Lynn Boger b4efd09d18 cmd/link: split large elf text sections on ppc64x
Some applications built with Go on ppc64x with external linking
can fail to link with relocation truncation errors if the elf
text section that is generated is larger than 2^26 bytes and that
section contains a call instruction (bl) which calls a function
beyond the limit addressable by the 24 bit field in the
instruction.

This solution consists of generating multiple text sections where
each is small enough to allow the GNU linker to resolve the calls
by generating long branch code where needed.  Other changes were added
to handle differences in processing when multiple text sections exist.

Some adjustments were required to the computation of a method's address
when using the method offset table when there are multiple text sections.

The number of possible section headers was increased to allow for up
to 128 text sections.  A test case was also added.

Fixes #15823.

Change-Id: If8117b0e0afb058cbc072258425a35aef2363c92
Reviewed-on: https://go-review.googlesource.com/27790
Run-TryBot: Ian Lance Taylor <iant@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
2016-09-21 20:23:49 +00:00

2073 lines
53 KiB
Go

// Inferno utils/8l/asm.c
// https://bitbucket.org/inferno-os/inferno-os/src/default/utils/8l/asm.c
//
// Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved.
// Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
// Portions Copyright © 1997-1999 Vita Nuova Limited
// Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
// Portions Copyright © 2004,2006 Bruce Ellis
// Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
// Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
// Portions Copyright © 2009 The Go Authors. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
package ld
import (
"bufio"
"bytes"
"cmd/internal/bio"
"cmd/internal/obj"
"cmd/internal/sys"
"crypto/sha1"
"debug/elf"
"encoding/binary"
"fmt"
"io"
"io/ioutil"
"log"
"os"
"os/exec"
"path/filepath"
"runtime"
"strings"
"sync"
)
// Data layout and relocation.
// Derived from Inferno utils/6l/l.h
// https://bitbucket.org/inferno-os/inferno-os/src/default/utils/6l/l.h
//
// Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved.
// Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
// Portions Copyright © 1997-1999 Vita Nuova Limited
// Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
// Portions Copyright © 2004,2006 Bruce Ellis
// Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
// Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
// Portions Copyright © 2009 The Go Authors. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
type Arch struct {
Funcalign int
Maxalign int
Minalign int
Dwarfregsp int
Dwarfreglr int
Linuxdynld string
Freebsddynld string
Netbsddynld string
Openbsddynld string
Dragonflydynld string
Solarisdynld string
Adddynrel func(*Link, *Symbol, *Reloc) bool
Archinit func(*Link)
Archreloc func(*Link, *Reloc, *Symbol, *int64) int
Archrelocvariant func(*Link, *Reloc, *Symbol, int64) int64
Asmb func(*Link)
Elfreloc1 func(*Link, *Reloc, int64) int
Elfsetupplt func(*Link)
Gentext func(*Link)
Machoreloc1 func(*Symbol, *Reloc, int64) int
PEreloc1 func(*Symbol, *Reloc, int64) bool
Wput func(uint16)
Lput func(uint32)
Vput func(uint64)
Append16 func(b []byte, v uint16) []byte
Append32 func(b []byte, v uint32) []byte
Append64 func(b []byte, v uint64) []byte
// TLSIEtoLE converts a TLS Initial Executable relocation to
// a TLS Local Executable relocation.
//
// This is possible when a TLS IE relocation refers to a local
// symbol in an executable, which is typical when internally
// linking PIE binaries.
TLSIEtoLE func(s *Symbol, off, size int)
}
var (
Thearch Arch
Lcsize int32
rpath Rpath
Spsize int32
Symsize int32
)
// Terrible but standard terminology.
// A segment describes a block of file to load into memory.
// A section further describes the pieces of that block for
// use in debuggers and such.
const (
MINFUNC = 16 // minimum size for a function
)
type Segment struct {
Rwx uint8 // permission as usual unix bits (5 = r-x etc)
Vaddr uint64 // virtual address
Length uint64 // length in memory
Fileoff uint64 // file offset
Filelen uint64 // length on disk
Sect *Section
}
type Section struct {
Rwx uint8
Extnum int16
Align int32
Name string
Vaddr uint64
Length uint64
Next *Section
Seg *Segment
Elfsect *ElfShdr
Reloff uint64
Rellen uint64
}
// DynlinkingGo returns whether we are producing Go code that can live
// in separate shared libraries linked together at runtime.
func (ctxt *Link) DynlinkingGo() bool {
if !ctxt.Loaded {
panic("DynlinkingGo called before all symbols loaded")
}
canUsePlugins := ctxt.Syms.ROLookup("plugin.Open", 0) != nil
return Buildmode == BuildmodeShared || *FlagLinkshared || Buildmode == BuildmodePlugin || canUsePlugins
}
// UseRelro returns whether to make use of "read only relocations" aka
// relro.
func UseRelro() bool {
switch Buildmode {
case BuildmodeCArchive, BuildmodeCShared, BuildmodeShared, BuildmodePIE, BuildmodePlugin:
return Iself
default:
return *FlagLinkshared
}
}
var (
SysArch *sys.Arch
dynexp []*Symbol
dynlib []string
ldflag []string
havedynamic int
Funcalign int
iscgo bool
elfglobalsymndx int
interpreter string
debug_s bool // backup old value of debug['s']
HEADR int32
Headtype obj.HeadType
nerrors int
liveness int64
)
var (
Segtext Segment
Segrodata Segment
Segrelrodata Segment
Segdata Segment
Segdwarf Segment
)
/* whence for ldpkg */
const (
FileObj = 0 + iota
ArchiveObj
Pkgdef
)
// TODO(dfc) outBuf duplicates bio.Writer
type outBuf struct {
w *bufio.Writer
f *os.File
off int64
}
func (w *outBuf) Write(p []byte) (n int, err error) {
n, err = w.w.Write(p)
w.off += int64(n)
return n, err
}
func (w *outBuf) WriteString(s string) (n int, err error) {
n, err = coutbuf.w.WriteString(s)
w.off += int64(n)
return n, err
}
func (w *outBuf) Offset() int64 {
return w.off
}
var coutbuf outBuf
const pkgname = "__.PKGDEF"
var (
// Set if we see an object compiled by the host compiler that is not
// from a package that is known to support internal linking mode.
externalobj = false
theline string
)
func Lflag(ctxt *Link, arg string) {
ctxt.Libdir = append(ctxt.Libdir, arg)
}
/*
* Unix doesn't like it when we write to a running (or, sometimes,
* recently run) binary, so remove the output file before writing it.
* On Windows 7, remove() can force a subsequent create() to fail.
* S_ISREG() does not exist on Plan 9.
