set(nil)
}
// Ismulticall reports whether the list l is f() for a multi-value function.
// Such an f() could appear as the lone argument to a multi-arg function.
func ismulticall(l Nodes) bool {
// one arg only
if l.Len() != 1 {
return false
}
n := l.First()
// must be call
switch n.Op {
default:
return false
case OCALLFUNC, OCALLMETH, OCALLINTER:
// call must return multiple values
return n.Left.Type.NumResults() > 1
}
}
// copyRet emits t1, t2, ... = n, where n is a function call,
// and then returns the list t1, t2, ....
func (o *Order) copyRet(n *Node) []*Node {
if !n.Type.IsFuncArgStruct() {
Fatalf("copyret %v %d", n.Type, n.Left.Type.NumResults())
}
var l1, l2 []*Node
for _, f := range n.Type.Fields().Slice() {
tmp := temp(f.Type)
l1 = append(l1, tmp)
l2 = append(l2, tmp)
}
as := nod(OAS2, nil, nil)
as.List.Set(l1)
as.Rlist.Set1(n)
as = typecheck(as, Etop)
o.stmt(as)
return l2
}
// callArgs orders the list of call arguments *l.
func (o *Order) callArgs(l *Nodes) {
if ismulticall(*l) {
// return f() where f() is multiple values.
l.Set(o.copyRet(l.First()))
} else {
o.exprList(*l)
}
}
// call orders the call expression n.
// n.Op is OCALLMETH/OCALLFUNC/OCALLINTER or a builtin like OCOPY.
func (o *Order) call(n *Node) {
n.Left = o.expr(n.Left, nil)
n.Right = o.expr(n.Right, nil) // ODDDARG temp
o.callArgs(&n.List)
if n.Op != OCALLFUNC {
return
}
keepAlive := func(i int) {
// If the argument is really a pointer being converted to uintptr,
// arrange for the pointer to be kept alive until the call returns,
// by copying it into a temp and marking that temp
// still alive when we pop the temp stack.
xp := n.List.Addr(i)
for (*xp).Op == OCONVNOP && !(*xp).Type.IsUnsafePtr() {
xp = &(*xp).Left
}
x := *xp
if x.Type.IsUnsafePtr() {
x = o.copyExpr(x, x.Type, false)
x.Name.SetKeepalive(true)
*xp = x
}
}
for i, t := range n.Left.Type.Params().FieldSlice() {
// Check for "unsafe-uintptr" tag provided by escape analysis.
if t.Isddd() && !n.Isddd() {
if t.Note == uintptrEscapesTag {
for ; i < n.List.Len(); i++ {
keepAlive(i)
}
}
} else {
if t.Note == unsafeUintptrTag || t.Note == uintptrEscapesTag {
keepAlive(i)
}
}
}
}
// mapAssign appends n to o.out, introducing temporaries
// to make sure that all map assignments have the form m[k] = x.
// (Note: expr has already been called on n, so we know k is addressable.)
//
// If n is the multiple assignment form ..., m[k], ... = ..., x, ..., the rewrite is
// t1 = m
// t2 = k
// ...., t3, ... = ..., x, ...
// t1[t2] = t3
//
// The temporaries t1, t2 are needed in case the ... being assigned
// contain m or k. They are usually unnecessary, but in the unnecessary
// cases they are also typically registerizable, so not much harm done.
// And this only applies to the multiple-assignment form.
// We could do a more precise analysis if needed, like in walk.go.
func (o *Order) mapAssign(n *Node) {
switch n.Op {
default:
Fatalf("ordermapassign %v", n.Op)
case OAS, OASOP:
if n.Left.Op == OINDEXMAP {
// Make sure we evaluate the RHS before starting the map insert.
// We need to make sure the RHS won't panic. See issue 22881.
if n.Right.Op == OAPPEND {
s := n.Right.List.Slice()[1:]
for i, n := range s {
s[i] = o.cheapExpr(n)
}
} else {
n.Right = o.cheapExpr(n.Right)
}
}
o.out = append(o.out, n)
case OAS2, OAS2DOTTYPE, OAS2MAPR, OAS2FUNC:
var post []*Node
for i, m := range n.List.Slice() {
switch {
case m.Op == OINDEXMAP:
if !m.Left.IsAutoTmp() {
m.Left = o.copyExpr(m.Left, m.Left.Type, false)
}
if !m.Right.IsAutoTmp() {
m.Right = o.copyExpr(m.Right, m.Right.Type, false)
}
fallthrough
case instrumenting && n.Op == OAS2FUNC && !m.isBlank():
t := o.newTemp(m.Type, false)
n.List.SetIndex(i, t)
a := nod(OAS, m, t)
a = typecheck(a, Etop)
post = append(post, a)
}
}
o.out = append(o.out, n)
o.out = append(o.out, post...)
