mirror of
https://github.com/golang/go.git
synced 2025-05-30 19:52:53 +00:00
Implements the simple Lengauer-Tarjan algorithm for dominator and post-dominator calculation. benchmark old ns/op new ns/op delta BenchmarkDominatorsLinear-8 1403862 1292741 -7.92% BenchmarkDominatorsFwdBack-8 1270633 1428285 +12.41% BenchmarkDominatorsManyPred-8 225932354 1530886 -99.32% BenchmarkDominatorsMaxPred-8 445994225 1393612 -99.69% BenchmarkDominatorsMaxPredVal-8 447235248 1246899 -99.72% BenchmarkNilCheckDeep1-8 829 1259 +51.87% BenchmarkNilCheckDeep10-8 2199 2397 +9.00% BenchmarkNilCheckDeep100-8 57325 29405 -48.70% BenchmarkNilCheckDeep1000-8 6625837 2933151 -55.73% BenchmarkNilCheckDeep10000-8 763559787 319105541 -58.21% benchmark old MB/s new MB/s speedup BenchmarkDominatorsLinear-8 7.12 7.74 1.09x BenchmarkDominatorsFwdBack-8 7.87 7.00 0.89x BenchmarkDominatorsManyPred-8 0.04 6.53 163.25x BenchmarkDominatorsMaxPred-8 0.02 7.18 359.00x BenchmarkDominatorsMaxPredVal-8 0.02 8.02 401.00x BenchmarkNilCheckDeep1-8 1.21 0.79 0.65x BenchmarkNilCheckDeep10-8 4.55 4.17 0.92x BenchmarkNilCheckDeep100-8 1.74 3.40 1.95x BenchmarkNilCheckDeep1000-8 0.15 0.34 2.27x BenchmarkNilCheckDeep10000-8 0.01 0.03 3.00x Change-Id: Icec3d774422a9bc64914779804c8c0ab73aa72bf Reviewed-on: https://go-review.googlesource.com/11971 Reviewed-by: Keith Randall <khr@golang.org>
308 lines
7.8 KiB
Go
308 lines
7.8 KiB
Go
// Copyright 2015 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package ssa
|
|
|
|
// mark values
|
|
const (
|
|
notFound = 0 // block has not been discovered yet
|
|
notExplored = 1 // discovered and in queue, outedges not processed yet
|
|
explored = 2 // discovered and in queue, outedges processed
|
|
done = 3 // all done, in output ordering
|
|
)
|
|
|
|
// This file contains code to compute the dominator tree
|
|
// of a control-flow graph.
|
|
|
|
// postorder computes a postorder traversal ordering for the
|
|
// basic blocks in f. Unreachable blocks will not appear.
|
|
func postorder(f *Func) []*Block {
|
|
mark := make([]byte, f.NumBlocks())
|
|
|
|
// result ordering
|
|
var order []*Block
|
|
|
|
// stack of blocks
|
|
var s []*Block
|
|
s = append(s, f.Entry)
|
|
mark[f.Entry.ID] = notExplored
|
|
for len(s) > 0 {
|
|
b := s[len(s)-1]
|
|
switch mark[b.ID] {
|
|
case explored:
|
|
// Children have all been visited. Pop & output block.
|
|
s = s[:len(s)-1]
|
|
mark[b.ID] = done
|
|
order = append(order, b)
|
|
case notExplored:
|
|
// Children have not been visited yet. Mark as explored
|
|
// and queue any children we haven't seen yet.
|
|
mark[b.ID] = explored
|
|
for _, c := range b.Succs {
|
|
if mark[c.ID] == notFound {
|
|
mark[c.ID] = notExplored
|
|
s = append(s, c)
|
|
}
|
|
}
|
|
default:
|
|
b.Fatalf("bad stack state %v %d", b, mark[b.ID])
|
|
}
|
|
}
|
|
return order
|
|
}
|
|
|
|
type linkedBlocks func(*Block) []*Block
|
|
|
|
// dfs performs a depth first search over the blocks. dfnum contains a mapping
|
|
// from block id to an int indicating the order the block was reached or
|
|
// notFound if the block was not reached. order contains a mapping from dfnum
|
|
// to block
|
|
func dfs(entry *Block, succFn linkedBlocks) (dfnum []int, order []*Block, parent []*Block) {
|
|
maxBlockID := entry.Func.NumBlocks()
|
|
|
|
dfnum = make([]int, maxBlockID)
|
|
order = make([]*Block, maxBlockID)
|
|
parent = make([]*Block, maxBlockID)
|
|
|
|
n := 0
|
|
s := make([]*Block, 0, 256)
|
|
s = append(s, entry)
|
|
parent[entry.ID] = entry
|
|
for len(s) > 0 {
|
|
node := s[len(s)-1]
|
|
s = s[:len(s)-1]
|
|
|
|
n++
|
|
for _, w := range succFn(node) {
|
|
// if it has a dfnum, we've already visited it
|
|
if dfnum[w.ID] == notFound {
|
|
s = append(s, w)
|
|
parent[w.ID] = node
|
|
dfnum[w.ID] = notExplored
|
|
}
|
|
}
|
|
dfnum[node.ID] = n
|
|
order[n] = node
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// dominators computes the dominator tree for f. It returns a slice
|
|
// which maps block ID to the immediate dominator of that block.
