mirror of
https://github.com/golang/go.git
synced 2025-05-19 06:14:40 +00:00
This CL introduces yet another compiler pass, which checks for correct control flow constructs prior to converting from AST to SSA form. It cannot be integrated with walk, since walk rewrites switch and select statements on the fly. To reduce code duplication, this CL also does some minor refactoring. With this pass in place, the AST to SSA converter can now stop generating SSA for any known-dead code. This minor savings pays for the minor cost of the new pass. Performance is almost a wash: name old time/op new time/op delta Template 206ms ± 4% 205ms ± 4% ~ (p=0.108 n=43+43) Unicode 84.0ms ± 4% 84.0ms ± 4% ~ (p=0.979 n=43+43) GoTypes 550ms ± 3% 553ms ± 3% ~ (p=0.065 n=40+41) Compiler 2.57s ± 4% 2.58s ± 2% ~ (p=0.103 n=44+41) SSA 3.94s ± 3% 3.93s ± 2% ~ (p=0.833 n=44+42) Flate 126ms ± 6% 125ms ± 4% ~ (p=0.941 n=43+39) GoParser 147ms ± 4% 148ms ± 3% ~ (p=0.164 n=42+39) Reflect 359ms ± 3% 357ms ± 5% ~ (p=0.241 n=43+44) Tar 106ms ± 5% 106ms ± 7% ~ (p=0.853 n=40+43) XML 202ms ± 3% 203ms ± 3% ~ (p=0.488 n=42+41) name old user-ns/op new user-ns/op delta Template 240M ± 4% 239M ± 4% ~ (p=0.844 n=42+43) Unicode 107M ± 5% 107M ± 4% ~ (p=0.332 n=40+43) GoTypes 735M ± 3% 731M ± 4% ~ (p=0.141 n=43+44) Compiler 3.51G ± 3% 3.52G ± 3% ~ (p=0.208 n=42+43) SSA 5.72G ± 4% 5.72G ± 3% ~ (p=0.928 n=44+42) Flate 151M ± 7% 150M ± 8% ~ (p=0.662 n=44+43) GoParser 181M ± 5% 181M ± 4% ~ (p=0.379 n=41+44) Reflect 447M ± 4% 445M ± 4% ~ (p=0.344 n=43+43) Tar 125M ± 7% 124M ± 6% ~ (p=0.353 n=43+43) XML 248M ± 4% 250M ± 6% ~ (p=0.158 n=44+44) name old alloc/op new alloc/op delta Template 40.3MB ± 0% 40.2MB ± 0% -0.27% (p=0.000 n=10+10) Unicode 30.3MB ± 0% 30.2MB ± 0% -0.10% (p=0.015 n=10+10) GoTypes 114MB ± 0% 114MB ± 0% -0.06% (p=0.000 n=7+9) Compiler 480MB ± 0% 481MB ± 0% +0.07% (p=0.000 n=10+10) SSA 864MB ± 0% 862MB ± 0% -0.25% (p=0.000 n=9+10) Flate 25.9MB ± 0% 25.9MB ± 0% ~ (p=0.123 n=10+10) GoParser 32.1MB ± 0% 32.1MB ± 0% ~ (p=0.631 n=10+10) Reflect 79.9MB ± 0% 79.6MB ± 0% -0.39% (p=0.000 n=10+9) Tar 27.1MB ± 0% 27.0MB ± 0% -0.18% (p=0.003 n=10+10) XML 42.6MB ± 0% 42.6MB ± 0% ~ (p=0.143 n=10+10) name old allocs/op new allocs/op delta Template 401k ± 0% 401k ± 1% ~ (p=0.353 n=10+10) Unicode 322k ± 0% 322k ± 0% ~ (p=0.739 n=10+10) GoTypes 1.18M ± 0% 1.18M ± 0% +0.25% (p=0.001 n=7+8) Compiler 4.51M ± 0% 4.53M ± 0% +0.37% (p=0.000 n=10+10) SSA 7.91M ± 0% 7.93M ± 0% +0.20% (p=0.000 n=9+10) Flate 244k ± 0% 245k ± 0% ~ (p=0.123 n=10+10) GoParser 323k ± 1% 324k ± 1% +0.40% (p=0.035 n=10+10) Reflect 1.01M ± 0% 1.02M ± 0% +0.37% (p=0.000 n=10+9) Tar 258k ± 1% 258k ± 1% ~ (p=0.661 n=10+9) XML 403k ± 0% 405k ± 0% +0.47% (p=0.004 n=10+10) Updates #15756 Updates #19250 Change-Id: I647bfbb745c35630447eb79dfcaa994b490ce942 Reviewed-on: https://go-review.googlesource.com/38159 Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
4857 lines
153 KiB
Go
4857 lines
153 KiB
Go
// Copyright 2015 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package gc
|
|
|
|
import (
|
|
"bytes"
|
|
"encoding/binary"
|
|
"fmt"
|
|
"html"
|
|
"os"
|
|
"sort"
|
|
|
|
"cmd/compile/internal/ssa"
|
|
"cmd/internal/obj"
|
|
"cmd/internal/src"
|
|
"cmd/internal/sys"
|
|
)
|
|
|
|
var ssaConfig *ssa.Config
|
|
var ssaExp ssaExport
|
|
|
|
func initssa() *ssa.Config {
|
|
if ssaConfig == nil {
|
|
ssaConfig = ssa.NewConfig(Thearch.LinkArch.Name, &ssaExp, Ctxt, Debug['N'] == 0)
|
|
if Thearch.LinkArch.Name == "386" {
|
|
ssaConfig.Set387(Thearch.Use387)
|
|
}
|
|
}
|
|
ssaConfig.HTML = nil
|
|
return ssaConfig
|
|
}
|
|
|
|
// buildssa builds an SSA function.
|
|
func buildssa(fn *Node) *ssa.Func {
|
|
name := fn.Func.Nname.Sym.Name
|
|
printssa := name == os.Getenv("GOSSAFUNC")
|
|
if printssa {
|
|
fmt.Println("generating SSA for", name)
|
|
dumplist("buildssa-enter", fn.Func.Enter)
|
|
dumplist("buildssa-body", fn.Nbody)
|
|
dumplist("buildssa-exit", fn.Func.Exit)
|
|
}
|
|
|
|
var s state
|
|
s.pushLine(fn.Pos)
|
|
defer s.popLine()
|
|
|
|
if fn.Func.Pragma&CgoUnsafeArgs != 0 {
|
|
s.cgoUnsafeArgs = true
|
|
}
|
|
if fn.Func.Pragma&Nowritebarrier != 0 {
|
|
s.noWB = true
|
|
}
|
|
defer func() {
|
|
if s.WBPos.IsKnown() {
|
|
fn.Func.WBPos = s.WBPos
|
|
}
|
|
}()
|
|
// TODO(khr): build config just once at the start of the compiler binary
|
|
|
|
ssaExp.log = printssa
|
|
|
|
s.config = initssa()
|
|
s.f = s.config.NewFunc()
|
|
s.f.Name = name
|
|
if fn.Func.Pragma&Nosplit != 0 {
|
|
s.f.NoSplit = true
|
|
}
|
|
s.exitCode = fn.Func.Exit
|
|
s.panics = map[funcLine]*ssa.Block{}
|
|
s.config.DebugTest = s.config.DebugHashMatch("GOSSAHASH", name)
|
|
|
|
if name == os.Getenv("GOSSAFUNC") {
|
|
// TODO: tempfile? it is handy to have the location
|
|
// of this file be stable, so you can just reload in the browser.
|
|
s.config.HTML = ssa.NewHTMLWriter("ssa.html", s.config, name)
|
|
// TODO: generate and print a mapping from nodes to values and blocks
|
|
}
|
|
|
|
// Allocate starting block
|
|
s.f.Entry = s.f.NewBlock(ssa.BlockPlain)
|
|
|
|
// Allocate starting values
|
|
s.labels = map[string]*ssaLabel{}
|
|
s.labeledNodes = map[*Node]*ssaLabel{}
|
|
s.fwdVars = map[*Node]*ssa.Value{}
|
|
s.startmem = s.entryNewValue0(ssa.OpInitMem, ssa.TypeMem)
|
|
s.sp = s.entryNewValue0(ssa.OpSP, Types[TUINTPTR]) // TODO: use generic pointer type (unsafe.Pointer?) instead
|
|
s.sb = s.entryNewValue0(ssa.OpSB, Types[TUINTPTR])
|
|
|
|
s.startBlock(s.f.Entry)
|
|
s.vars[&memVar] = s.startmem
|
|
|
|
s.varsyms = map[*Node]interface{}{}
|
|
|
|
// Generate addresses of local declarations
|
|
s.decladdrs = map[*Node]*ssa.Value{}
|
|
for _, n := range fn.Func.Dcl {
|
|
switch n.Class {
|
|
case PPARAM, PPARAMOUT:
|
|
aux := s.lookupSymbol(n, &ssa.ArgSymbol{Typ: n.Type, Node: n})
|
|
s.decladdrs[n] = s.entryNewValue1A(ssa.OpAddr, ptrto(n.Type), aux, s.sp)
|
|
if n.Class == PPARAMOUT && s.canSSA(n) {
|
|
// Save ssa-able PPARAMOUT variables so we can
|
|
// store them back to the stack at the end of
|
|
// the function.