}
}
// stmt orders the statement n, appending to o.out.
// Temporaries created during the statement are cleaned
// up using VARKILL instructions as possible.
func (o *Order) stmt(n *Node) {
if n == nil {
return
}
lno := setlineno(n)
o.init(n)
switch n.Op {
default:
Fatalf("orderstmt %v", n.Op)
case OVARKILL, OVARLIVE:
o.out = append(o.out, n)
case OAS:
t := o.markTemp()
n.Left = o.expr(n.Left, nil)
n.Right = o.expr(n.Right, n.Left)
o.mapAssign(n)
o.cleanTemp(t)
case OAS2,
OCLOSE,
OCOPY,
OPRINT,
OPRINTN,
ORECOVER,
ORECV:
t := o.markTemp()
n.Left = o.expr(n.Left, nil)
n.Right = o.expr(n.Right, nil)
o.exprList(n.List)
o.exprList(n.Rlist)
switch n.Op {
case OAS2:
o.mapAssign(n)
default:
o.out = append(o.out, n)
}
o.cleanTemp(t)
case OASOP:
t := o.markTemp()
n.Left = o.expr(n.Left, nil)
n.Right = o.expr(n.Right, nil)
if instrumenting || n.Left.Op == OINDEXMAP && (n.SubOp() == ODIV || n.SubOp() == OMOD) {
// Rewrite m[k] op= r into m[k] = m[k] op r so
// that we can ensure that if op panics
// because r is zero, the panic happens before
// the map assignment.
n.Left = o.safeExpr(n.Left)
l := treecopy(n.Left, src.NoXPos)
if l.Op == OINDEXMAP {
l.SetIndexMapLValue(false)
}
l = o.copyExpr(l, n.Left.Type, false)
n.Right = nod(n.SubOp(), l, n.Right)
n.Right = typecheck(n.Right, Erv)
n.Right = o.expr(n.Right, nil)
n.Op = OAS
n.ResetAux()
}
o.mapAssign(n)
o.cleanTemp(t)
// Special: make sure key is addressable if needed,
// and make sure OINDEXMAP is not copied out.
case OAS2MAPR:
t := o.markTemp()
o.exprList(n.List)
r := n.Rlist.First()
r.Left = o.expr(r.Left, nil)
r.Right = o.expr(r.Right, nil)
// See case OINDEXMAP below.
if r.Right.Op == OARRAYBYTESTR {
r.Right.Op = OARRAYBYTESTRTMP
}
r.Right = o.mapKeyTemp(r.Left.Type, r.Right)
o.okAs2(n)
o.cleanTemp(t)
// Special: avoid copy of func call n.Rlist.First().
case OAS2FUNC:
t := o.markTemp()
o.exprList(n.List)
o.call(n.Rlist.First())
o.as2(n)
o.cleanTemp(t)
// Special: use temporary variables to hold result,
// so that assertI2Tetc can take address of temporary.
// No temporary for blank assignment.
case OAS2DOTTYPE:
t := o.markTemp()
o.exprList(n.List)
n.Rlist.First().Left = o.expr(n.Rlist.First().Left, nil) // i in i.(T)
o.okAs2(n)
o.cleanTemp(t)
// Special: use temporary variables to hold result,
// so that chanrecv can take address of temporary.
case OAS2RECV:
t := o.markTemp()
o.exprList(n.List)
n.Rlist.First().Left = o.expr(n.Rlist.First().Left, nil) // arg to recv
ch := n.Rlist.First().Left.Type
tmp1 := o.newTemp(ch.Elem(), types.Haspointers(ch.Elem()))
tmp2 := o.newTemp(types.Types[TBOOL], false)
o.out = append(o.out, n)
r := nod(OAS, n.List.First(), tmp1)
r = typecheck(r, Etop)
o.mapAssign(r)
r = okas(n.List.Second(), tmp2)
r = typecheck(r, Etop)
o.mapAssign(r)
n.List.Set2(tmp1, tmp2)
o.cleanTemp(t)
// Special: does not save n onto out.