*/
func mayberemoveoutfile() {
if fi, err := os.Lstat(*flagOutfile); err == nil && !fi.Mode().IsRegular() {
return
}
os.Remove(*flagOutfile)
}
func libinit(ctxt *Link) {
Funcalign = Thearch.Funcalign
// add goroot to the end of the libdir list.
suffix := ""
suffixsep := ""
if *flagInstallSuffix != "" {
suffixsep = "_"
suffix = *flagInstallSuffix
} else if *flagRace {
suffixsep = "_"
suffix = "race"
} else if *flagMsan {
suffixsep = "_"
suffix = "msan"
}
Lflag(ctxt, filepath.Join(obj.GOROOT, "pkg", fmt.Sprintf("%s_%s%s%s", obj.GOOS, obj.GOARCH, suffixsep, suffix)))
mayberemoveoutfile()
f, err := os.OpenFile(*flagOutfile, os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0775)
if err != nil {
Exitf("cannot create %s: %v", *flagOutfile, err)
}
coutbuf.w = bufio.NewWriter(f)
coutbuf.f = f
if *flagEntrySymbol == "" {
switch Buildmode {
case BuildmodeCShared, BuildmodeCArchive:
*flagEntrySymbol = fmt.Sprintf("_rt0_%s_%s_lib", obj.GOARCH, obj.GOOS)
case BuildmodeExe, BuildmodePIE:
*flagEntrySymbol = fmt.Sprintf("_rt0_%s_%s", obj.GOARCH, obj.GOOS)
case BuildmodeShared, BuildmodePlugin:
// No *flagEntrySymbol for -buildmode=shared and plugin
default:
Errorf(nil, "unknown *flagEntrySymbol for buildmode %v", Buildmode)
}
}
}
func errorexit() {
if coutbuf.f != nil {
if nerrors != 0 {
Cflush()
}
// For rmtemp run at atexit time on Windows.
if err := coutbuf.f.Close(); err != nil {
Exitf("close: %v", err)
}
}
if nerrors != 0 {
if coutbuf.f != nil {
mayberemoveoutfile()
}
Exit(2)
}
Exit(0)
}
func loadinternal(ctxt *Link, name string) {
found := 0
for i := 0; i < len(ctxt.Libdir); i++ {
if *FlagLinkshared {
shlibname := filepath.Join(ctxt.Libdir[i], name+".shlibname")
if ctxt.Debugvlog != 0 {
ctxt.Logf("searching for %s.a in %s\n", name, shlibname)
}
if _, err := os.Stat(shlibname); err == nil {
addlibpath(ctxt, "internal", "internal", "", name, shlibname)
found = 1
break
}
}
pname := filepath.Join(ctxt.Libdir[i], name+".a")
if ctxt.Debugvlog != 0 {
ctxt.Logf("searching for %s.a in %s\n", name, pname)
}
if _, err := os.Stat(pname); err == nil {
addlibpath(ctxt, "internal", "internal", pname, name, "")
found = 1
break
}
}
if found == 0 {
ctxt.Logf("warning: unable to find %s.a\n", name)
}
}
// findLibPathCmd uses cmd command to find gcc library libname.
// It returns library full path if found, or "none" if not found.
func (ctxt *Link) findLibPathCmd(cmd, libname string) string {
if *flagExtld == "" {
*flagExtld = "gcc"
}
args := hostlinkArchArgs()
args = append(args, cmd)
if ctxt.Debugvlog != 0 {
ctxt.Logf("%s %v\n", *flagExtld, args)
}
out, err := exec.Command(*flagExtld, args...).Output()
if err != nil {
if ctxt.Debugvlog != 0 {
ctxt.Logf("not using a %s file because compiler failed\n%v\n%s\n", libname, err, out)
}
return "none"
}
return strings.TrimSpace(string(out))
}
// findLibPath searches for library libname.
// It returns library full path if found, or "none" if not found.
func (ctxt *Link) findLibPath(libname string) string {
return ctxt.findLibPathCmd("--print-file-name="+libname, libname)
}
func (ctxt *Link) loadlib() {
switch Buildmode {
case BuildmodeCShared, BuildmodePlugin:
s := ctxt.Syms.Lookup("runtime.islibrary", 0)
s.Attr |= AttrDuplicateOK
Adduint8(ctxt, s, 1)
case BuildmodeCArchive:
s := ctxt.Syms.Lookup("runtime.isarchive", 0)
s.Attr |= AttrDuplicateOK
Adduint8(ctxt, s, 1)
}
loadinternal(ctxt, "runtime")
if SysArch.Family == sys.ARM {
loadinternal(ctxt, "math")
}
if *flagRace {
loadinternal(ctxt, "runtime/race")
}
if *flagMsan {
loadinternal(ctxt, "runtime/msan")
}
var i int
for i = 0; i < len(ctxt.Library); i++ {
iscgo = iscgo || ctxt.Library[i].Pkg == "runtime/cgo"
if ctxt.Library[i].Shlib == "" {
if ctxt.Debugvlog > 1 {
ctxt.Logf("%5.2f autolib: %s (from %s)\n", obj.Cputime(), ctxt.Library[i].File, ctxt.Library[i].Objref)
}
objfile(ctxt, ctxt.Library[i])
}
}
for i = 0; i < len(ctxt.Library); i++ {
if ctxt.Library[i].Shlib != "" {
if ctxt.Debugvlog > 1 {
ctxt.Logf("%5.2f autolib: %s (from %s)\n", obj.Cputime(), ctxt.Library[i].Shlib, ctxt.Library[i].Objref)
}
ldshlibsyms(ctxt, ctxt.Library[i].Shlib)
}
}
// We now have enough information to determine the link mode.
determineLinkMode(ctxt)
if Linkmode == LinkExternal && SysArch.Family == sys.PPC64 {
toc := ctxt.Syms.Lookup(".TOC.", 0)
toc.Type = obj.SDYNIMPORT
}
if Linkmode == LinkExternal && !iscgo {
// This indicates a user requested -linkmode=external.
// The startup code uses an import of runtime/cgo to decide
// whether to initialize the TLS. So give it one. This could
// be handled differently but it's an unusual case.
loadinternal(ctxt, "runtime/cgo")
if i < len(ctxt.Library) {
if ctxt.Library[i].Shlib != "" {
ldshlibsyms(ctxt, ctxt.Library[i].Shlib)
} else {
if Buildmode == BuildmodeShared || *FlagLinkshared {
Exitf("cannot implicitly include runtime/cgo in a shared library")
}
objfile(ctxt, ctxt.Library[i])
}
}
}
if Linkmode == LinkInternal {
// Drop all the cgo_import_static declarations.
// Turns out we won't be needing them.
for _, s := range ctxt.Syms.Allsym {
if s.Type == obj.SHOSTOBJ {
// If a symbol was marked both
// cgo_import_static and cgo_import_dynamic,
// then we want to make it cgo_import_dynamic
// now.
if s.Extname != "" && s.Dynimplib != "" && !s.Attr.CgoExport() {
s.Type = obj.SDYNIMPORT
} else {
s.Type = 0
}
}
}
}
tlsg := ctxt.Syms.Lookup("runtime.tlsg", 0)
// runtime.tlsg is used for external linking on platforms that do not define
// a variable to hold g in assembly (currently only intel).
if tlsg.Type == 0 {
tlsg.Type = obj.STLSBSS
tlsg.Size = int64(SysArch.PtrSize)
} else if tlsg.Type != obj.SDYNIMPORT {
Errorf(nil, "runtime declared tlsg variable %v", tlsg.Type)
}
tlsg.Attr |= AttrReachable
ctxt.Tlsg = tlsg
var moduledata *Symbol
if Buildmode == BuildmodePlugin {
moduledata = ctxt.Syms.Lookup("local.pluginmoduledata", 0)
moduledata.Attr |= AttrLocal
} else {
moduledata = ctxt.Syms.Lookup("runtime.firstmoduledata", 0)
}
if moduledata.Type != 0 && moduledata.Type != obj.SDYNIMPORT {
// If the module (toolchain-speak for "executable or shared
// library") we are linking contains the runtime package, it
// will define the runtime.firstmoduledata symbol and we
// truncate it back to 0 bytes so we can define its entire
// contents in symtab.go:symtab().
moduledata.Size = 0
// In addition, on ARM, the runtime depends on the linker
// recording the value of GOARM.
if SysArch.Family == sys.ARM {
s := ctxt.Syms.Lookup("runtime.goarm", 0)
s.Type = obj.SRODATA
s.Size = 0
Adduint8(ctxt, s, uint8(obj.GOARM))
}
if obj.Framepointer_enabled(obj.GOOS, obj.GOARCH) {
s := ctxt.Syms.Lookup("runtime.framepointer_enabled", 0)
s.Type = obj.SRODATA
s.Size = 0
Adduint8(ctxt, s, 1)
}
} else {
// If OTOH the module does not contain the runtime package,
// create a local symbol for the moduledata.