|
|
s.returns = append(s.returns, n)
|
|
}
|
|
case PAUTO:
|
|
// processed at each use, to prevent Addr coming
|
|
// before the decl.
|
|
case PAUTOHEAP:
|
|
// moved to heap - already handled by frontend
|
|
case PFUNC:
|
|
// local function - already handled by frontend
|
|
default:
|
|
s.Fatalf("local variable with class %s unimplemented", classnames[n.Class])
|
|
}
|
|
}
|
|
|
|
// Populate SSAable arguments.
|
|
for _, n := range fn.Func.Dcl {
|
|
if n.Class == PPARAM && s.canSSA(n) {
|
|
s.vars[n] = s.newValue0A(ssa.OpArg, n.Type, n)
|
|
}
|
|
}
|
|
|
|
// Convert the AST-based IR to the SSA-based IR
|
|
s.stmtList(fn.Func.Enter)
|
|
s.stmtList(fn.Nbody)
|
|
|
|
// fallthrough to exit
|
|
if s.curBlock != nil {
|
|
s.pushLine(fn.Func.Endlineno)
|
|
s.exit()
|
|
s.popLine()
|
|
}
|
|
|
|
if nerrors > 0 {
|
|
s.f.Free()
|
|
return nil
|
|
}
|
|
|
|
s.insertPhis()
|
|
|
|
// Don't carry reference this around longer than necessary
|
|
s.exitCode = Nodes{}
|
|
|
|
// Main call to ssa package to compile function
|
|
ssa.Compile(s.f)
|
|
|
|
return s.f
|
|
}
|
|
|
|
type state struct {
|
|
// configuration (arch) information
|
|
config *ssa.Config
|
|
|
|
// function we're building
|
|
f *ssa.Func
|
|
|
|
// labels and labeled control flow nodes (OFOR, OFORUNTIL, OSWITCH, OSELECT) in f
|
|
labels map[string]*ssaLabel
|
|
labeledNodes map[*Node]*ssaLabel
|
|
|
|
// Code that must precede any return
|
|
// (e.g., copying value of heap-escaped paramout back to true paramout)
|
|
exitCode Nodes
|
|
|
|
// unlabeled break and continue statement tracking
|
|
breakTo *ssa.Block // current target for plain break statement
|
|
continueTo *ssa.Block // current target for plain continue statement
|
|
|
|
// current location where we're interpreting the AST
|
|
curBlock *ssa.Block
|
|
|
|
// variable assignments in the current block (map from variable symbol to ssa value)
|
|
// *Node is the unique identifier (an ONAME Node) for the variable.
|
|
// TODO: keep a single varnum map, then make all of these maps slices instead?
|
|
vars map[*Node]*ssa.Value
|
|
|
|
// fwdVars are variables that are used before they are defined in the current block.
|
|
// This map exists just to coalesce multiple references into a single FwdRef op.
|
|
// *Node is the unique identifier (an ONAME Node) for the variable.
|
|
fwdVars map[*Node]*ssa.Value
|
|
|
|
// all defined variables at the end of each block. Indexed by block ID.
|
|
defvars []map[*Node]*ssa.Value
|
|
|
|
// addresses of PPARAM and PPARAMOUT variables.
|
|
decladdrs map[*Node]*ssa.Value
|
|
|
|
// symbols for PEXTERN, PAUTO and PPARAMOUT variables so they can be reused.
|
|
varsyms map[*Node]interface{}
|
|
|
|
// starting values. Memory, stack pointer, and globals pointer
|
|
startmem *ssa.Value
|
|
sp *ssa.Value
|
|
sb *ssa.Value
|
|
|
|
// line number stack. The current line number is top of stack
|
|
line []src.XPos
|
|
|
|
// list of panic calls by function name and line number.
|
|
// Used to deduplicate panic calls.
|
|
panics map[funcLine]*ssa.Block
|
|
|
|
// list of PPARAMOUT (return) variables.
|
|
returns []*Node
|
|
|
|
// A dummy value used during phi construction.
|
|
placeholder *ssa.Value
|
|
|
|
cgoUnsafeArgs bool
|
|
noWB bool
|
|
WBPos src.XPos // line number of first write barrier. 0=no write barriers
|
|
}
|
|
|
|
type funcLine struct {
|
|
f *obj.LSym
|
|
line src.XPos
|
|
}
|
|
|
|
type ssaLabel struct {
|
|
target *ssa.Block // block identified by this label
|
|
breakTarget *ssa.Block // block to break to in control flow node identified by this label
|
|
continueTarget *ssa.Block // block to continue to in control flow node identified by this label
|
|
}
|
|
|
|
// label returns the label associated with sym, creating it if necessary.
|
|
func (s *state) label(sym *Sym) *ssaLabel {
|
|
lab := s.labels[sym.Name]
|
|
if lab == nil {
|
|
lab = new(ssaLabel)
|
|
s.labels[sym.Name] = lab
|
|
}
|
|
return lab
|
|
}
|
|
|
|
func (s *state) Logf(msg string, args ...interface{}) { s.config.Logf(msg, args...) }
|
|
func (s *state) Log() bool { return s.config.Log() }
|
|
func (s *state) Fatalf(msg string, args ...interface{}) { s.config.Fatalf(s.peekPos(), msg, args...) }
|
|
func (s *state) Warnl(pos src.XPos, msg string, args ...interface{}) {
|
|
s.config.Warnl(pos, msg, args...)
|
|
}
|
|
func (s *state) Debug_checknil() bool { return s.config.Debug_checknil() }
|
|
|
|
var (
|
|
// dummy node for the memory variable
|
|
memVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "mem"}}
|
|
|
|
// dummy nodes for temporary variables
|
|
ptrVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "ptr"}}
|
|
lenVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "len"}}
|
|
newlenVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "newlen"}}
|
|
capVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "cap"}}
|
|
typVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "typ"}}
|
|
okVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "ok"}}
|
|
)
|
|
|
|
// startBlock sets the current block we're generating code in to b.
|
|
func (s *state) startBlock(b *ssa.Block) {
|
|
if s.curBlock != nil {
|
|
s.Fatalf("starting block %v when block %v has not ended", b, s.curBlock)
|
|
}
|
|
s.curBlock = b
|
|
s.vars = map[*Node]*ssa.Value{}
|
|
for n := range s.fwdVars {
|
|
delete(s.fwdVars, n)
|
|
}
|
|
}
|
|
|
|
// endBlock marks the end of generating code for the current block.
|
|
// Returns the (former) current block. Returns nil if there is no current
|
|
// block, i.e. if no code flows to the current execution point.
|
|
func (s *state) endBlock() *ssa.Block {
|
|
b := s.curBlock
|
|
if b == nil {
|
|
return nil
|
|
}
|
|
for len(s.defvars) <= int(b.ID) {
|
|
s.defvars = append(s.defvars, nil)
|
|
}
|
|
s.defvars[b.ID] = s.vars
|
|
s.curBlock = nil
|
|
s.vars = nil
|
|
b.Pos = s.peekPos()
|
|
return b
|
|
}
|
|
|
|
// pushLine pushes a line number on the line number stack.
|
|
func (s *state) pushLine(line src.XPos) {
|
|
if !line.IsKnown() {
|
|
// the frontend may emit node with line number missing,
|
|
// use the parent line number in this case.
|
|
line = s.peekPos()
|
|
if Debug['K'] != 0 {
|
|
Warn("buildssa: unknown position (line 0)")
|
|
}
|
|
}
|
|
s.line = append(s.line, line)
|
|
}
|
|
|
|
// popLine pops the top of the line number stack.
|
|
func (s *state) popLine() {
|
|
s.line = s.line[:len(s.line)-1]
|
|
}
|
|
|
|
// peekPos peeks the top of the line number stack.
|
|
func (s *state) peekPos() src.XPos {
|
|
return s.line[len(s.line)-1]
|
|
}
|
|
|
|
func (s *state) Error(msg string, args ...interface{}) {
|
|
yyerrorl(s.peekPos(), msg, args...)
|
|
}
|
|
|
|
// newValue0 adds a new value with no arguments to the current block.