case OBLOCK, OEMPTY:
o.stmtList(n.List)
// Special: n->left is not an expression; save as is.
case OBREAK,
OCONTINUE,
ODCL,
ODCLCONST,
ODCLTYPE,
OFALL,
OGOTO,
OLABEL,
ORETJMP:
o.out = append(o.out, n)
// Special: handle call arguments.
case OCALLFUNC, OCALLINTER, OCALLMETH:
t := o.markTemp()
o.call(n)
o.out = append(o.out, n)
o.cleanTemp(t)
// Special: order arguments to inner call but not call itself.
case ODEFER, OPROC:
t := o.markTemp()
o.call(n.Left)
o.out = append(o.out, n)
o.cleanTemp(t)
case ODELETE:
t := o.markTemp()
n.List.SetFirst(o.expr(n.List.First(), nil))
n.List.SetSecond(o.expr(n.List.Second(), nil))
n.List.SetSecond(o.mapKeyTemp(n.List.First().Type, n.List.Second()))
o.out = append(o.out, n)
o.cleanTemp(t)
// Clean temporaries from condition evaluation at
// beginning of loop body and after for statement.
case OFOR:
t := o.markTemp()
n.Left = o.exprInPlace(n.Left)
n.Nbody.Prepend(o.cleanTempNoPop(t)...)
orderBlock(&n.Nbody)
n.Right = orderStmtInPlace(n.Right)
o.out = append(o.out, n)
o.cleanTemp(t)
// Clean temporaries from condition at
// beginning of both branches.
case OIF:
t := o.markTemp()
n.Left = o.exprInPlace(n.Left)
n.Nbody.Prepend(o.cleanTempNoPop(t)...)
n.Rlist.Prepend(o.cleanTempNoPop(t)...)
o.popTemp(t)
orderBlock(&n.Nbody)
orderBlock(&n.Rlist)
o.out = append(o.out, n)
// Special: argument will be converted to interface using convT2E
// so make sure it is an addressable temporary.
case OPANIC:
t := o.markTemp()
n.Left = o.expr(n.Left, nil)
if !n.Left.Type.IsInterface() {
n.Left = o.addrTemp(n.Left)
}
o.out = append(o.out, n)
o.cleanTemp(t)
case ORANGE:
// n.Right is the expression being ranged over.
// order it, and then make a copy if we need one.
// We almost always do, to ensure that we don't
// see any value changes made during the loop.
// Usually the copy is cheap (e.g., array pointer,
// chan, slice, string are all tiny).
// The exception is ranging over an array value
// (not a slice, not a pointer to array),
// which must make a copy to avoid seeing updates made during
// the range body. Ranging over an array value is uncommon though.
// Mark []byte(str) range expression to reuse string backing storage.
// It is safe because the storage cannot be mutated.
if n.Right.Op == OSTRARRAYBYTE {
n.Right.Op = OSTRARRAYBYTETMP
}
t := o.markTemp()
n.Right = o.expr(n.Right, nil)
orderBody := true
switch n.Type.Etype {
default:
Fatalf("orderstmt range %v", n.Type)
case TARRAY, TSLICE:
if n.List.Len() < 2 || n.List.Second().isBlank() {
// for i := range x will only use x once, to compute len(x).
// No need to copy it.
break
}
fallthrough
case TCHAN, TSTRING:
// chan, string, slice, array ranges use value multiple times.
// make copy.
r := n.Right
if r.Type.IsString() && r.Type != types.Types[TSTRING] {
r = nod(OCONV, r, nil)
r.Type = types.Types[TSTRING]
r = typecheck(r, Erv)
}
n.Right = o.copyExpr(r, r.Type, false)
case TMAP:
if isMapClear(n) {
// Preserve the body of the map clear pattern so it can
// be detected during walk. The loop body will not be used
// when optimizing away the range loop to a runtime call.
orderBody = false
break
}
// copy the map value in case it is a map literal.
// TODO(rsc): Make tmp = literal expressions reuse tmp.
// For maps tmp is just one word so it hardly matters.
r := n.Right
n.Right = o.copyExpr(r, r.Type, false)
// prealloc[n] is the temp for the iterator.