moduledata = ctxt.Syms.Lookup("local.moduledata", 0)
moduledata.Attr |= AttrLocal
}
// In all cases way we mark the moduledata as noptrdata to hide it from
// the GC.
moduledata.Type = obj.SNOPTRDATA
moduledata.Attr |= AttrReachable
ctxt.Moduledata = moduledata
// Now that we know the link mode, trim the dynexp list.
x := AttrCgoExportDynamic
if Linkmode == LinkExternal {
x = AttrCgoExportStatic
}
w := 0
for i := 0; i < len(dynexp); i++ {
if dynexp[i].Attr&x != 0 {
dynexp[w] = dynexp[i]
w++
}
}
dynexp = dynexp[:w]
// In internal link mode, read the host object files.
if Linkmode == LinkInternal {
hostobjs(ctxt)
// If we have any undefined symbols in external
// objects, try to read them from the libgcc file.
any := false
for _, s := range ctxt.Syms.Allsym {
for _, r := range s.R {
if r.Sym != nil && r.Sym.Type&obj.SMASK == obj.SXREF && r.Sym.Name != ".got" {
any = true
break
}
}
}
if any {
if *flagLibGCC == "" {
*flagLibGCC = ctxt.findLibPathCmd("--print-libgcc-file-name", "libgcc")
}
if *flagLibGCC != "none" {
hostArchive(ctxt, *flagLibGCC)
}
if Headtype == obj.Hwindows || Headtype == obj.Hwindowsgui {
if p := ctxt.findLibPath("libmingwex.a"); p != "none" {
hostArchive(ctxt, p)
}
if p := ctxt.findLibPath("libmingw32.a"); p != "none" {
hostArchive(ctxt, p)
}
// TODO: maybe do something similar to peimporteddlls to collect all lib names
// and try link them all to final exe just like libmingwex.a and libmingw32.a:
/*
for:
#cgo windows LDFLAGS: -lmsvcrt -lm
import:
libmsvcrt.a libm.a
*/
}
}
} else {
hostlinksetup()
}
// We've loaded all the code now.
ctxt.Loaded = true
// If there are no dynamic libraries needed, gcc disables dynamic linking.
// Because of this, glibc's dynamic ELF loader occasionally (like in version 2.13)
// assumes that a dynamic binary always refers to at least one dynamic library.
// Rather than be a source of test cases for glibc, disable dynamic linking
// the same way that gcc would.
//
// Exception: on OS X, programs such as Shark only work with dynamic
// binaries, so leave it enabled on OS X (Mach-O) binaries.
// Also leave it enabled on Solaris which doesn't support
// statically linked binaries.
if Buildmode == BuildmodeExe {
if havedynamic == 0 && Headtype != obj.Hdarwin && Headtype != obj.Hsolaris {
*FlagD = true
}
}
if SysArch == sys.Arch386 {
if (Buildmode == BuildmodeCArchive && Iself) || Buildmode == BuildmodeCShared || Buildmode == BuildmodePIE || ctxt.DynlinkingGo() {
got := ctxt.Syms.Lookup("_GLOBAL_OFFSET_TABLE_", 0)
got.Type = obj.SDYNIMPORT
got.Attr |= AttrReachable
}
}
importcycles()
}
/*
* look for the next file in an archive.
* adapted from libmach.
*/
func nextar(bp *bio.Reader, off int64, a *ArHdr) int64 {
if off&1 != 0 {
off++
}
bp.Seek(off, 0)
var buf [SAR_HDR]byte
if n, err := io.ReadFull(bp, buf[:]); err != nil {
if n == 0 && err != io.EOF {
return -1
}
return 0
}
a.name = artrim(buf[0:16])
a.date = artrim(buf[16:28])
a.uid = artrim(buf[28:34])
a.gid = artrim(buf[34:40])
a.mode = artrim(buf[40:48])
a.size = artrim(buf[48:58])
a.fmag = artrim(buf[58:60])
arsize := atolwhex(a.size)
if arsize&1 != 0 {
arsize++
}
return arsize + SAR_HDR
}
func objfile(ctxt *Link, lib *Library) {
pkg := pathtoprefix(lib.Pkg)
if ctxt.Debugvlog > 1 {
ctxt.Logf("%5.2f ldobj: %s (%s)\n", obj.Cputime(), lib.File, pkg)
}
f, err := bio.Open(lib.File)
if err != nil {
Exitf("cannot open file %s: %v", lib.File, err)
}
for i := 0; i < len(ARMAG); i++ {
if c, err := f.ReadByte(); err == nil && c == ARMAG[i] {
continue
}
/* load it as a regular file */
l := f.Seek(0, 2)
f.Seek(0, 0)
ldobj(ctxt, f, pkg, l, lib.File, lib.File, FileObj)
f.Close()
return
}
/* process __.PKGDEF */
off := f.Offset()
var arhdr ArHdr
l := nextar(f, off, &arhdr)
var pname string
if l <= 0 {
Errorf(nil, "%s: short read on archive file symbol header", lib.File)
goto out
}
if !strings.HasPrefix(arhdr.name, pkgname) {
Errorf(nil, "%s: cannot find package header", lib.File)
goto out
}
if Buildmode == BuildmodeShared {
before := f.Offset()
pkgdefBytes := make([]byte, atolwhex(arhdr.size))
if _, err := io.ReadFull(f, pkgdefBytes); err != nil {
Errorf(nil, "%s: short read on archive file symbol header: %v", lib.File, err)
}
hash := sha1.Sum(pkgdefBytes)
lib.hash = hash[:]
f.Seek(before, 0)
}
off += l
ldpkg(ctxt, f, pkg, atolwhex(arhdr.size), lib.File, Pkgdef)
/*
* load all the object files from the archive now.
* this gives us sequential file access and keeps us
* from needing to come back later to pick up more
* objects. it breaks the usual C archive model, but
* this is Go, not C. the common case in Go is that
* we need to load all the objects, and then we throw away
* the individual symbols that are unused.
*
* loading every object will also make it possible to
* load foreign objects not referenced by __.PKGDEF.
*/
for {
l = nextar(f, off, &arhdr)
if l == 0 {
break
}
if l < 0 {
Exitf("%s: malformed archive", lib.File)
}
off += l
pname = fmt.Sprintf("%s(%s)", lib.File, arhdr.name)
l = atolwhex(arhdr.size)
ldobj(ctxt, f, pkg, l, pname, lib.File, ArchiveObj)
}
out:
f.Close()
}
type Hostobj struct {
ld func(*Link, *bio.Reader, string, int64, string)
pkg string
pn string
file string
off int64
length int64
}
var hostobj []Hostobj
// These packages can use internal linking mode.