|
|
func (s *state) newValue0(op ssa.Op, t ssa.Type) *ssa.Value {
|
|
return s.curBlock.NewValue0(s.peekPos(), op, t)
|
|
}
|
|
|
|
// newValue0A adds a new value with no arguments and an aux value to the current block.
|
|
func (s *state) newValue0A(op ssa.Op, t ssa.Type, aux interface{}) *ssa.Value {
|
|
return s.curBlock.NewValue0A(s.peekPos(), op, t, aux)
|
|
}
|
|
|
|
// newValue0I adds a new value with no arguments and an auxint value to the current block.
|
|
func (s *state) newValue0I(op ssa.Op, t ssa.Type, auxint int64) *ssa.Value {
|
|
return s.curBlock.NewValue0I(s.peekPos(), op, t, auxint)
|
|
}
|
|
|
|
// newValue1 adds a new value with one argument to the current block.
|
|
func (s *state) newValue1(op ssa.Op, t ssa.Type, arg *ssa.Value) *ssa.Value {
|
|
return s.curBlock.NewValue1(s.peekPos(), op, t, arg)
|
|
}
|
|
|
|
// newValue1A adds a new value with one argument and an aux value to the current block.
|
|
func (s *state) newValue1A(op ssa.Op, t ssa.Type, aux interface{}, arg *ssa.Value) *ssa.Value {
|
|
return s.curBlock.NewValue1A(s.peekPos(), op, t, aux, arg)
|
|
}
|
|
|
|
// newValue1I adds a new value with one argument and an auxint value to the current block.
|
|
func (s *state) newValue1I(op ssa.Op, t ssa.Type, aux int64, arg *ssa.Value) *ssa.Value {
|
|
return s.curBlock.NewValue1I(s.peekPos(), op, t, aux, arg)
|
|
}
|
|
|
|
// newValue2 adds a new value with two arguments to the current block.
|
|
func (s *state) newValue2(op ssa.Op, t ssa.Type, arg0, arg1 *ssa.Value) *ssa.Value {
|
|
return s.curBlock.NewValue2(s.peekPos(), op, t, arg0, arg1)
|
|
}
|
|
|
|
// newValue2I adds a new value with two arguments and an auxint value to the current block.
|
|
func (s *state) newValue2I(op ssa.Op, t ssa.Type, aux int64, arg0, arg1 *ssa.Value) *ssa.Value {
|
|
return s.curBlock.NewValue2I(s.peekPos(), op, t, aux, arg0, arg1)
|
|
}
|
|
|
|
// newValue3 adds a new value with three arguments to the current block.
|
|
func (s *state) newValue3(op ssa.Op, t ssa.Type, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
|
|
return s.curBlock.NewValue3(s.peekPos(), op, t, arg0, arg1, arg2)
|
|
}
|
|
|
|
// newValue3I adds a new value with three arguments and an auxint value to the current block.
|
|
func (s *state) newValue3I(op ssa.Op, t ssa.Type, aux int64, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
|
|
return s.curBlock.NewValue3I(s.peekPos(), op, t, aux, arg0, arg1, arg2)
|
|
}
|
|
|
|
// newValue4 adds a new value with four arguments to the current block.
|
|
func (s *state) newValue4(op ssa.Op, t ssa.Type, arg0, arg1, arg2, arg3 *ssa.Value) *ssa.Value {
|
|
return s.curBlock.NewValue4(s.peekPos(), op, t, arg0, arg1, arg2, arg3)
|
|
}
|
|
|
|
// entryNewValue0 adds a new value with no arguments to the entry block.
|
|
func (s *state) entryNewValue0(op ssa.Op, t ssa.Type) *ssa.Value {
|
|
return s.f.Entry.NewValue0(s.peekPos(), op, t)
|
|
}
|
|
|
|
// entryNewValue0A adds a new value with no arguments and an aux value to the entry block.
|
|
func (s *state) entryNewValue0A(op ssa.Op, t ssa.Type, aux interface{}) *ssa.Value {
|
|
return s.f.Entry.NewValue0A(s.peekPos(), op, t, aux)
|
|
}
|
|
|
|
// entryNewValue0I adds a new value with no arguments and an auxint value to the entry block.
|
|
func (s *state) entryNewValue0I(op ssa.Op, t ssa.Type, auxint int64) *ssa.Value {
|
|
return s.f.Entry.NewValue0I(s.peekPos(), op, t, auxint)
|
|
}
|
|
|
|
// entryNewValue1 adds a new value with one argument to the entry block.
|
|
func (s *state) entryNewValue1(op ssa.Op, t ssa.Type, arg *ssa.Value) *ssa.Value {
|
|
return s.f.Entry.NewValue1(s.peekPos(), op, t, arg)
|
|
}
|
|
|
|
// entryNewValue1 adds a new value with one argument and an auxint value to the entry block.
|
|
func (s *state) entryNewValue1I(op ssa.Op, t ssa.Type, auxint int64, arg *ssa.Value) *ssa.Value {
|
|
return s.f.Entry.NewValue1I(s.peekPos(), op, t, auxint, arg)
|
|
}
|
|
|
|
// entryNewValue1A adds a new value with one argument and an aux value to the entry block.
|
|
func (s *state) entryNewValue1A(op ssa.Op, t ssa.Type, aux interface{}, arg *ssa.Value) *ssa.Value {
|
|
return s.f.Entry.NewValue1A(s.peekPos(), op, t, aux, arg)
|
|
}
|
|
|
|
// entryNewValue2 adds a new value with two arguments to the entry block.
|
|
func (s *state) entryNewValue2(op ssa.Op, t ssa.Type, arg0, arg1 *ssa.Value) *ssa.Value {
|
|
return s.f.Entry.NewValue2(s.peekPos(), op, t, arg0, arg1)
|
|
}
|
|
|
|
// const* routines add a new const value to the entry block.
|
|
func (s *state) constSlice(t ssa.Type) *ssa.Value { return s.f.ConstSlice(s.peekPos(), t) }
|
|
func (s *state) constInterface(t ssa.Type) *ssa.Value { return s.f.ConstInterface(s.peekPos(), t) }
|
|
func (s *state) constNil(t ssa.Type) *ssa.Value { return s.f.ConstNil(s.peekPos(), t) }
|
|
func (s *state) constEmptyString(t ssa.Type) *ssa.Value { return s.f.ConstEmptyString(s.peekPos(), t) }
|
|
func (s *state) constBool(c bool) *ssa.Value {
|
|
return s.f.ConstBool(s.peekPos(), Types[TBOOL], c)
|
|
}
|
|
func (s *state) constInt8(t ssa.Type, c int8) *ssa.Value {
|
|
return s.f.ConstInt8(s.peekPos(), t, c)
|
|
}
|
|
func (s *state) constInt16(t ssa.Type, c int16) *ssa.Value {
|
|
return s.f.ConstInt16(s.peekPos(), t, c)
|
|
}
|
|
func (s *state) constInt32(t ssa.Type, c int32) *ssa.Value {
|
|
return s.f.ConstInt32(s.peekPos(), t, c)
|
|
}
|
|
func (s *state) constInt64(t ssa.Type, c int64) *ssa.Value {
|
|
return s.f.ConstInt64(s.peekPos(), t, c)
|
|
}
|
|
func (s *state) constFloat32(t ssa.Type, c float64) *ssa.Value {
|
|
return s.f.ConstFloat32(s.peekPos(), t, c)
|
|
}
|
|
func (s *state) constFloat64(t ssa.Type, c float64) *ssa.Value {
|
|
return s.f.ConstFloat64(s.peekPos(), t, c)
|
|
}
|
|
func (s *state) constInt(t ssa.Type, c int64) *ssa.Value {
|
|
if s.config.IntSize == 8 {
|
|
return s.constInt64(t, c)
|
|
}
|
|
if int64(int32(c)) != c {
|
|
s.Fatalf("integer constant too big %d", c)
|
|
}
|
|
return s.constInt32(t, int32(c))
|
|
}
|
|
func (s *state) constOffPtrSP(t ssa.Type, c int64) *ssa.Value {
|
|
return s.f.ConstOffPtrSP(s.peekPos(), t, c, s.sp)
|
|
}
|
|
|
|
// stmtList converts the statement list n to SSA and adds it to s.
|
|
func (s *state) stmtList(l Nodes) {
|
|
for _, n := range l.Slice() {
|
|
s.stmt(n)
|
|
}
|
|
}
|
|
|
|
// stmt converts the statement n to SSA and adds it to s.
|
|
func (s *state) stmt(n *Node) {
|
|
s.pushLine(n.Pos)
|
|
defer s.popLine()
|
|
|
|
// If s.curBlock is nil, and n isn't a label (which might have an associated goto somewhere),
|
|
// then this code is dead. Stop here.