// hiter contains pointers and needs to be zeroed.
prealloc[n] = o.newTemp(hiter(n.Type), true)
}
o.exprListInPlace(n.List)
if orderBody {
orderBlock(&n.Nbody)
}
o.out = append(o.out, n)
o.cleanTemp(t)
case ORETURN:
o.callArgs(&n.List)
o.out = append(o.out, n)
// Special: clean case temporaries in each block entry.
// Select must enter one of its blocks, so there is no
// need for a cleaning at the end.
// Doubly special: evaluation order for select is stricter
// than ordinary expressions. Even something like p.c
// has to be hoisted into a temporary, so that it cannot be
// reordered after the channel evaluation for a different
// case (if p were nil, then the timing of the fault would
// give this away).
case OSELECT:
t := o.markTemp()
for _, n2 := range n.List.Slice() {
if n2.Op != OXCASE {
Fatalf("order select case %v", n2.Op)
}
r := n2.Left
setlineno(n2)
// Append any new body prologue to ninit.
// The next loop will insert ninit into nbody.
if n2.Ninit.Len() != 0 {
Fatalf("order select ninit")
}
if r == nil {
continue
}
switch r.Op {
default:
Dump("select case", r)
Fatalf("unknown op in select %v", r.Op)
// If this is case x := <-ch or case x, y := <-ch, the case has
// the ODCL nodes to declare x and y. We want to delay that
// declaration (and possible allocation) until inside the case body.
// Delete the ODCL nodes here and recreate them inside the body below.
case OSELRECV, OSELRECV2:
if r.Colas() {
i := 0
if r.Ninit.Len() != 0 && r.Ninit.First().Op == ODCL && r.Ninit.First().Left == r.Left {
i++
}
if i < r.Ninit.Len() && r.Ninit.Index(i).Op == ODCL && r.List.Len() != 0 && r.Ninit.Index(i).Left == r.List.First() {
i++
}
if i >= r.Ninit.Len() {
r.Ninit.Set(nil)
}
}
if r.Ninit.Len() != 0 {
dumplist("ninit", r.Ninit)
Fatalf("ninit on select recv")
}
// case x = <-c
// case x, ok = <-c
// r->left is x, r->ntest is ok, r->right is ORECV, r->right->left is c.
// r->left == N means 'case <-c'.
// c is always evaluated; x and ok are only evaluated when assigned.
r.Right.Left = o.expr(r.Right.Left, nil)
if r.Right.Left.Op != ONAME {
r.Right.Left = o.copyExpr(r.Right.Left, r.Right.Left.Type, false)
}
// Introduce temporary for receive and move actual copy into case body.
// avoids problems with target being addressed, as usual.
// NOTE: If we wanted to be clever, we could arrange for just one
// temporary per distinct type, sharing the temp among all receives
// with that temp. Similarly one ok bool could be shared among all
// the x,ok receives. Not worth doing until there's a clear need.
if r.Left != nil && r.Left.isBlank() {
r.Left = nil
}
if r.Left != nil {
// use channel element type for temporary to avoid conversions,
// such as in case interfacevalue = <-intchan.
// the conversion happens in the OAS instead.
tmp1 := r.Left
if r.Colas() {
tmp2 := nod(ODCL, tmp1, nil)
tmp2 = typecheck(tmp2, Etop)
n2.Ninit.Append(tmp2)
}
r.Left = o.newTemp(r.Right.Left.Type.Elem(), types.Haspointers(r.Right.Left.Type.Elem()))
tmp2 := nod(OAS, tmp1, r.Left)
tmp2 = typecheck(tmp2, Etop)
n2.Ninit.Append(tmp2)
}
if r.List.Len() != 0 && r.List.First().isBlank() {
r.List.Set(nil)
}
if r.List.Len() != 0 {
tmp1 := r.List.First()
if r.Colas() {
tmp2 := nod(ODCL, tmp1, nil)
tmp2 = typecheck(tmp2, Etop)
n2.Ninit.Append(tmp2)
}
r.List.Set1(o.newTemp(types.Types[TBOOL], false))
tmp2 := okas(tmp1, r.List.First())
tmp2 = typecheck(tmp2, Etop)
n2.Ninit.Append(tmp2)
}
orderBlock(&n2.Ninit)
case OSEND:
if r.Ninit.Len() != 0 {
dumplist("ninit", r.Ninit)
Fatalf("ninit on select send")
}
// case c <- x
// r->left is c, r->right is x, both are always evaluated.
r.Left = o.expr(r.Left, nil)
if !r.Left.IsAutoTmp() {
r.Left = o.copyExpr(r.Left, r.Left.Type, false)
}
r.Right = o.expr(r.Right, nil)
if !r.Right.IsAutoTmp() {
r.Right = o.copyExpr(r.Right, r.Right.Type, false)
}
}
}
// Now that we have accumulated all the temporaries, clean them.