// Others trigger external mode.
var internalpkg = []string{
"crypto/x509",
"net",
"os/user",
"runtime/cgo",
"runtime/race",
"runtime/msan",
}
func ldhostobj(ld func(*Link, *bio.Reader, string, int64, string), f *bio.Reader, pkg string, length int64, pn string, file string) *Hostobj {
isinternal := false
for i := 0; i < len(internalpkg); i++ {
if pkg == internalpkg[i] {
isinternal = true
break
}
}
// DragonFly declares errno with __thread, which results in a symbol
// type of R_386_TLS_GD or R_X86_64_TLSGD. The Go linker does not
// currently know how to handle TLS relocations, hence we have to
// force external linking for any libraries that link in code that
// uses errno. This can be removed if the Go linker ever supports
// these relocation types.
if Headtype == obj.Hdragonfly {
if pkg == "net" || pkg == "os/user" {
isinternal = false
}
}
if !isinternal {
externalobj = true
}
hostobj = append(hostobj, Hostobj{})
h := &hostobj[len(hostobj)-1]
h.ld = ld
h.pkg = pkg
h.pn = pn
h.file = file
h.off = f.Offset()
h.length = length
return h
}
func hostobjs(ctxt *Link) {
var h *Hostobj
for i := 0; i < len(hostobj); i++ {
h = &hostobj[i]
f, err := bio.Open(h.file)
if err != nil {
Exitf("cannot reopen %s: %v", h.pn, err)
}
f.Seek(h.off, 0)
h.ld(ctxt, f, h.pkg, h.length, h.pn)
f.Close()
}
}
// provided by lib9
func rmtemp() {
os.RemoveAll(*flagTmpdir)
}
func hostlinksetup() {
if Linkmode != LinkExternal {
return
}
// For external link, record that we need to tell the external linker -s,
// and turn off -s internally: the external linker needs the symbol
// information for its final link.
debug_s = *FlagS
*FlagS = false
// create temporary directory and arrange cleanup
if *flagTmpdir == "" {
dir, err := ioutil.TempDir("", "go-link-")
if err != nil {
log.Fatal(err)
}
*flagTmpdir = dir
AtExit(rmtemp)
}
// change our output to temporary object file
coutbuf.f.Close()
mayberemoveoutfile()
p := filepath.Join(*flagTmpdir, "go.o")
var err error
f, err := os.OpenFile(p, os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0775)
if err != nil {
Exitf("cannot create %s: %v", p, err)
}
coutbuf.w = bufio.NewWriter(f)
coutbuf.f = f
}
// hostobjCopy creates a copy of the object files in hostobj in a
// temporary directory.
func hostobjCopy() (paths []string) {
var wg sync.WaitGroup
sema := make(chan struct{}, runtime.NumCPU()) // limit open file descriptors
for i, h := range hostobj {
h := h
dst := filepath.Join(*flagTmpdir, fmt.Sprintf("%06d.o", i))
paths = append(paths, dst)
wg.Add(1)
go func() {
sema <- struct{}{}
defer func() {
<-sema
wg.Done()
}()
f, err := os.Open(h.file)
if err != nil {
Exitf("cannot reopen %s: %v", h.pn, err)
}
if _, err := f.Seek(h.off, 0); err != nil {
Exitf("cannot seek %s: %v", h.pn, err)
}
w, err := os.Create(dst)
if err != nil {
Exitf("cannot create %s: %v", dst, err)
}
if _, err := io.CopyN(w, f, h.length); err != nil {
Exitf("cannot write %s: %v", dst, err)
}
if err := w.Close(); err != nil {
Exitf("cannot close %s: %v", dst, err)
}
}()
}
wg.Wait()
return paths
}
// archive builds a .a archive from the hostobj object files.
func (ctxt *Link) archive() {
if Buildmode != BuildmodeCArchive {
return
}
if *flagExtar == "" {
*flagExtar = "ar"
}
mayberemoveoutfile()
// Force the buffer to flush here so that external
// tools will see a complete file.
Cflush()
if err := coutbuf.f.Close(); err != nil {
Exitf("close: %v", err)
}
coutbuf.f = nil
argv := []string{*flagExtar, "-q", "-c", "-s", *flagOutfile}
argv = append(argv, filepath.Join(*flagTmpdir, "go.o"))
argv = append(argv, hostobjCopy()...)
if ctxt.Debugvlog != 0 {
ctxt.Logf("archive: %s\n", strings.Join(argv, " "))
}
if out, err := exec.Command(argv[0], argv[1:]...).CombinedOutput(); err != nil {
Exitf("running %s failed: %v\n%s", argv[0], err, out)
}
}
func (l *Link) hostlink() {
if Linkmode != LinkExternal || nerrors > 0 {
return
}
if Buildmode == BuildmodeCArchive {
return
}
if *flagExtld == "" {
*flagExtld = "gcc"
}
var argv []string
argv = append(argv, *flagExtld)
argv = append(argv, hostlinkArchArgs()...)
if !*FlagS && !debug_s {
argv = append(argv, "-gdwarf-2")
} else {
argv = append(argv, "-s")
}
switch Headtype {
case obj.Hdarwin:
argv = append(argv, "-Wl,-no_pie,-headerpad,1144")
case obj.Hopenbsd:
argv = append(argv, "-Wl,-nopie")
case obj.Hwindows:
argv = append(argv, "-mconsole")
case obj.Hwindowsgui:
argv = append(argv, "-mwindows")
}
switch Buildmode {
case BuildmodeExe:
if Headtype == obj.Hdarwin {
argv = append(argv, "-Wl,-pagezero_size,4000000")
}
case BuildmodePIE:
if UseRelro() {
argv = append(argv, "-Wl,-z,relro")
}
argv = append(argv, "-pie")
case BuildmodeCShared:
if Headtype == obj.Hdarwin {
argv = append(argv, "-dynamiclib", "-Wl,-read_only_relocs,suppress")
} else {
// ELF.
argv = append(argv, "-Wl,-Bsymbolic")
if UseRelro() {
argv = append(argv, "-Wl,-z,relro")
}
// Pass -z nodelete to mark the shared library as
// non-closeable: a dlclose will do nothing.
argv = append(argv, "-shared", "-Wl,-z,nodelete")
}
case BuildmodeShared, BuildmodePlugin:
if UseRelro() {
argv = append(argv, "-Wl,-z,relro")
}
argv = append(argv, "-shared")
}
if Iself && l.DynlinkingGo() {
// We force all symbol resolution to be done at program startup
// because lazy PLT resolution can use large amounts of stack at
// times we cannot allow it to do so.
argv = append(argv, "-Wl,-znow")
// Do not let the host linker generate COPY relocations. These
// can move symbols out of sections that rely on stable offsets
// from the beginning of the section (like STYPE).
argv = append(argv, "-Wl,-znocopyreloc")
if SysArch.InFamily(sys.ARM, sys.ARM64) {
// On ARM, the GNU linker will generate COPY relocations
// even with -znocopyreloc set.
// https://sourceware.org/bugzilla/show_bug.cgi?id=19962
//
// On ARM64, the GNU linker will fail instead of
// generating COPY relocations.
//
// In both cases, switch to gold.
argv = append(argv, "-fuse-ld=gold")
// If gold is not installed, gcc will silently switch
// back to ld.bfd. So we parse the version information
// and provide a useful error if gold is missing.
cmd := exec.Command(*flagExtld, "-fuse-ld=gold", "-Wl,--version")
if out, err := cmd.CombinedOutput(); err == nil {
if !bytes.Contains(out, []byte("GNU gold")) {
log.Fatalf("ARM external linker must be gold (issue #15696), but is not: %s", out)
}
}
}
}
if Iself && len(buildinfo) > 0 {
argv = append(argv, fmt.Sprintf("-Wl,--build-id=0x%x", buildinfo))
}
// On Windows, given -o foo, GCC will append ".exe" to produce
// "foo.exe". We have decided that we want to honor the -o
// option. To make this work, we append a '.' so that GCC
// will decide that the file already has an extension. We
// only want to do this when producing a Windows output file
// on a Windows host.
outopt := *flagOutfile
if obj.GOOS == "windows" && runtime.GOOS == "windows" && filepath.Ext(outopt) == "" {
outopt += "."