|
|
if s.curBlock == nil && n.Op != OLABEL {
|
|
return
|
|
}
|
|
|
|
s.stmtList(n.Ninit)
|
|
switch n.Op {
|
|
|
|
case OBLOCK:
|
|
s.stmtList(n.List)
|
|
|
|
// No-ops
|
|
case OEMPTY, ODCLCONST, ODCLTYPE, OFALL:
|
|
|
|
// Expression statements
|
|
case OCALLFUNC:
|
|
if isIntrinsicCall(n) {
|
|
s.intrinsicCall(n)
|
|
return
|
|
}
|
|
fallthrough
|
|
|
|
case OCALLMETH, OCALLINTER:
|
|
s.call(n, callNormal)
|
|
if n.Op == OCALLFUNC && n.Left.Op == ONAME && n.Left.Class == PFUNC {
|
|
if fn := n.Left.Sym.Name; compiling_runtime && fn == "throw" ||
|
|
n.Left.Sym.Pkg == Runtimepkg && (fn == "throwinit" || fn == "gopanic" || fn == "panicwrap" || fn == "block") {
|
|
m := s.mem()
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockExit
|
|
b.SetControl(m)
|
|
// TODO: never rewrite OPANIC to OCALLFUNC in the
|
|
// first place. Need to wait until all backends
|
|
// go through SSA.
|
|
}
|
|
}
|
|
case ODEFER:
|
|
s.call(n.Left, callDefer)
|
|
case OPROC:
|
|
s.call(n.Left, callGo)
|
|
|
|
case OAS2DOTTYPE:
|
|
res, resok := s.dottype(n.Rlist.First(), true)
|
|
deref := false
|
|
if !canSSAType(n.Rlist.First().Type) {
|
|
if res.Op != ssa.OpLoad {
|
|
s.Fatalf("dottype of non-load")
|
|
}
|
|
mem := s.mem()
|
|
if mem.Op == ssa.OpVarKill {
|
|
mem = mem.Args[0]
|
|
}
|
|
if res.Args[1] != mem {
|
|
s.Fatalf("memory no longer live from 2-result dottype load")
|
|
}
|
|
deref = true
|
|
res = res.Args[0]
|
|
}
|
|
s.assign(n.List.First(), res, needwritebarrier(n.List.First()), deref, 0)
|
|
s.assign(n.List.Second(), resok, false, false, 0)
|
|
return
|
|
|
|
case OAS2FUNC:
|
|
// We come here only when it is an intrinsic call returning two values.
|
|
if !isIntrinsicCall(n.Rlist.First()) {
|
|
s.Fatalf("non-intrinsic AS2FUNC not expanded %v", n.Rlist.First())
|
|
}
|
|
v := s.intrinsicCall(n.Rlist.First())
|
|
v1 := s.newValue1(ssa.OpSelect0, n.List.First().Type, v)
|
|
v2 := s.newValue1(ssa.OpSelect1, n.List.Second().Type, v)
|
|
s.assign(n.List.First(), v1, needwritebarrier(n.List.First()), false, 0)
|
|
s.assign(n.List.Second(), v2, needwritebarrier(n.List.Second()), false, 0)
|
|
return
|
|
|
|
case ODCL:
|
|
if n.Left.Class == PAUTOHEAP {
|
|
Fatalf("DCL %v", n)
|
|
}
|
|
|
|
case OLABEL:
|
|
sym := n.Left.Sym
|
|
lab := s.label(sym)
|
|
|
|
// Associate label with its control flow node, if any
|
|
if ctl := n.labeledControl(); ctl != nil {
|
|
s.labeledNodes[ctl] = lab
|
|
}
|
|
|
|
// The label might already have a target block via a goto.
|
|
if lab.target == nil {
|
|
lab.target = s.f.NewBlock(ssa.BlockPlain)
|
|
}
|
|
|
|
// Go to that label.
|
|
// (We pretend "label:" is preceded by "goto label", unless the predecessor is unreachable.)
|
|
if s.curBlock != nil {
|
|
b := s.endBlock()
|
|
b.AddEdgeTo(lab.target)
|
|
}
|
|
s.startBlock(lab.target)
|
|
|
|
case OGOTO:
|
|
sym := n.Left.Sym
|
|
|
|
lab := s.label(sym)
|
|
if lab.target == nil {
|
|
lab.target = s.f.NewBlock(ssa.BlockPlain)
|
|
}
|
|
|
|
b := s.endBlock()
|
|
b.AddEdgeTo(lab.target)
|
|
|
|
case OAS:
|
|
if n.Left == n.Right && n.Left.Op == ONAME {
|
|
// An x=x assignment. No point in doing anything
|
|
// here. In addition, skipping this assignment
|
|
// prevents generating:
|
|
// VARDEF x
|
|
// COPY x -> x
|
|
// which is bad because x is incorrectly considered
|
|
// dead before the vardef. See issue #14904.
|
|
return
|
|
}
|
|
|
|
var t *Type
|
|
if n.Right != nil {
|
|
t = n.Right.Type
|
|
} else {
|
|
t = n.Left.Type
|
|
}
|
|
|
|
// Evaluate RHS.
|
|
rhs := n.Right
|
|
if rhs != nil {
|
|
switch rhs.Op {
|
|
case OSTRUCTLIT, OARRAYLIT, OSLICELIT:
|
|
// All literals with nonzero fields have already been
|
|
// rewritten during walk. Any that remain are just T{}
|
|
// or equivalents. Use the zero value.
|
|
if !iszero(rhs) {
|
|
Fatalf("literal with nonzero value in SSA: %v", rhs)
|
|
}
|
|
rhs = nil
|
|
case OAPPEND:
|
|
// If we're writing the result of an append back to the same slice,
|
|
// handle it specially to avoid write barriers on the fast (non-growth) path.
|
|
// If the slice can be SSA'd, it'll be on the stack,
|
|
// so there will be no write barriers,
|
|
// so there's no need to attempt to prevent them.
|
|
if samesafeexpr(n.Left, rhs.List.First()) {
|
|
if !s.canSSA(n.Left) {
|
|
if Debug_append > 0 {
|
|
Warnl(n.Pos, "append: len-only update")
|
|
}
|
|
s.append(rhs, true)
|
|
return
|
|
} else {
|
|
if Debug_append > 0 { // replicating old diagnostic message
|
|
Warnl(n.Pos, "append: len-only update (in local slice)")
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
var r *ssa.Value
|
|
needwb := n.Right != nil && needwritebarrier(n.Left)
|
|
deref := !canSSAType(t)
|
|
if deref {
|
|
if rhs == nil {
|
|
r = nil // Signal assign to use OpZero.
|
|
} else {
|
|
r = s.addr(rhs, false)
|
|
}
|
|
} else {
|
|
if rhs == nil {
|
|
r = s.zeroVal(t)
|
|
} else {
|
|
r = s.expr(rhs)
|
|
}
|
|
}
|
|
if rhs != nil && rhs.Op == OAPPEND && needwritebarrier(n.Left) {
|
|
// The frontend gets rid of the write barrier to enable the special OAPPEND
|
|
// handling above, but since this is not a special case, we need it.
|
|
// TODO: just add a ptr graying to the end of growslice?
|
|
// TODO: check whether we need to provide special handling and a write barrier
|
|
// for ODOTTYPE and ORECV also.
|
|
// They get similar wb-removal treatment in walk.go:OAS.
|
|
needwb = true
|
|
}
|
|
if needwb && Debug_wb > 1 {
|
|
Warnl(n.Pos, "marking %v for barrier", n.Left)
|
|
}
|
|
|
|
var skip skipMask
|
|
if rhs != nil && (rhs.Op == OSLICE || rhs.Op == OSLICE3 || rhs.Op == OSLICESTR) && samesafeexpr(rhs.Left, n.Left) {
|
|
// We're assigning a slicing operation back to its source.
|
|
// Don't write back fields we aren't changing. See issue #14855.
|
|
i, j, k := rhs.SliceBounds()
|
|
if i != nil && (i.Op == OLITERAL && i.Val().Ctype() == CTINT && i.Int64() == 0) {
|
|
// [0:...] is the same as [:...]
|
|
i = nil
|
|
}
|
|
// TODO: detect defaults for len/cap also.