// Also insert any ninit queued during the previous loop.
// (The temporary cleaning must follow that ninit work.)
for _, n3 := range n.List.Slice() {
orderBlock(&n3.Nbody)
n3.Nbody.Prepend(o.cleanTempNoPop(t)...)
// TODO(mdempsky): Is this actually necessary?
// walkselect appears to walk Ninit.
n3.Nbody.Prepend(n3.Ninit.Slice()...)
n3.Ninit.Set(nil)
}
o.out = append(o.out, n)
o.popTemp(t)
// Special: value being sent is passed as a pointer; make it addressable.
case OSEND:
t := o.markTemp()
n.Left = o.expr(n.Left, nil)
n.Right = o.expr(n.Right, nil)
if instrumenting {
// Force copying to the stack so that (chan T)(nil) <- x
// is still instrumented as a read of x.
n.Right = o.copyExpr(n.Right, n.Right.Type, false)
} else {
n.Right = o.addrTemp(n.Right)
}
o.out = append(o.out, n)
o.cleanTemp(t)
// TODO(rsc): Clean temporaries more aggressively.
// Note that because walkswitch will rewrite some of the
// switch into a binary search, this is not as easy as it looks.
// (If we ran that code here we could invoke orderstmt on
// the if-else chain instead.)
// For now just clean all the temporaries at the end.
// In practice that's fine.
case OSWITCH:
t := o.markTemp()
n.Left = o.expr(n.Left, nil)
for _, ncas := range n.List.Slice() {
if ncas.Op != OXCASE {
Fatalf("order switch case %v", ncas.Op)
}
o.exprListInPlace(ncas.List)
orderBlock(&ncas.Nbody)
}
o.out = append(o.out, n)
o.cleanTemp(t)
}
lineno = lno
}
// exprList orders the expression list l into o.
func (o *Order) exprList(l Nodes) {
s := l.Slice()
for i := range s {
s[i] = o.expr(s[i], nil)
}
}
// exprListInPlace orders the expression list l but saves
// the side effects on the individual expression ninit lists.
func (o *Order) exprListInPlace(l Nodes) {
s := l.Slice()
for i := range s {
s[i] = o.exprInPlace(s[i])
}
}
// prealloc[x] records the allocation to use for x.
var prealloc = map[*Node]*Node{}
// expr orders a single expression, appending side
// effects to o.out as needed.
// If this is part of an assignment lhs = *np, lhs is given.
// Otherwise lhs == nil. (When lhs != nil it may be possible
// to avoid copying the result of the expression to a temporary.)
// The result of expr MUST be assigned back to n, e.g.
// n.Left = o.expr(n.Left, lhs)
func (o *Order) expr(n, lhs *Node) *Node {
if n == nil {
return n
}
lno := setlineno(n)
o.init(n)
switch n.Op {
default:
n.Left = o.expr(n.Left, nil)
n.Right = o.expr(n.Right, nil)
o.exprList(n.List)
o.exprList(n.Rlist)
// Addition of strings turns into a function call.
// Allocate a temporary to hold the strings.
// Fewer than 5 strings use direct runtime helpers.
case OADDSTR:
o.exprList(n.List)
if n.List.Len() > 5 {
t := types.NewArray(types.Types[TSTRING], int64(n.List.Len()))
prealloc[n] = o.newTemp(t, false)
}
// Mark string(byteSlice) arguments to reuse byteSlice backing
// buffer during conversion. String concatenation does not
// memorize the strings for later use, so it is safe.
// However, we can do it only if there is at least one non-empty string literal.