}
argv = append(argv, "-o")
argv = append(argv, outopt)
if rpath.val != "" {
argv = append(argv, fmt.Sprintf("-Wl,-rpath,%s", rpath.val))
}
// Force global symbols to be exported for dlopen, etc.
if Iself {
argv = append(argv, "-rdynamic")
}
if strings.Contains(argv[0], "clang") {
argv = append(argv, "-Qunused-arguments")
}
argv = append(argv, filepath.Join(*flagTmpdir, "go.o"))
argv = append(argv, hostobjCopy()...)
if *FlagLinkshared {
seenDirs := make(map[string]bool)
seenLibs := make(map[string]bool)
addshlib := func(path string) {
dir, base := filepath.Split(path)
if !seenDirs[dir] {
argv = append(argv, "-L"+dir)
if !rpath.set {
argv = append(argv, "-Wl,-rpath="+dir)
}
seenDirs[dir] = true
}
base = strings.TrimSuffix(base, ".so")
base = strings.TrimPrefix(base, "lib")
if !seenLibs[base] {
argv = append(argv, "-l"+base)
seenLibs[base] = true
}
}
for _, shlib := range l.Shlibs {
addshlib(shlib.Path)
for _, dep := range shlib.Deps {
if dep == "" {
continue
}
libpath := findshlib(l, dep)
if libpath != "" {
addshlib(libpath)
}
}
}
}
sanitizers := *flagRace
for _, flag := range ldflag {
if strings.HasPrefix(flag, "-fsanitize=") {
sanitizers = true
}
}
argv = append(argv, ldflag...)
if sanitizers {
// On a system where the toolchain creates position independent
// executables by default, tsan/msan/asan/etc initialization can
// fail. So we pass -no-pie here, but support for that flag is quite
// new and we test for its support first.
src := filepath.Join(*flagTmpdir, "trivial.c")
if err := ioutil.WriteFile(src, []byte{}, 0666); err != nil {
Errorf(nil, "WriteFile trivial.c failed: %v", err)
}
cmd := exec.Command(argv[0], "-c", "-no-pie", "trivial.c")
cmd.Dir = *flagTmpdir
cmd.Env = append([]string{"LC_ALL=C"}, os.Environ()...)
out, err := cmd.CombinedOutput()
supported := err == nil && !bytes.Contains(out, []byte("unrecognized"))
if supported {
argv = append(argv, "-no-pie")
}
}
for _, p := range strings.Fields(*flagExtldflags) {
argv = append(argv, p)
// clang, unlike GCC, passes -rdynamic to the linker
// even when linking with -static, causing a linker
// error when using GNU ld. So take out -rdynamic if
// we added it. We do it in this order, rather than
// only adding -rdynamic later, so that -*extldflags
// can override -rdynamic without using -static.
if Iself && p == "-static" {
for i := range argv {
if argv[i] == "-rdynamic" {
argv[i] = "-static"
}
}
}
}
if Headtype == obj.Hwindows || Headtype == obj.Hwindowsgui {
// libmingw32 and libmingwex have some inter-dependencies,
// so must use linker groups.
argv = append(argv, "-Wl,--start-group", "-lmingwex", "-lmingw32", "-Wl,--end-group")
argv = append(argv, peimporteddlls()...)
}
if l.Debugvlog != 0 {
l.Logf("host link:")
for _, v := range argv {
l.Logf(" %q", v)
}
l.Logf("\n")
}
if out, err := exec.Command(argv[0], argv[1:]...).CombinedOutput(); err != nil {
Exitf("running %s failed: %v\n%s", argv[0], err, out)
} else if l.Debugvlog != 0 && len(out) > 0 {
l.Logf("%s", out)
}
if !*FlagS && !debug_s && Headtype == obj.Hdarwin {
// Skip combining dwarf on arm.
if !SysArch.InFamily(sys.ARM, sys.ARM64) {
dsym := filepath.Join(*flagTmpdir, "go.dwarf")
if out, err := exec.Command("dsymutil", "-f", *flagOutfile, "-o", dsym).CombinedOutput(); err != nil {
Exitf("%s: running dsymutil failed: %v\n%s", os.Args[0], err, out)
}
// Skip combining if `dsymutil` didn't generate a file. See #11994.
if _, err := os.Stat(dsym); os.IsNotExist(err) {
return
}
// For os.Rename to work reliably, must be in same directory as outfile.
combinedOutput := *flagOutfile + "~"
if err := machoCombineDwarf(*flagOutfile, dsym, combinedOutput); err != nil {
Exitf("%s: combining dwarf failed: %v", os.Args[0], err)
}
os.Remove(*flagOutfile)
if err := os.Rename(combinedOutput, *flagOutfile); err != nil {
Exitf("%s: %v", os.Args[0], err)
}
}
}
}
// hostlinkArchArgs returns arguments to pass to the external linker
// based on the architecture.
func hostlinkArchArgs() []string {
switch SysArch.Family {
case sys.I386:
return []string{"-m32"}
case sys.AMD64, sys.PPC64, sys.S390X:
return []string{"-m64"}
case sys.ARM:
return []string{"-marm"}
case sys.ARM64:
// nothing needed
case sys.MIPS64:
return []string{"-mabi=64"}
}
return nil
}
// ldobj loads an input object. If it is a host object (an object
// compiled by a non-Go compiler) it returns the Hostobj pointer. If
// it is a Go object, it returns nil.
func ldobj(ctxt *Link, f *bio.Reader, pkg string, length int64, pn string, file string, whence int) *Hostobj {
eof := f.Offset() + length
start := f.Offset()
c1 := bgetc(f)
c2 := bgetc(f)
c3 := bgetc(f)
c4 := bgetc(f)
f.Seek(start, 0)
magic := uint32(c1)<<24 | uint32(c2)<<16 | uint32(c3)<<8 | uint32(c4)
if magic == 0x7f454c46 { // \x7F E L F
return ldhostobj(ldelf, f, pkg, length, pn, file)
}
if magic&^1 == 0xfeedface || magic&^0x01000000 == 0xcefaedfe {
return ldhostobj(ldmacho, f, pkg, length, pn, file)
}
if c1 == 0x4c && c2 == 0x01 || c1 == 0x64 && c2 == 0x86 {
return ldhostobj(ldpe, f, pkg, length, pn, file)
}
/* check the header */
line, err := f.ReadString('\n')
if err != nil {
Errorf(nil, "truncated object file: %s: %v", pn, err)
return nil
}
if !strings.HasPrefix(line, "go object ") {
if strings.HasSuffix(pn, ".go") {
Exitf("%s: uncompiled .go source file", pn)
return nil
}
if line == SysArch.Name {
// old header format: just $GOOS
Errorf(nil, "%s: stale object file", pn)
return nil
}
Errorf(nil, "%s: not an object file", pn)
return nil
}
// First, check that the basic GOOS, GOARCH, and Version match.
t := fmt.Sprintf("%s %s %s ", obj.GOOS, obj.GOARCH, obj.Version)
line = strings.TrimRight(line, "\n")
if !strings.HasPrefix(line[10:]+" ", t) && !*flagF {
Errorf(nil, "%s: object is [%s] expected [%s]", pn, line[10:], t)
return nil
}
// Second, check that longer lines match each other exactly,
// so that the Go compiler and write additional information
// that must be the same from run to run.