|
|
// Currently doesn't really work because (*p)[:len(*p)] appears here as:
|
|
// tmp = len(*p)
|
|
// (*p)[:tmp]
|
|
//if j != nil && (j.Op == OLEN && samesafeexpr(j.Left, n.Left)) {
|
|
// j = nil
|
|
//}
|
|
//if k != nil && (k.Op == OCAP && samesafeexpr(k.Left, n.Left)) {
|
|
// k = nil
|
|
//}
|
|
if i == nil {
|
|
skip |= skipPtr
|
|
if j == nil {
|
|
skip |= skipLen
|
|
}
|
|
if k == nil {
|
|
skip |= skipCap
|
|
}
|
|
}
|
|
}
|
|
|
|
s.assign(n.Left, r, needwb, deref, skip)
|
|
|
|
case OIF:
|
|
bThen := s.f.NewBlock(ssa.BlockPlain)
|
|
bEnd := s.f.NewBlock(ssa.BlockPlain)
|
|
var bElse *ssa.Block
|
|
if n.Rlist.Len() != 0 {
|
|
bElse = s.f.NewBlock(ssa.BlockPlain)
|
|
s.condBranch(n.Left, bThen, bElse, n.Likely)
|
|
} else {
|
|
s.condBranch(n.Left, bThen, bEnd, n.Likely)
|
|
}
|
|
|
|
s.startBlock(bThen)
|
|
s.stmtList(n.Nbody)
|
|
if b := s.endBlock(); b != nil {
|
|
b.AddEdgeTo(bEnd)
|
|
}
|
|
|
|
if n.Rlist.Len() != 0 {
|
|
s.startBlock(bElse)
|
|
s.stmtList(n.Rlist)
|
|
if b := s.endBlock(); b != nil {
|
|
b.AddEdgeTo(bEnd)
|
|
}
|
|
}
|
|
s.startBlock(bEnd)
|
|
|
|
case ORETURN:
|
|
s.stmtList(n.List)
|
|
s.exit()
|
|
case ORETJMP:
|
|
s.stmtList(n.List)
|
|
b := s.exit()
|
|
b.Kind = ssa.BlockRetJmp // override BlockRet
|
|
b.Aux = Linksym(n.Left.Sym)
|
|
|
|
case OCONTINUE, OBREAK:
|
|
var to *ssa.Block
|
|
if n.Left == nil {
|
|
// plain break/continue
|
|
switch n.Op {
|
|
case OCONTINUE:
|
|
to = s.continueTo
|
|
case OBREAK:
|
|
to = s.breakTo
|
|
}
|
|
} else {
|
|
// labeled break/continue; look up the target
|
|
sym := n.Left.Sym
|
|
lab := s.label(sym)
|
|
switch n.Op {
|
|
case OCONTINUE:
|
|
to = lab.continueTarget
|
|
case OBREAK:
|
|
to = lab.breakTarget
|
|
}
|
|
}
|
|
|
|
b := s.endBlock()
|
|
b.AddEdgeTo(to)
|
|
|
|
case OFOR, OFORUNTIL:
|
|
// OFOR: for Ninit; Left; Right { Nbody }
|
|
// For = cond; body; incr
|
|
// Foruntil = body; incr; cond
|
|
bCond := s.f.NewBlock(ssa.BlockPlain)
|
|
bBody := s.f.NewBlock(ssa.BlockPlain)
|
|
bIncr := s.f.NewBlock(ssa.BlockPlain)
|
|
bEnd := s.f.NewBlock(ssa.BlockPlain)
|
|
|
|
// first, jump to condition test (OFOR) or body (OFORUNTIL)
|
|
b := s.endBlock()
|
|
if n.Op == OFOR {
|
|
b.AddEdgeTo(bCond)
|
|
// generate code to test condition
|
|
s.startBlock(bCond)
|
|
if n.Left != nil {
|
|
s.condBranch(n.Left, bBody, bEnd, 1)
|
|
} else {
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockPlain
|
|
b.AddEdgeTo(bBody)
|
|
}
|
|
|
|
} else {
|
|
b.AddEdgeTo(bBody)
|
|
}
|
|
|
|
// set up for continue/break in body
|
|
prevContinue := s.continueTo
|
|
prevBreak := s.breakTo
|
|
s.continueTo = bIncr
|
|
s.breakTo = bEnd
|
|
lab := s.labeledNodes[n]
|
|
if lab != nil {
|
|
// labeled for loop
|
|
lab.continueTarget = bIncr
|
|
lab.breakTarget = bEnd
|
|
}
|
|
|
|
// generate body
|
|
s.startBlock(bBody)
|
|
s.stmtList(n.Nbody)
|
|
|
|
// tear down continue/break
|
|
s.continueTo = prevContinue
|
|
s.breakTo = prevBreak
|
|
if lab != nil {
|
|
lab.continueTarget = nil
|
|
lab.breakTarget = nil
|
|
}
|
|
|
|
// done with body, goto incr
|
|
if b := s.endBlock(); b != nil {
|
|
b.AddEdgeTo(bIncr)
|
|
}
|
|
|
|
// generate incr
|
|
s.startBlock(bIncr)
|
|
if n.Right != nil {
|
|
s.stmt(n.Right)
|
|
}
|
|
if b := s.endBlock(); b != nil {
|
|
b.AddEdgeTo(bCond)
|
|
}
|
|
|
|
if n.Op == OFORUNTIL {
|
|
// generate code to test condition
|
|
s.startBlock(bCond)
|
|
if n.Left != nil {
|
|
s.condBranch(n.Left, bBody, bEnd, 1)
|
|
} else {
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockPlain
|
|
b.AddEdgeTo(bBody)
|
|
}
|
|
}
|
|
|
|
s.startBlock(bEnd)
|
|
|
|
case OSWITCH, OSELECT:
|
|
// These have been mostly rewritten by the front end into their Nbody fields.
|
|
// Our main task is to correctly hook up any break statements.
|
|
bEnd := s.f.NewBlock(ssa.BlockPlain)
|
|
|
|
prevBreak := s.breakTo
|
|
s.breakTo = bEnd
|
|
lab := s.labeledNodes[n]
|
|
if lab != nil {
|
|
// labeled
|
|
lab.breakTarget = bEnd
|
|
}
|
|
|
|
// generate body code
|
|
s.stmtList(n.Nbody)
|
|
|
|
s.breakTo = prevBreak
|
|
if lab != nil {
|
|
lab.breakTarget = nil
|
|
}
|
|
|
|
// walk adds explicit OBREAK nodes to the end of all reachable code paths.
|
|
// If we still have a current block here, then mark it unreachable.
|
|
if s.curBlock != nil {
|
|
m := s.mem()
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockExit
|
|
b.SetControl(m)
|
|
}
|
|
s.startBlock(bEnd)
|
|
|
|
case OVARKILL:
|
|
// Insert a varkill op to record that a variable is no longer live.
|
|
// We only care about liveness info at call sites, so putting the
|
|
// varkill in the store chain is enough to keep it correctly ordered
|
|
// with respect to call ops.
|
|
if !s.canSSA(n.Left) {
|
|
s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, ssa.TypeMem, n.Left, s.mem())
|
|
}
|
|
|
|
case OVARLIVE:
|
|
// Insert a varlive op to record that a variable is still live.
|
|
if !n.Left.Addrtaken() {
|
|
s.Fatalf("VARLIVE variable %v must have Addrtaken set", n.Left)
|
|
}
|
|
s.vars[&memVar] = s.newValue1A(ssa.OpVarLive, ssa.TypeMem, n.Left, s.mem())
|
|
|
|
case OCHECKNIL:
|
|
p := s.expr(n.Left)
|
|
s.nilCheck(p)
|
|
|
|
default:
|
|
s.Fatalf("unhandled stmt %v", n.Op)
|
|
}
|
|
}
|
|
|
|
// exit processes any code that needs to be generated just before returning.
|
|
// It returns a BlockRet block that ends the control flow. Its control value
|
|
// will be set to the final memory state.
|
|
func (s *state) exit() *ssa.Block {
|
|
if hasdefer {
|
|
s.rtcall(Deferreturn, true, nil)
|
|
}
|
|
|
|
// Run exit code. Typically, this code copies heap-allocated PPARAMOUT
|
|
// variables back to the stack.
|
|
s.stmtList(s.exitCode)
|
|
|
|
// Store SSAable PPARAMOUT variables back to stack locations.
|
|
for _, n := range s.returns {
|
|
addr := s.decladdrs[n]
|
|
val := s.variable(n, n.Type)
|
|
s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, n, s.mem())
|
|
s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, n.Type.Size(), addr, val, s.mem())
|
|
// TODO: if val is ever spilled, we'd like to use the
|
|
// PPARAMOUT slot for spilling it. That won't happen
|
|
// currently.
|
|
}
|
|
|
|
// Do actual return.