// Otherwise if all other arguments are empty strings,
// concatstrings will return the reference to the temp string
// to the caller.
hasbyte := false
haslit := false
for _, n1 := range n.List.Slice() {
hasbyte = hasbyte || n1.Op == OARRAYBYTESTR
haslit = haslit || n1.Op == OLITERAL && len(n1.Val().U.(string)) != 0
}
if haslit && hasbyte {
for _, n2 := range n.List.Slice() {
if n2.Op == OARRAYBYTESTR {
n2.Op = OARRAYBYTESTRTMP
}
}
}
case OCMPSTR:
n.Left = o.expr(n.Left, nil)
n.Right = o.expr(n.Right, nil)
// Mark string(byteSlice) arguments to reuse byteSlice backing
// buffer during conversion. String comparison does not
// memorize the strings for later use, so it is safe.
if n.Left.Op == OARRAYBYTESTR {
n.Left.Op = OARRAYBYTESTRTMP
}
if n.Right.Op == OARRAYBYTESTR {
n.Right.Op = OARRAYBYTESTRTMP
}
// key must be addressable
case OINDEXMAP:
n.Left = o.expr(n.Left, nil)
n.Right = o.expr(n.Right, nil)
needCopy := false
if !n.IndexMapLValue() && instrumenting {
// Race detector needs the copy so it can
// call treecopy on the result.
needCopy = true
}
// For x = m[string(k)] where k is []byte, the allocation of
// backing bytes for the string can be avoided by reusing
// the []byte backing array. This is a special case that it
// would be nice to handle more generally, but because
// there are no []byte-keyed maps, this specific case comes
// up in important cases in practice. See issue 3512.
// Nothing can change the []byte we are not copying before
// the map index, because the map access is going to
// be forced to happen immediately following this
// conversion (by the ordercopyexpr a few lines below).
if !n.IndexMapLValue() && n.Right.Op == OARRAYBYTESTR {
n.Right.Op = OARRAYBYTESTRTMP
needCopy = true
}
n.Right = o.mapKeyTemp(n.Left.Type, n.Right)
if needCopy {
n = o.copyExpr(n, n.Type, false)
}
// concrete type (not interface) argument must be addressable
// temporary to pass to runtime.
case OCONVIFACE:
n.Left = o.expr(n.Left, nil)
if !n.Left.Type.IsInterface() {
n.Left = o.addrTemp(n.Left)
}
case OCONVNOP:
if n.Type.IsKind(TUNSAFEPTR) && n.Left.Type.IsKind(TUINTPTR) && (n.Left.Op == OCALLFUNC || n.Left.Op == OCALLINTER || n.Left.Op == OCALLMETH) {
// When reordering unsafe.Pointer(f()) into a separate
// statement, the conversion and function call must stay
// together. See golang.org/issue/15329.
o.init(n.Left)
o.call(n.Left)
if lhs == nil || lhs.Op != ONAME || instrumenting {
n = o.copyExpr(n, n.Type, false)
}
} else {
n.Left = o.expr(n.Left, nil)
}
case OANDAND, OOROR:
mark := o.markTemp()
n.Left = o.expr(n.Left, nil)
// Clean temporaries from first branch at beginning of second.
// Leave them on the stack so that they can be killed in the outer
// context in case the short circuit is taken.
n.Right = addinit(n.Right, o.cleanTempNoPop(mark))
n.Right = o.exprInPlace(n.Right)
case OCALLFUNC,
OCALLINTER,
OCALLMETH,
OCAP,
OCOMPLEX,
OCOPY,
OIMAG,
OLEN,
OMAKECHAN,
OMAKEMAP,
OMAKESLICE,
ONEW,
OREAL,
ORECOVER,
OSTRARRAYBYTE,
OSTRARRAYBYTETMP,
OSTRARRAYRUNE:
if isRuneCount(n) {
// len([]rune(s)) is rewritten to runtime.countrunes(s) later.
n.Left.Left = o.expr(n.Left.Left, nil)
} else {
o.call(n)
}
if lhs == nil || lhs.Op != ONAME || instrumenting {
n = o.copyExpr(n, n.Type, false)
}
case OAPPEND:
// Check for append(x, make([]T, y)...) .