if len(line) >= len(t)+10 {
if theline == "" {
theline = line[10:]
} else if theline != line[10:] {
Errorf(nil, "%s: object is [%s] expected [%s]", pn, line[10:], theline)
return nil
}
}
/* skip over exports and other info -- ends with \n!\n */
import0 := f.Offset()
c1 = '\n' // the last line ended in \n
c2 = bgetc(f)
c3 = bgetc(f)
for c1 != '\n' || c2 != '!' || c3 != '\n' {
c1 = c2
c2 = c3
c3 = bgetc(f)
if c3 == -1 {
Errorf(nil, "truncated object file: %s", pn)
return nil
}
}
import1 := f.Offset()
f.Seek(import0, 0)
ldpkg(ctxt, f, pkg, import1-import0-2, pn, whence) // -2 for !\n
f.Seek(import1, 0)
LoadObjFile(ctxt, f, pkg, eof-f.Offset(), pn)
return nil
}
func readelfsymboldata(ctxt *Link, f *elf.File, sym *elf.Symbol) []byte {
data := make([]byte, sym.Size)
sect := f.Sections[sym.Section]
if sect.Type != elf.SHT_PROGBITS && sect.Type != elf.SHT_NOTE {
Errorf(nil, "reading %s from non-data section", sym.Name)
}
n, err := sect.ReadAt(data, int64(sym.Value-sect.Addr))
if uint64(n) != sym.Size {
Errorf(nil, "reading contents of %s: %v", sym.Name, err)
}
return data
}
func readwithpad(r io.Reader, sz int32) ([]byte, error) {
data := make([]byte, Rnd(int64(sz), 4))
_, err := io.ReadFull(r, data)
if err != nil {
return nil, err
}
data = data[:sz]
return data, nil
}
func readnote(f *elf.File, name []byte, typ int32) ([]byte, error) {
for _, sect := range f.Sections {
if sect.Type != elf.SHT_NOTE {
continue
}
r := sect.Open()
for {
var namesize, descsize, noteType int32
err := binary.Read(r, f.ByteOrder, &namesize)
if err != nil {
if err == io.EOF {
break
}
return nil, fmt.Errorf("read namesize failed: %v", err)
}
err = binary.Read(r, f.ByteOrder, &descsize)
if err != nil {
return nil, fmt.Errorf("read descsize failed: %v", err)
}
err = binary.Read(r, f.ByteOrder, &noteType)
if err != nil {
return nil, fmt.Errorf("read type failed: %v", err)
}
noteName, err := readwithpad(r, namesize)
if err != nil {
return nil, fmt.Errorf("read name failed: %v", err)
}
desc, err := readwithpad(r, descsize)
if err != nil {
return nil, fmt.Errorf("read desc failed: %v", err)
}
if string(name) == string(noteName) && typ == noteType {
return desc, nil
}
}
}
return nil, nil
}
func findshlib(ctxt *Link, shlib string) string {
for _, libdir := range ctxt.Libdir {
libpath := filepath.Join(libdir, shlib)
if _, err := os.Stat(libpath); err == nil {
return libpath
}
}
Errorf(nil, "cannot find shared library: %s", shlib)
return ""
}
func ldshlibsyms(ctxt *Link, shlib string) {
libpath := findshlib(ctxt, shlib)
if libpath == "" {
return
}
for _, processedlib := range ctxt.Shlibs {
if processedlib.Path == libpath {
return
}
}
if ctxt.Debugvlog > 1 {
ctxt.Logf("%5.2f ldshlibsyms: found library with name %s at %s\n", obj.Cputime(), shlib, libpath)
}
f, err := elf.Open(libpath)
if err != nil {
Errorf(nil, "cannot open shared library: %s", libpath)
return
}
hash, err := readnote(f, ELF_NOTE_GO_NAME, ELF_NOTE_GOABIHASH_TAG)
if err != nil {
Errorf(nil, "cannot read ABI hash from shared library %s: %v", libpath, err)
return
}
depsbytes, err := readnote(f, ELF_NOTE_GO_NAME, ELF_NOTE_GODEPS_TAG)
if err != nil {
Errorf(nil, "cannot read dep list from shared library %s: %v", libpath, err)
return
}
deps := strings.Split(string(depsbytes), "\n")
syms, err := f.DynamicSymbols()
if err != nil {
Errorf(nil, "cannot read symbols from shared library: %s", libpath)
return
}
gcdataLocations := make(map[uint64]*Symbol)
for _, elfsym := range syms {
if elf.ST_TYPE(elfsym.Info) == elf.STT_NOTYPE || elf.ST_TYPE(elfsym.Info) == elf.STT_SECTION {
continue
}
lsym := ctxt.Syms.Lookup(elfsym.Name, 0)
// Because loadlib above loads all .a files before loading any shared
// libraries, any non-dynimport symbols we find that duplicate symbols
// already loaded should be ignored (the symbols from the .a files
// "win").
if lsym.Type != 0 && lsym.Type != obj.SDYNIMPORT {
continue
}
lsym.Type = obj.SDYNIMPORT
lsym.ElfType = elf.ST_TYPE(elfsym.Info)
lsym.Size = int64(elfsym.Size)
if elfsym.Section != elf.SHN_UNDEF {
// Set .File for the library that actually defines the symbol.
lsym.File = libpath
// The decodetype_* functions in decodetype.go need access to
// the type data.
if strings.HasPrefix(lsym.Name, "type.") && !strings.HasPrefix(lsym.Name, "type..") {
lsym.P = readelfsymboldata(ctxt, f, &elfsym)
gcdataLocations[elfsym.Value+2*uint64(SysArch.PtrSize)+8+1*uint64(SysArch.PtrSize)] = lsym
}
}
}
gcdataAddresses := make(map[*Symbol]uint64)
if SysArch.Family == sys.ARM64 {
for _, sect := range f.Sections {
if sect.Type == elf.SHT_RELA {
var rela elf.Rela64
rdr := sect.Open()
for {
err := binary.Read(rdr, f.ByteOrder, &rela)
if err == io.EOF {
break
} else if err != nil {
Errorf(nil, "reading relocation failed %v", err)
return
}
t := elf.R_AARCH64(rela.Info & 0xffff)
if t != elf.R_AARCH64_RELATIVE {
continue
}
if lsym, ok := gcdataLocations[rela.Off]; ok {
gcdataAddresses[lsym] = uint64(rela.Addend)
}
}
}
}
}
// We might have overwritten some functions above (this tends to happen for the
// autogenerated type equality/hashing functions) and we don't want to generated
// pcln table entries for these any more so remove them from Textp.
textp := make([]*Symbol, 0, len(ctxt.Textp))
for _, s := range ctxt.Textp {
if s.Type != obj.SDYNIMPORT {
textp = append(textp, s)
}
}
ctxt.Textp = textp
ctxt.Shlibs = append(ctxt.Shlibs, Shlib{Path: libpath, Hash: hash, Deps: deps, File: f, gcdataAddresses: gcdataAddresses})
}
// Copied from ../gc/subr.c:/^pathtoprefix; must stay in sync.
/*
* Convert raw string to the prefix that will be used in the symbol table.
* Invalid bytes turn into %xx. Right now the only bytes that need
* escaping are %, ., and ", but we escape all control characters too.
*
* If you edit this, edit ../gc/subr.c:/^pathtoprefix too.
* If you edit this, edit ../../debug/goobj/read.go:/importPathToPrefix too.