|
|
m := s.mem()
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockRet
|
|
b.SetControl(m)
|
|
return b
|
|
}
|
|
|
|
type opAndType struct {
|
|
op Op
|
|
etype EType
|
|
}
|
|
|
|
var opToSSA = map[opAndType]ssa.Op{
|
|
opAndType{OADD, TINT8}: ssa.OpAdd8,
|
|
opAndType{OADD, TUINT8}: ssa.OpAdd8,
|
|
opAndType{OADD, TINT16}: ssa.OpAdd16,
|
|
opAndType{OADD, TUINT16}: ssa.OpAdd16,
|
|
opAndType{OADD, TINT32}: ssa.OpAdd32,
|
|
opAndType{OADD, TUINT32}: ssa.OpAdd32,
|
|
opAndType{OADD, TPTR32}: ssa.OpAdd32,
|
|
opAndType{OADD, TINT64}: ssa.OpAdd64,
|
|
opAndType{OADD, TUINT64}: ssa.OpAdd64,
|
|
opAndType{OADD, TPTR64}: ssa.OpAdd64,
|
|
opAndType{OADD, TFLOAT32}: ssa.OpAdd32F,
|
|
opAndType{OADD, TFLOAT64}: ssa.OpAdd64F,
|
|
|
|
opAndType{OSUB, TINT8}: ssa.OpSub8,
|
|
opAndType{OSUB, TUINT8}: ssa.OpSub8,
|
|
opAndType{OSUB, TINT16}: ssa.OpSub16,
|
|
opAndType{OSUB, TUINT16}: ssa.OpSub16,
|
|
opAndType{OSUB, TINT32}: ssa.OpSub32,
|
|
opAndType{OSUB, TUINT32}: ssa.OpSub32,
|
|
opAndType{OSUB, TINT64}: ssa.OpSub64,
|
|
opAndType{OSUB, TUINT64}: ssa.OpSub64,
|
|
opAndType{OSUB, TFLOAT32}: ssa.OpSub32F,
|
|
opAndType{OSUB, TFLOAT64}: ssa.OpSub64F,
|
|
|
|
opAndType{ONOT, TBOOL}: ssa.OpNot,
|
|
|
|
opAndType{OMINUS, TINT8}: ssa.OpNeg8,
|
|
opAndType{OMINUS, TUINT8}: ssa.OpNeg8,
|
|
opAndType{OMINUS, TINT16}: ssa.OpNeg16,
|
|
opAndType{OMINUS, TUINT16}: ssa.OpNeg16,
|
|
opAndType{OMINUS, TINT32}: ssa.OpNeg32,
|
|
opAndType{OMINUS, TUINT32}: ssa.OpNeg32,
|
|
opAndType{OMINUS, TINT64}: ssa.OpNeg64,
|
|
opAndType{OMINUS, TUINT64}: ssa.OpNeg64,
|
|
opAndType{OMINUS, TFLOAT32}: ssa.OpNeg32F,
|
|
opAndType{OMINUS, TFLOAT64}: ssa.OpNeg64F,
|
|
|
|
opAndType{OCOM, TINT8}: ssa.OpCom8,
|
|
opAndType{OCOM, TUINT8}: ssa.OpCom8,
|
|
opAndType{OCOM, TINT16}: ssa.OpCom16,
|
|
opAndType{OCOM, TUINT16}: ssa.OpCom16,
|
|
opAndType{OCOM, TINT32}: ssa.OpCom32,
|
|
opAndType{OCOM, TUINT32}: ssa.OpCom32,
|
|
opAndType{OCOM, TINT64}: ssa.OpCom64,
|
|
opAndType{OCOM, TUINT64}: ssa.OpCom64,
|
|
|
|
opAndType{OIMAG, TCOMPLEX64}: ssa.OpComplexImag,
|
|
opAndType{OIMAG, TCOMPLEX128}: ssa.OpComplexImag,
|
|
opAndType{OREAL, TCOMPLEX64}: ssa.OpComplexReal,
|
|
opAndType{OREAL, TCOMPLEX128}: ssa.OpComplexReal,
|
|
|
|
opAndType{OMUL, TINT8}: ssa.OpMul8,
|
|
opAndType{OMUL, TUINT8}: ssa.OpMul8,
|
|
opAndType{OMUL, TINT16}: ssa.OpMul16,
|
|
opAndType{OMUL, TUINT16}: ssa.OpMul16,
|
|
opAndType{OMUL, TINT32}: ssa.OpMul32,
|
|
opAndType{OMUL, TUINT32}: ssa.OpMul32,
|
|
opAndType{OMUL, TINT64}: ssa.OpMul64,
|
|
opAndType{OMUL, TUINT64}: ssa.OpMul64,
|
|
opAndType{OMUL, TFLOAT32}: ssa.OpMul32F,
|
|
opAndType{OMUL, TFLOAT64}: ssa.OpMul64F,
|
|
|
|
opAndType{ODIV, TFLOAT32}: ssa.OpDiv32F,
|
|
opAndType{ODIV, TFLOAT64}: ssa.OpDiv64F,
|
|
|
|
opAndType{ODIV, TINT8}: ssa.OpDiv8,
|
|
opAndType{ODIV, TUINT8}: ssa.OpDiv8u,
|
|
opAndType{ODIV, TINT16}: ssa.OpDiv16,
|
|
opAndType{ODIV, TUINT16}: ssa.OpDiv16u,
|
|
opAndType{ODIV, TINT32}: ssa.OpDiv32,
|
|
opAndType{ODIV, TUINT32}: ssa.OpDiv32u,
|
|
opAndType{ODIV, TINT64}: ssa.OpDiv64,
|
|
opAndType{ODIV, TUINT64}: ssa.OpDiv64u,
|
|
|
|
opAndType{OMOD, TINT8}: ssa.OpMod8,
|
|
opAndType{OMOD, TUINT8}: ssa.OpMod8u,
|
|
opAndType{OMOD, TINT16}: ssa.OpMod16,
|
|
opAndType{OMOD, TUINT16}: ssa.OpMod16u,
|
|
opAndType{OMOD, TINT32}: ssa.OpMod32,
|
|
opAndType{OMOD, TUINT32}: ssa.OpMod32u,
|
|
opAndType{OMOD, TINT64}: ssa.OpMod64,
|
|
opAndType{OMOD, TUINT64}: ssa.OpMod64u,
|
|
|
|
opAndType{OAND, TINT8}: ssa.OpAnd8,
|
|
opAndType{OAND, TUINT8}: ssa.OpAnd8,
|
|
opAndType{OAND, TINT16}: ssa.OpAnd16,
|
|
opAndType{OAND, TUINT16}: ssa.OpAnd16,
|
|
opAndType{OAND, TINT32}: ssa.OpAnd32,
|
|
opAndType{OAND, TUINT32}: ssa.OpAnd32,
|
|
opAndType{OAND, TINT64}: ssa.OpAnd64,
|
|
opAndType{OAND, TUINT64}: ssa.OpAnd64,
|
|
|
|
opAndType{OOR, TINT8}: ssa.OpOr8,
|
|
opAndType{OOR, TUINT8}: ssa.OpOr8,
|
|
opAndType{OOR, TINT16}: ssa.OpOr16,
|
|
opAndType{OOR, TUINT16}: ssa.OpOr16,
|
|
opAndType{OOR, TINT32}: ssa.OpOr32,
|
|
opAndType{OOR, TUINT32}: ssa.OpOr32,
|
|
opAndType{OOR, TINT64}: ssa.OpOr64,
|
|
opAndType{OOR, TUINT64}: ssa.OpOr64,
|
|
|
|
opAndType{OXOR, TINT8}: ssa.OpXor8,
|
|
opAndType{OXOR, TUINT8}: ssa.OpXor8,
|
|
opAndType{OXOR, TINT16}: ssa.OpXor16,
|
|
opAndType{OXOR, TUINT16}: ssa.OpXor16,
|
|
opAndType{OXOR, TINT32}: ssa.OpXor32,
|
|
opAndType{OXOR, TUINT32}: ssa.OpXor32,
|
|
opAndType{OXOR, TINT64}: ssa.OpXor64,
|
|
opAndType{OXOR, TUINT64}: ssa.OpXor64,
|
|
|
|
opAndType{OEQ, TBOOL}: ssa.OpEqB,
|
|
opAndType{OEQ, TINT8}: ssa.OpEq8,
|
|
opAndType{OEQ, TUINT8}: ssa.OpEq8,
|
|
opAndType{OEQ, TINT16}: ssa.OpEq16,
|
|
opAndType{OEQ, TUINT16}: ssa.OpEq16,
|
|
opAndType{OEQ, TINT32}: ssa.OpEq32,
|
|
opAndType{OEQ, TUINT32}: ssa.OpEq32,
|
|
opAndType{OEQ, TINT64}: ssa.OpEq64,
|
|
opAndType{OEQ, TUINT64}: ssa.OpEq64,
|
|
opAndType{OEQ, TINTER}: ssa.OpEqInter,
|
|
opAndType{OEQ, TSLICE}: ssa.OpEqSlice,
|
|
opAndType{OEQ, TFUNC}: ssa.OpEqPtr,
|
|
opAndType{OEQ, TMAP}: ssa.OpEqPtr,
|
|
opAndType{OEQ, TCHAN}: ssa.OpEqPtr,
|
|
opAndType{OEQ, TPTR32}: ssa.OpEqPtr,
|
|
opAndType{OEQ, TPTR64}: ssa.OpEqPtr,
|
|
opAndType{OEQ, TUINTPTR}: ssa.OpEqPtr,
|
|
opAndType{OEQ, TUNSAFEPTR}: ssa.OpEqPtr,
|
|
opAndType{OEQ, TFLOAT64}: ssa.OpEq64F,
|
|
opAndType{OEQ, TFLOAT32}: ssa.OpEq32F,
|
|
|
|
opAndType{ONE, TBOOL}: ssa.OpNeqB,
|
|
opAndType{ONE, TINT8}: ssa.OpNeq8,
|
|
opAndType{ONE, TUINT8}: ssa.OpNeq8,
|
|
opAndType{ONE, TINT16}: ssa.OpNeq16,
|
|
opAndType{ONE, TUINT16}: ssa.OpNeq16,
|
|
opAndType{ONE, TINT32}: ssa.OpNeq32,