if isAppendOfMake(n) {
n.List.SetFirst(o.expr(n.List.First(), nil)) // order x
n.List.Second().Left = o.expr(n.List.Second().Left, nil) // order y
} else {
o.callArgs(&n.List)
}
if lhs == nil || lhs.Op != ONAME && !samesafeexpr(lhs, n.List.First()) {
n = o.copyExpr(n, n.Type, false)
}
case OSLICE, OSLICEARR, OSLICESTR, OSLICE3, OSLICE3ARR:
n.Left = o.expr(n.Left, nil)
low, high, max := n.SliceBounds()
low = o.expr(low, nil)
low = o.cheapExpr(low)
high = o.expr(high, nil)
high = o.cheapExpr(high)
max = o.expr(max, nil)
max = o.cheapExpr(max)
n.SetSliceBounds(low, high, max)
if lhs == nil || lhs.Op != ONAME && !samesafeexpr(lhs, n.Left) {
n = o.copyExpr(n, n.Type, false)
}
case OCLOSURE:
if n.Noescape() && n.Func.Closure.Func.Cvars.Len() > 0 {
prealloc[n] = o.newTemp(types.Types[TUINT8], false) // walk will fill in correct type
}
case OARRAYLIT, OSLICELIT, OCALLPART:
n.Left = o.expr(n.Left, nil)
n.Right = o.expr(n.Right, nil)
o.exprList(n.List)
o.exprList(n.Rlist)
if n.Noescape() {
prealloc[n] = o.newTemp(types.Types[TUINT8], false) // walk will fill in correct type
}
case ODDDARG:
if n.Noescape() {
// The ddd argument does not live beyond the call it is created for.
// Allocate a temporary that will be cleaned up when this statement
// completes. We could be more aggressive and try to arrange for it
// to be cleaned up when the call completes.
prealloc[n] = o.newTemp(n.Type.Elem(), false)
}
case ODOTTYPE, ODOTTYPE2:
n.Left = o.expr(n.Left, nil)
// TODO(rsc): The isfat is for consistency with componentgen and walkexpr.
// It needs to be removed in all three places.
// That would allow inlining x.(struct{*int}) the same as x.(*int).
if !isdirectiface(n.Type) || isfat(n.Type) || instrumenting {
n = o.copyExpr(n, n.Type, true)
}
case ORECV:
n.Left = o.expr(n.Left, nil)
n = o.copyExpr(n, n.Type, true)
case OEQ, ONE:
n.Left = o.expr(n.Left, nil)
n.Right = o.expr(n.Right, nil)
t := n.Left.Type
if t.IsStruct() || t.IsArray() {
// for complex comparisons, we need both args to be
// addressable so we can pass them to the runtime.
n.Left = o.addrTemp(n.Left)
n.Right = o.addrTemp(n.Right)
}
}
lineno = lno
return n
}
// okas creates and returns an assignment of val to ok,
// including an explicit conversion if necessary.
func okas(ok, val *Node) *Node {
if !ok.isBlank() {
val = conv(val, ok.Type)
}
return nod(OAS, ok, val)
}
// as2 orders OAS2XXXX nodes. It creates temporaries to ensure left-to-right assignment.
// The caller should order the right-hand side of the assignment before calling orderas2.
// It rewrites,
// a, b, a = ...
// as
// tmp1, tmp2, tmp3 = ...
// a, b, a = tmp1, tmp2, tmp3
// This is necessary to ensure left to right assignment order.
func (o *Order) as2(n *Node) {
tmplist := []*Node{}
left := []*Node{}
for _, l := range n.List.Slice() {
if !l.isBlank() {
tmp := o.newTemp(l.Type, types.Haspointers(l.Type))
tmplist = append(tmplist, tmp)
left = append(left, l)
}
}
o.out = append(o.out, n)
as := nod(OAS2, nil, nil)
as.List.Set(left)
as.Rlist.Set(tmplist)
as = typecheck(as, Etop)
o.stmt(as)
ti := 0
for ni, l := range n.List.Slice() {
if !l.isBlank() {
n.List.SetIndex(ni, tmplist[ti])
ti++
}
}
}
// okAs2 orders OAS2 with ok.
// Just like as2, this also adds temporaries to ensure left-to-right assignment.
func (o *Order) okAs2(n *Node) {
var tmp1, tmp2 *Node
if !n.List.First().isBlank() {
typ := n.Rlist.First().Type
tmp1 = o.newTemp(typ, types.Haspointers(typ))
}
if !n.List.Second().isBlank() {
tmp2 = o.newTemp(types.Types[TBOOL], false)
}
o.out = append(o.out, n)
if tmp1 != nil {
r := nod(OAS, n.List.First(), tmp1)
r = typecheck(r, Etop)
o.mapAssign(r)
n.List.SetFirst(tmp1)
}
if tmp2 != nil {
r := okas(n.List.Second(), tmp2)
r = typecheck(r, Etop)
o.mapAssign(r)
n.List.SetSecond(tmp2)
}
}