*/
func pathtoprefix(s string) string {
slash := strings.LastIndex(s, "/")
for i := 0; i < len(s); i++ {
c := s[i]
if c <= ' ' || i >= slash && c == '.' || c == '%' || c == '"' || c >= 0x7F {
var buf bytes.Buffer
for i := 0; i < len(s); i++ {
c := s[i]
if c <= ' ' || i >= slash && c == '.' || c == '%' || c == '"' || c >= 0x7F {
fmt.Fprintf(&buf, "%%%02x", c)
continue
}
buf.WriteByte(c)
}
return buf.String()
}
}
return s
}
func addsection(seg *Segment, name string, rwx int) *Section {
var l **Section
for l = &seg.Sect; *l != nil; l = &(*l).Next {
}
sect := new(Section)
sect.Rwx = uint8(rwx)
sect.Name = name
sect.Seg = seg
sect.Align = int32(SysArch.PtrSize) // everything is at least pointer-aligned
*l = sect
return sect
}
func Le16(b []byte) uint16 {
return uint16(b[0]) | uint16(b[1])<<8
}
func Le32(b []byte) uint32 {
return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
}
func Le64(b []byte) uint64 {
return uint64(Le32(b)) | uint64(Le32(b[4:]))<<32
}
func Be16(b []byte) uint16 {
return uint16(b[0])<<8 | uint16(b[1])
}
func Be32(b []byte) uint32 {
return uint32(b[0])<<24 | uint32(b[1])<<16 | uint32(b[2])<<8 | uint32(b[3])
}
type chain struct {
sym *Symbol
up *chain
limit int // limit on entry to sym
}
var morestack *Symbol
// TODO: Record enough information in new object files to
// allow stack checks here.
func haslinkregister(ctxt *Link) bool {
return ctxt.FixedFrameSize() != 0
}
func callsize(ctxt *Link) int {
if haslinkregister(ctxt) {
return 0
}
return SysArch.RegSize
}
func (ctxt *Link) dostkcheck() {
var ch chain
morestack = ctxt.Syms.Lookup("runtime.morestack", 0)
// Every splitting function ensures that there are at least StackLimit
// bytes available below SP when the splitting prologue finishes.
// If the splitting function calls F, then F begins execution with
// at least StackLimit - callsize() bytes available.
// Check that every function behaves correctly with this amount
// of stack, following direct calls in order to piece together chains
// of non-splitting functions.
ch.up = nil
ch.limit = obj.StackLimit - callsize(ctxt)
// Check every function, but do the nosplit functions in a first pass,
// to make the printed failure chains as short as possible.
for _, s := range ctxt.Textp {
// runtime.racesymbolizethunk is called from gcc-compiled C
// code running on the operating system thread stack.
// It uses more than the usual amount of stack but that's okay.
if s.Name == "runtime.racesymbolizethunk" {
continue
}
if s.Attr.NoSplit() {
ch.sym = s
stkcheck(ctxt, &ch, 0)
}
}
for _, s := range ctxt.Textp {
if !s.Attr.NoSplit() {
ch.sym = s
stkcheck(ctxt, &ch, 0)
}
}
}
func stkcheck(ctxt *Link, up *chain, depth int) int {
limit := up.limit
s := up.sym
// Don't duplicate work: only need to consider each
// function at top of safe zone once.
top := limit == obj.StackLimit-callsize(ctxt)
if top {
if s.Attr.StackCheck() {
return 0
}
s.Attr |= AttrStackCheck
}
if depth > 100 {
Errorf(s, "nosplit stack check too deep")
stkbroke(ctxt, up, 0)
return -1
}
if s.Attr.External() || s.FuncInfo == nil {
// external function.
// should never be called directly.
// onlyctxt.Diagnose the direct caller.
// TODO(mwhudson): actually think about this.
if depth == 1 && s.Type != obj.SXREF && !ctxt.DynlinkingGo() &&
Buildmode != BuildmodeCArchive && Buildmode != BuildmodePIE && Buildmode != BuildmodeCShared && Buildmode != BuildmodePlugin {
Errorf(s, "call to external function")
}
return -1
}
if limit < 0 {
stkbroke(ctxt, up, limit)
return -1
}
// morestack looks like it calls functions,
// but it switches the stack pointer first.
if s == morestack {
return 0
}
var ch chain
ch.up = up
if !s.Attr.NoSplit() {
// Ensure we have enough stack to call morestack.
ch.limit = limit - callsize(ctxt)
ch.sym = morestack
if stkcheck(ctxt, &ch, depth+1) < 0 {
return -1
}
if !top {
return 0
}
// Raise limit to allow frame.
locals := int32(0)
if s.FuncInfo != nil {
locals = s.FuncInfo.Locals
}
limit = int(obj.StackLimit+locals) + int(ctxt.FixedFrameSize())
}
// Walk through sp adjustments in function, consuming relocs.
ri := 0
endr := len(s.R)
var ch1 chain
var pcsp Pciter
var r *Reloc
for pciterinit(ctxt, &pcsp, &s.FuncInfo.Pcsp); pcsp.done == 0; pciternext(&pcsp) {
// pcsp.value is in effect for [pcsp.pc, pcsp.nextpc).
// Check stack size in effect for this span.
if int32(limit)-pcsp.value < 0 {
stkbroke(ctxt, up, int(int32(limit)-pcsp.value))
return -1
}
// Process calls in this span.
for ; ri < endr && uint32(s.R[ri].Off) < pcsp.nextpc; ri++ {
r = &s.R[ri]
switch r.Type {
// Direct call.
case obj.R_CALL, obj.R_CALLARM, obj.R_CALLARM64, obj.R_CALLPOWER, obj.R_CALLMIPS:
ch.limit = int(int32(limit) - pcsp.value - int32(callsize(ctxt)))
ch.sym = r.Sym
if stkcheck(ctxt, &ch, depth+1) < 0 {
return -1
}
// Indirect call. Assume it is a call to a splitting function,
// so we have to make sure it can call morestack.
// Arrange the data structures to report both calls, so that
// if there is an error, stkprint shows all the steps involved.
case obj.R_CALLIND:
ch.limit = int(int32(limit) - pcsp.value - int32(callsize(ctxt)))
ch.sym = nil
ch1.limit = ch.limit - callsize(ctxt) // for morestack in called prologue
ch1.up = &ch
ch1.sym = morestack
if stkcheck(ctxt, &ch1, depth+2) < 0 {
return -1
}
}
}
}
return 0
}
func stkbroke(ctxt *Link, ch *chain, limit int) {
Errorf(ch.sym, "nosplit stack overflow")
stkprint(ctxt, ch, limit)
}
func stkprint(ctxt *Link, ch *chain, limit int) {
var name string
if ch.sym != nil {
name = ch.sym.Name
if ch.sym.Attr.NoSplit() {
name += " (nosplit)"
}
} else {
name = "function pointer"
}
if ch.up == nil {
// top of chain. ch->sym != nil.
if ch.sym.Attr.NoSplit() {
fmt.Printf("\t%d\tassumed on entry to %s\n", ch.limit, name)
} else {
fmt.Printf("\t%d\tguaranteed after split check in %s\n", ch.limit, name)
}
} else {
stkprint(ctxt, ch.up, ch.limit+callsize(ctxt))
if !haslinkregister(ctxt) {
fmt.Printf("\t%d\ton entry to %s\n", ch.limit, name)
}
}
if ch.limit != limit {
fmt.Printf("\t%d\tafter %s uses %d\n", limit, name, ch.limit-limit)
}
}
func Cflush() {
if err := coutbuf.w.Flush(); err != nil {
Exitf("flushing %s: %v", coutbuf.f.Name(), err)
}
}
func Cseek(p int64) {
if p == coutbuf.off {
return
}
Cflush()
if _, err := coutbuf.f.Seek(p, 0); err != nil {
Exitf("seeking in output [0, 1]: %v", err)
}
coutbuf.off = p
}
func Cwritestring(s string) {
coutbuf.WriteString(s)
}
func Cwrite(p []byte) {
coutbuf.Write(p)
}
func Cput(c uint8) {
coutbuf.w.WriteByte(c)
coutbuf.off++
}
func usage() {
fmt.Fprintf(os.Stderr, "usage: link [options] main.o\n")
obj.Flagprint(2)
Exit(2)
}
func doversion() {
Exitf("version %s", obj.Version)
}
type SymbolType int8
const (
TextSym SymbolType = 'T'
DataSym = 'D'
BSSSym = 'B'
UndefinedSym = 'U'
TLSSym = 't'
FileSym = 'f'
FrameSym = 'm'
ParamSym = 'p'
AutoSym = 'a'
)
func genasmsym(ctxt *Link, put func(*Link, *Symbol, string, SymbolType, int64, *Symbol)) {
// These symbols won't show up in the first loop below because we
// skip STEXT symbols. Normal STEXT symbols are emitted by walking textp.