|
|
opAndType{ONE, TUINT32}: ssa.OpNeq32,
|
|
opAndType{ONE, TINT64}: ssa.OpNeq64,
|
|
opAndType{ONE, TUINT64}: ssa.OpNeq64,
|
|
opAndType{ONE, TINTER}: ssa.OpNeqInter,
|
|
opAndType{ONE, TSLICE}: ssa.OpNeqSlice,
|
|
opAndType{ONE, TFUNC}: ssa.OpNeqPtr,
|
|
opAndType{ONE, TMAP}: ssa.OpNeqPtr,
|
|
opAndType{ONE, TCHAN}: ssa.OpNeqPtr,
|
|
opAndType{ONE, TPTR32}: ssa.OpNeqPtr,
|
|
opAndType{ONE, TPTR64}: ssa.OpNeqPtr,
|
|
opAndType{ONE, TUINTPTR}: ssa.OpNeqPtr,
|
|
opAndType{ONE, TUNSAFEPTR}: ssa.OpNeqPtr,
|
|
opAndType{ONE, TFLOAT64}: ssa.OpNeq64F,
|
|
opAndType{ONE, TFLOAT32}: ssa.OpNeq32F,
|
|
|
|
opAndType{OLT, TINT8}: ssa.OpLess8,
|
|
opAndType{OLT, TUINT8}: ssa.OpLess8U,
|
|
opAndType{OLT, TINT16}: ssa.OpLess16,
|
|
opAndType{OLT, TUINT16}: ssa.OpLess16U,
|
|
opAndType{OLT, TINT32}: ssa.OpLess32,
|
|
opAndType{OLT, TUINT32}: ssa.OpLess32U,
|
|
opAndType{OLT, TINT64}: ssa.OpLess64,
|
|
opAndType{OLT, TUINT64}: ssa.OpLess64U,
|
|
opAndType{OLT, TFLOAT64}: ssa.OpLess64F,
|
|
opAndType{OLT, TFLOAT32}: ssa.OpLess32F,
|
|
|
|
opAndType{OGT, TINT8}: ssa.OpGreater8,
|
|
opAndType{OGT, TUINT8}: ssa.OpGreater8U,
|
|
opAndType{OGT, TINT16}: ssa.OpGreater16,
|
|
opAndType{OGT, TUINT16}: ssa.OpGreater16U,
|
|
opAndType{OGT, TINT32}: ssa.OpGreater32,
|
|
opAndType{OGT, TUINT32}: ssa.OpGreater32U,
|
|
opAndType{OGT, TINT64}: ssa.OpGreater64,
|
|
opAndType{OGT, TUINT64}: ssa.OpGreater64U,
|
|
opAndType{OGT, TFLOAT64}: ssa.OpGreater64F,
|
|
opAndType{OGT, TFLOAT32}: ssa.OpGreater32F,
|
|
|
|
opAndType{OLE, TINT8}: ssa.OpLeq8,
|
|
opAndType{OLE, TUINT8}: ssa.OpLeq8U,
|
|
opAndType{OLE, TINT16}: ssa.OpLeq16,
|
|
opAndType{OLE, TUINT16}: ssa.OpLeq16U,
|
|
opAndType{OLE, TINT32}: ssa.OpLeq32,
|
|
opAndType{OLE, TUINT32}: ssa.OpLeq32U,
|
|
opAndType{OLE, TINT64}: ssa.OpLeq64,
|
|
opAndType{OLE, TUINT64}: ssa.OpLeq64U,
|
|
opAndType{OLE, TFLOAT64}: ssa.OpLeq64F,
|
|
opAndType{OLE, TFLOAT32}: ssa.OpLeq32F,
|
|
|
|
opAndType{OGE, TINT8}: ssa.OpGeq8,
|
|
opAndType{OGE, TUINT8}: ssa.OpGeq8U,
|
|
opAndType{OGE, TINT16}: ssa.OpGeq16,
|
|
opAndType{OGE, TUINT16}: ssa.OpGeq16U,
|
|
opAndType{OGE, TINT32}: ssa.OpGeq32,
|
|
opAndType{OGE, TUINT32}: ssa.OpGeq32U,
|
|
opAndType{OGE, TINT64}: ssa.OpGeq64,
|
|
opAndType{OGE, TUINT64}: ssa.OpGeq64U,
|
|
opAndType{OGE, TFLOAT64}: ssa.OpGeq64F,
|
|
opAndType{OGE, TFLOAT32}: ssa.OpGeq32F,
|
|
}
|
|
|
|
func (s *state) concreteEtype(t *Type) EType {
|
|
e := t.Etype
|
|
switch e {
|
|
default:
|
|
return e
|
|
case TINT:
|
|
if s.config.IntSize == 8 {
|
|
return TINT64
|
|
}
|
|
return TINT32
|
|
case TUINT:
|
|
if s.config.IntSize == 8 {
|
|
return TUINT64
|
|
}
|
|
return TUINT32
|
|
case TUINTPTR:
|
|
if s.config.PtrSize == 8 {
|
|
return TUINT64
|
|
}
|
|
return TUINT32
|
|
}
|
|
}
|
|
|
|
func (s *state) ssaOp(op Op, t *Type) ssa.Op {
|
|
etype := s.concreteEtype(t)
|
|
x, ok := opToSSA[opAndType{op, etype}]
|
|
if !ok {
|
|
s.Fatalf("unhandled binary op %v %s", op, etype)
|
|
}
|
|
return x
|
|
}
|
|
|
|
func floatForComplex(t *Type) *Type {
|
|
if t.Size() == 8 {
|
|
return Types[TFLOAT32]
|
|
} else {
|
|
return Types[TFLOAT64]
|
|
}
|
|
}
|
|
|
|
type opAndTwoTypes struct {
|
|
op Op
|
|
etype1 EType
|
|
etype2 EType
|
|
}
|
|
|
|
type twoTypes struct {
|
|
etype1 EType
|
|
etype2 EType
|
|
}
|
|
|
|
type twoOpsAndType struct {
|
|
op1 ssa.Op
|
|
op2 ssa.Op
|
|
intermediateType EType
|
|
}
|
|
|
|
var fpConvOpToSSA = map[twoTypes]twoOpsAndType{
|
|
|
|
twoTypes{TINT8, TFLOAT32}: twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to32F, TINT32},
|
|
twoTypes{TINT16, TFLOAT32}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to32F, TINT32},
|
|
twoTypes{TINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to32F, TINT32},
|
|
twoTypes{TINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to32F, TINT64},
|
|
|
|
twoTypes{TINT8, TFLOAT64}: twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to64F, TINT32},
|
|
twoTypes{TINT16, TFLOAT64}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to64F, TINT32},
|
|
twoTypes{TINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to64F, TINT32},
|
|
twoTypes{TINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to64F, TINT64},
|
|
|
|
twoTypes{TFLOAT32, TINT8}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32},
|
|
twoTypes{TFLOAT32, TINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32},
|
|
twoTypes{TFLOAT32, TINT32}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpCopy, TINT32},
|
|
twoTypes{TFLOAT32, TINT64}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpCopy, TINT64},
|
|
|
|
twoTypes{TFLOAT64, TINT8}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32},
|
|
twoTypes{TFLOAT64, TINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32},
|
|
twoTypes{TFLOAT64, TINT32}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpCopy, TINT32},
|
|
twoTypes{TFLOAT64, TINT64}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpCopy, TINT64},
|
|
// unsigned
|
|
twoTypes{TUINT8, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to32F, TINT32},
|
|
twoTypes{TUINT16, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to32F, TINT32},
|
|
twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to32F, TINT64}, // go wide to dodge unsigned
|
|
twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64}, // Cvt64Uto32F, branchy code expansion instead
|
|
|
|
twoTypes{TUINT8, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to64F, TINT32},
|
|
twoTypes{TUINT16, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to64F, TINT32},