|
|
// Unreachable blocks map to nil. The entry block maps to nil.
|
|
func dominators(f *Func) []*Block {
|
|
preds := func(b *Block) []*Block { return b.Preds }
|
|
succs := func(b *Block) []*Block { return b.Succs }
|
|
|
|
//TODO: benchmark and try to find criteria for swapping between
|
|
// dominatorsSimple and dominatorsLT
|
|
return dominatorsLT(f.Entry, preds, succs)
|
|
}
|
|
|
|
// postDominators computes the post-dominator tree for f.
|
|
func postDominators(f *Func) []*Block {
|
|
preds := func(b *Block) []*Block { return b.Preds }
|
|
succs := func(b *Block) []*Block { return b.Succs }
|
|
|
|
if len(f.Blocks) == 0 {
|
|
return nil
|
|
}
|
|
|
|
// find the exit block, maybe store it as f.Exit instead?
|
|
var exit *Block
|
|
for i := len(f.Blocks) - 1; i >= 0; i-- {
|
|
if f.Blocks[i].Kind == BlockExit {
|
|
exit = f.Blocks[i]
|
|
break
|
|
}
|
|
}
|
|
|
|
// infite loop with no exit
|
|
if exit == nil {
|
|
return make([]*Block, f.NumBlocks())
|
|
}
|
|
return dominatorsLT(exit, succs, preds)
|
|
}
|
|
|
|
// dominatorsLt runs Lengauer-Tarjan to compute a dominator tree starting at
|
|
// entry and using predFn/succFn to find predecessors/successors to allow
|
|
// computing both dominator and post-dominator trees.
|
|
func dominatorsLT(entry *Block, predFn linkedBlocks, succFn linkedBlocks) []*Block {
|
|
// Based on Lengauer-Tarjan from Modern Compiler Implementation in C -
|
|
// Appel with optimizations from Finding Dominators in Practice -
|
|
// Georgiadis
|
|
|
|
// Step 1. Carry out a depth first search of the problem graph. Number
|
|
// the vertices from 1 to n as they are reached during the search.
|
|
dfnum, vertex, parent := dfs(entry, succFn)
|
|
|
|
maxBlockID := entry.Func.NumBlocks()
|
|
semi := make([]*Block, maxBlockID)
|
|
samedom := make([]*Block, maxBlockID)
|
|
idom := make([]*Block, maxBlockID)
|
|
ancestor := make([]*Block, maxBlockID)
|
|
best := make([]*Block, maxBlockID)
|
|
bucket := make([]*Block, maxBlockID)
|
|
|
|
// Step 2. Compute the semidominators of all vertices by applying
|
|
// Theorem 4. Carry out the computation vertex by vertex in decreasing
|
|
// order by number.