s := ctxt.Syms.Lookup("runtime.text", 0)
if s.Type == obj.STEXT {
put(ctxt, s, s.Name, TextSym, s.Value, nil)
}
n := 0
// Generate base addresses for all text sections if there are multiple
for sect := Segtext.Sect; sect != nil; sect = sect.Next {
if n == 0 {
n++
continue
}
if sect.Name != ".text" {
break
}
s = ctxt.Syms.ROLookup(fmt.Sprintf("runtime.text.%d", n), 0)
if s == nil {
break
}
if s.Type == obj.STEXT {
put(ctxt, s, s.Name, TextSym, s.Value, nil)
}
n++
}
s = ctxt.Syms.Lookup("runtime.etext", 0)
if s.Type == obj.STEXT {
put(ctxt, s, s.Name, TextSym, s.Value, nil)
}
for _, s := range ctxt.Syms.Allsym {
if s.Attr.Hidden() {
continue
}
if (s.Name == "" || s.Name[0] == '.') && s.Version == 0 && s.Name != ".rathole" && s.Name != ".TOC." {
continue
}
switch s.Type & obj.SMASK {
case obj.SCONST,
obj.SRODATA,
obj.SSYMTAB,
obj.SPCLNTAB,
obj.SINITARR,
obj.SDATA,
obj.SNOPTRDATA,
obj.SELFROSECT,
obj.SMACHOGOT,
obj.STYPE,
obj.SSTRING,
obj.SGOSTRING,
obj.SGOSTRINGHDR,
obj.SGOFUNC,
obj.SGCBITS,
obj.STYPERELRO,
obj.SSTRINGRELRO,
obj.SGOSTRINGRELRO,
obj.SGOSTRINGHDRRELRO,
obj.SGOFUNCRELRO,
obj.SGCBITSRELRO,
obj.SRODATARELRO,
obj.STYPELINK,
obj.SITABLINK,
obj.SWINDOWS:
if !s.Attr.Reachable() {
continue
}
put(ctxt, s, s.Name, DataSym, Symaddr(s), s.Gotype)
case obj.SBSS, obj.SNOPTRBSS:
if !s.Attr.Reachable() {
continue
}
if len(s.P) > 0 {
Errorf(s, "should not be bss (size=%d type=%d special=%v)", len(s.P), s.Type, s.Attr.Special())
}
put(ctxt, s, s.Name, BSSSym, Symaddr(s), s.Gotype)
case obj.SFILE:
put(ctxt, nil, s.Name, FileSym, s.Value, nil)
case obj.SHOSTOBJ:
if Headtype == obj.Hwindows || Headtype == obj.Hwindowsgui || Iself {
put(ctxt, s, s.Name, UndefinedSym, s.Value, nil)
}
case obj.SDYNIMPORT:
if !s.Attr.Reachable() {
continue
}
put(ctxt, s, s.Extname, UndefinedSym, 0, nil)
case obj.STLSBSS:
if Linkmode == LinkExternal && Headtype != obj.Hopenbsd {
put(ctxt, s, s.Name, TLSSym, Symaddr(s), s.Gotype)
}
}
}
var off int32
for _, s := range ctxt.Textp {
put(ctxt, s, s.Name, TextSym, s.Value, s.Gotype)
locals := int32(0)
if s.FuncInfo != nil {
locals = s.FuncInfo.Locals
}
// NOTE(ality): acid can't produce a stack trace without .frame symbols
put(ctxt, nil, ".frame", FrameSym, int64(locals)+int64(SysArch.PtrSize), nil)
if s.FuncInfo == nil {
continue
}
for _, a := range s.FuncInfo.Autom {
// Emit a or p according to actual offset, even if label is wrong.
// This avoids negative offsets, which cannot be encoded.
if a.Name != obj.A_AUTO && a.Name != obj.A_PARAM {
continue
}
// compute offset relative to FP
if a.Name == obj.A_PARAM {
off = a.Aoffset
} else {
off = a.Aoffset - int32(SysArch.PtrSize)
}
// FP
if off >= 0 {
put(ctxt, nil, a.Asym.Name, ParamSym, int64(off), a.Gotype)
continue
}
// SP
if off <= int32(-SysArch.PtrSize) {
put(ctxt, nil, a.Asym.Name, AutoSym, -(int64(off) + int64(SysArch.PtrSize)), a.Gotype)
continue
}
// Otherwise, off is addressing the saved program counter.
// Something underhanded is going on. Say nothing.
}
}
if ctxt.Debugvlog != 0 || *flagN {
ctxt.Logf("%5.2f symsize = %d\n", obj.Cputime(), uint32(Symsize))
}
}
func Symaddr(s *Symbol) int64 {
if !s.Attr.Reachable() {
Errorf(s, "unreachable symbol in symaddr")
}
return s.Value
}
func (ctxt *Link) xdefine(p string, t obj.SymKind, v int64) {
s := ctxt.Syms.Lookup(p, 0)
s.Type = t
s.Value = v
s.Attr |= AttrReachable
s.Attr |= AttrSpecial
s.Attr |= AttrLocal
}
func datoff(s *Symbol, addr int64) int64 {
if uint64(addr) >= Segdata.Vaddr {
return int64(uint64(addr) - Segdata.Vaddr + Segdata.Fileoff)
}
if uint64(addr) >= Segtext.Vaddr {
return int64(uint64(addr) - Segtext.Vaddr + Segtext.Fileoff)
}
Errorf(s, "invalid datoff %#x", addr)
return 0
}
func Entryvalue(ctxt *Link) int64 {
a := *flagEntrySymbol
if a[0] >= '0' && a[0] <= '9' {
return atolwhex(a)
}
s := ctxt.Syms.Lookup(a, 0)
if s.Type == 0 {
return *FlagTextAddr
}
if s.Type != obj.STEXT {
Errorf(s, "entry not text")
}
return s.Value
}
func undefsym(ctxt *Link, s *Symbol) {
var r *Reloc
for i := 0; i < len(s.R); i++ {
r = &s.R[i]
if r.Sym == nil { // happens for some external ARM relocs
continue
}
if r.Sym.Type == obj.Sxxx || r.Sym.Type == obj.SXREF {
Errorf(s, "undefined: %q", r.Sym.Name)
}
if !r.Sym.Attr.Reachable() {
Errorf(s, "relocation target %q", r.Sym.Name)
}
}
}
func (ctxt *Link) undef() {
for _, s := range ctxt.Textp {
undefsym(ctxt, s)
}
for _, s := range datap {
undefsym(ctxt, s)
}
if nerrors > 0 {
errorexit()
}
}
func (ctxt *Link) callgraph() {
if !*FlagC {
return
}
var i int
var r *Reloc
for _, s := range ctxt.Textp {
for i = 0; i < len(s.R); i++ {
r = &s.R[i]
if r.Sym == nil {
continue
}
if (r.Type == obj.R_CALL || r.Type == obj.R_CALLARM || r.Type == obj.R_CALLPOWER || r.Type == obj.R_CALLMIPS) && r.Sym.Type == obj.STEXT {
ctxt.Logf("%s calls %s\n", s.Name, r.Sym.Name)
}
}
}
}
func Rnd(v int64, r int64) int64 {
if r <= 0 {
return v
}
v += r - 1
c := v % r
if c < 0 {
c += r
}
v -= c
return v
}
func bgetc(r *bio.Reader) int {
c, err := r.ReadByte()
if err != nil {
if err != io.EOF {
log.Fatalf("reading input: %v", err)
}
return -1
}
return int(c)
}