|
|
for i := maxBlockID - 1; i > 0; i-- {
|
|
w := vertex[i]
|
|
if w == nil {
|
|
continue
|
|
}
|
|
|
|
if dfnum[w.ID] == notFound {
|
|
// skip unreachable node
|
|
continue
|
|
}
|
|
|
|
// Step 3. Implicitly define the immediate dominator of each
|
|
// vertex by applying Corollary 1. (reordered)
|
|
for v := bucket[w.ID]; v != nil; v = bucket[v.ID] {
|
|
u := eval(v, ancestor, semi, dfnum, best)
|
|
if semi[u.ID] == semi[v.ID] {
|
|
idom[v.ID] = w // true dominator
|
|
} else {
|
|
samedom[v.ID] = u // v has same dominator as u
|
|
}
|
|
}
|
|
|
|
p := parent[w.ID]
|
|
s := p // semidominator
|
|
|
|
var sp *Block
|
|
// calculate the semidominator of w
|
|
for _, v := range w.Preds {
|
|
if dfnum[v.ID] == notFound {
|
|
// skip unreachable predecessor
|
|
continue
|
|
}
|
|
|
|
if dfnum[v.ID] <= dfnum[w.ID] {
|
|
sp = v
|
|
} else {
|
|
sp = semi[eval(v, ancestor, semi, dfnum, best).ID]
|
|
}
|
|
|
|
if dfnum[sp.ID] < dfnum[s.ID] {
|
|
s = sp
|
|
}
|
|
}
|
|
|
|
// link
|
|
ancestor[w.ID] = p
|
|
best[w.ID] = w
|
|
|
|
semi[w.ID] = s
|
|
if semi[s.ID] != parent[s.ID] {
|
|
bucket[w.ID] = bucket[s.ID]
|
|
bucket[s.ID] = w
|
|
}
|
|
}
|
|
|
|
// Final pass of step 3
|
|
for v := bucket[0]; v != nil; v = bucket[v.ID] {
|
|
idom[v.ID] = bucket[0]
|
|
}
|
|
|
|
// Step 4. Explictly define the immediate dominator of each vertex,
|
|
// carrying out the computation vertex by vertex in increasing order by
|
|
// number.
|
|
for i := 1; i < maxBlockID-1; i++ {
|
|
w := vertex[i]
|
|
if w == nil {
|
|
continue
|
|
}
|
|
// w has the same dominator as samedom[w.ID]
|
|
if samedom[w.ID] != nil {
|
|
idom[w.ID] = idom[samedom[w.ID].ID]
|
|
}
|
|
}
|
|
return idom
|
|
}
|
|
|
|
// eval function from LT paper with path compression
|
|
func eval(v *Block, ancestor []*Block, semi []*Block, dfnum []int, best []*Block) *Block {
|
|
a := ancestor[v.ID]
|
|
if ancestor[a.ID] != nil {
|
|
b := eval(a, ancestor, semi, dfnum, best)
|
|
ancestor[v.ID] = ancestor[a.ID]
|
|
if dfnum[semi[b.ID].ID] < dfnum[semi[best[v.ID].ID].ID] {
|
|
best[v.ID] = b
|
|
}
|
|
}
|
|
return best[v.ID]
|
|
}
|
|
|
|
// dominators computes the dominator tree for f. It returns a slice
|
|
// which maps block ID to the immediate dominator of that block.
|
|
// Unreachable blocks map to nil. The entry block maps to nil.
|
|
func dominatorsSimple(f *Func) []*Block {
|
|
// A simple algorithm for now
|
|
// Cooper, Harvey, Kennedy
|
|
idom := make([]*Block, f.NumBlocks())
|
|
|
|
// Compute postorder walk
|
|
post := postorder(f)
|
|
|
|
// Make map from block id to order index (for intersect call)
|
|
postnum := make([]int, f.NumBlocks())
|
|
for i, b := range post {
|
|
postnum[b.ID] = i
|
|
}
|
|
|
|
// Make the entry block a self-loop
|
|
idom[f.Entry.ID] = f.Entry
|
|
if postnum[f.Entry.ID] != len(post)-1 {
|
|
f.Fatalf("entry block %v not last in postorder", f.Entry)
|
|
}
|
|
|
|
// Compute relaxation of idom entries
|
|
for {
|
|
changed := false
|
|
|
|
for i := len(post) - 2; i >= 0; i-- {
|
|
b := post[i]
|
|
var d *Block
|
|
for _, p := range b.Preds {
|
|
if idom[p.ID] == nil {
|
|
continue
|
|
}
|
|
if d == nil {
|
|
d = p
|
|
continue
|
|
}
|
|
d = intersect(d, p, postnum, idom)
|
|
}
|
|
if d != idom[b.ID] {
|
|
idom[b.ID] = d
|
|
changed = true
|
|
}
|
|
}
|
|
if !changed {
|
|
break
|
|
}
|
|
}
|
|
// Set idom of entry block to nil instead of itself.
|
|
idom[f.Entry.ID] = nil
|
|
return idom
|
|
}
|
|
|
|
// intersect finds the closest dominator of both b and c.
|
|
// It requires a postorder numbering of all the blocks.
|
|
func intersect(b, c *Block, postnum []int, idom []*Block) *Block {
|
|
// TODO: This loop is O(n^2). See BenchmarkNilCheckDeep*.
|
|
for b != c {
|
|
if postnum[b.ID] < postnum[c.ID] {
|
|
b = idom[b.ID]
|
|
} else {
|
|
c = idom[c.ID]
|
|
}
|
|
}
|
|
return b
|
|
}
|