|
|
twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to64F, TINT64}, // go wide to dodge unsigned
|
|
twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64}, // Cvt64Uto64F, branchy code expansion instead
|
|
|
|
twoTypes{TFLOAT32, TUINT8}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32},
|
|
twoTypes{TFLOAT32, TUINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32},
|
|
twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned
|
|
twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64}, // Cvt32Fto64U, branchy code expansion instead
|
|
|
|
twoTypes{TFLOAT64, TUINT8}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32},
|
|
twoTypes{TFLOAT64, TUINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32},
|
|
twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned
|
|
twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64}, // Cvt64Fto64U, branchy code expansion instead
|
|
|
|
// float
|
|
twoTypes{TFLOAT64, TFLOAT32}: twoOpsAndType{ssa.OpCvt64Fto32F, ssa.OpCopy, TFLOAT32},
|
|
twoTypes{TFLOAT64, TFLOAT64}: twoOpsAndType{ssa.OpRound64F, ssa.OpCopy, TFLOAT64},
|
|
twoTypes{TFLOAT32, TFLOAT32}: twoOpsAndType{ssa.OpRound32F, ssa.OpCopy, TFLOAT32},
|
|
twoTypes{TFLOAT32, TFLOAT64}: twoOpsAndType{ssa.OpCvt32Fto64F, ssa.OpCopy, TFLOAT64},
|
|
}
|
|
|
|
// this map is used only for 32-bit arch, and only includes the difference
|
|
// on 32-bit arch, don't use int64<->float conversion for uint32
|
|
var fpConvOpToSSA32 = map[twoTypes]twoOpsAndType{
|
|
twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto32F, TUINT32},
|
|
twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto64F, TUINT32},
|
|
twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto32U, ssa.OpCopy, TUINT32},
|
|
twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto32U, ssa.OpCopy, TUINT32},
|
|
}
|
|
|
|
// uint64<->float conversions, only on machines that have intructions for that
|
|
var uint64fpConvOpToSSA = map[twoTypes]twoOpsAndType{
|
|
twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto32F, TUINT64},
|
|
twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto64F, TUINT64},
|
|
twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpCvt32Fto64U, ssa.OpCopy, TUINT64},
|
|
twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpCvt64Fto64U, ssa.OpCopy, TUINT64},
|
|
}
|
|
|
|
var shiftOpToSSA = map[opAndTwoTypes]ssa.Op{
|
|
opAndTwoTypes{OLSH, TINT8, TUINT8}: ssa.OpLsh8x8,
|
|
opAndTwoTypes{OLSH, TUINT8, TUINT8}: ssa.OpLsh8x8,
|
|
opAndTwoTypes{OLSH, TINT8, TUINT16}: ssa.OpLsh8x16,
|
|
opAndTwoTypes{OLSH, TUINT8, TUINT16}: ssa.OpLsh8x16,
|
|
opAndTwoTypes{OLSH, TINT8, TUINT32}: ssa.OpLsh8x32,
|
|
opAndTwoTypes{OLSH, TUINT8, TUINT32}: ssa.OpLsh8x32,
|
|
opAndTwoTypes{OLSH, TINT8, TUINT64}: ssa.OpLsh8x64,
|
|
opAndTwoTypes{OLSH, TUINT8, TUINT64}: ssa.OpLsh8x64,
|
|
|
|
opAndTwoTypes{OLSH, TINT16, TUINT8}: ssa.OpLsh16x8,
|
|
opAndTwoTypes{OLSH, TUINT16, TUINT8}: ssa.OpLsh16x8,
|
|
opAndTwoTypes{OLSH, TINT16, TUINT16}: ssa.OpLsh16x16,
|
|
opAndTwoTypes{OLSH, TUINT16, TUINT16}: ssa.OpLsh16x16,
|
|
opAndTwoTypes{OLSH, TINT16, TUINT32}: ssa.OpLsh16x32,
|
|
opAndTwoTypes{OLSH, TUINT16, TUINT32}: ssa.OpLsh16x32,
|
|
opAndTwoTypes{OLSH, TINT16, TUINT64}: ssa.OpLsh16x64,
|
|
opAndTwoTypes{OLSH, TUINT16, TUINT64}: ssa.OpLsh16x64,
|
|
|
|
opAndTwoTypes{OLSH, TINT32, TUINT8}: ssa.OpLsh32x8,
|
|
opAndTwoTypes{OLSH, TUINT32, TUINT8}: ssa.OpLsh32x8,
|
|
opAndTwoTypes{OLSH, TINT32, TUINT16}: ssa.OpLsh32x16,
|
|
opAndTwoTypes{OLSH, TUINT32, TUINT16}: ssa.OpLsh32x16,
|
|
opAndTwoTypes{OLSH, TINT32, TUINT32}: ssa.OpLsh32x32,
|
|
opAndTwoTypes{OLSH, TUINT32, TUINT32}: ssa.OpLsh32x32,
|
|
opAndTwoTypes{OLSH, TINT32, TUINT64}: ssa.OpLsh32x64,
|
|
opAndTwoTypes{OLSH, TUINT32, TUINT64}: ssa.OpLsh32x64,
|
|
|
|
opAndTwoTypes{OLSH, TINT64, TUINT8}: ssa.OpLsh64x8,
|
|
opAndTwoTypes{OLSH, TUINT64, TUINT8}: ssa.OpLsh64x8,
|
|
opAndTwoTypes{OLSH, TINT64, TUINT16}: ssa.OpLsh64x16,
|
|
opAndTwoTypes{OLSH, TUINT64, TUINT16}: ssa.OpLsh64x16,
|
|
opAndTwoTypes{OLSH, TINT64, TUINT32}: ssa.OpLsh64x32,
|
|
opAndTwoTypes{OLSH, TUINT64, TUINT32}: ssa.OpLsh64x32,
|
|
opAndTwoTypes{OLSH, TINT64, TUINT64}: ssa.OpLsh64x64,
|
|
opAndTwoTypes{OLSH, TUINT64, TUINT64}: ssa.OpLsh64x64,
|
|
|
|
opAndTwoTypes{ORSH, TINT8, TUINT8}: ssa.OpRsh8x8,
|
|
opAndTwoTypes{ORSH, TUINT8, TUINT8}: ssa.OpRsh8Ux8,
|
|
opAndTwoTypes{ORSH, TINT8, TUINT16}: ssa.OpRsh8x16,
|
|
opAndTwoTypes{ORSH, TUINT8, TUINT16}: ssa.OpRsh8Ux16,
|
|
opAndTwoTypes{ORSH, TINT8, TUINT32}: ssa.OpRsh8x32,
|
|
opAndTwoTypes{ORSH, TUINT8, TUINT32}: ssa.OpRsh8Ux32,
|
|
opAndTwoTypes{ORSH, TINT8, TUINT64}: ssa.OpRsh8x64,
|
|
opAndTwoTypes{ORSH, TUINT8, TUINT64}: ssa.OpRsh8Ux64,
|
|
|
|
opAndTwoTypes{ORSH, TINT16, TUINT8}: ssa.OpRsh16x8,
|
|
opAndTwoTypes{ORSH, TUINT16, TUINT8}: ssa.OpRsh16Ux8,
|
|
opAndTwoTypes{ORSH, TINT16, TUINT16}: ssa.OpRsh16x16,
|
|
opAndTwoTypes{ORSH, TUINT16, TUINT16}: ssa.OpRsh16Ux16,
|
|
opAndTwoTypes{ORSH, TINT16, TUINT32}: ssa.OpRsh16x32,
|
|
opAndTwoTypes{ORSH, TUINT16, TUINT32}: ssa.OpRsh16Ux32,
|
|
opAndTwoTypes{ORSH, TINT16, TUINT64}: ssa.OpRsh16x64,
|
|
opAndTwoTypes{ORSH, TUINT16, TUINT64}: ssa.OpRsh16Ux64,
|
|
|
|
opAndTwoTypes{ORSH, TINT32, TUINT8}: ssa.OpRsh32x8,
|
|
opAndTwoTypes{ORSH, TUINT32, TUINT8}: ssa.OpRsh32Ux8,
|
|
opAndTwoTypes{ORSH, TINT32, TUINT16}: ssa.OpRsh32x16,
|
|
opAndTwoTypes{ORSH, TUINT32, TUINT16}: ssa.OpRsh32Ux16,
|
|
opAndTwoTypes{ORSH, TINT32, TUINT32}: ssa.OpRsh32x32,
|
|
opAndTwoTypes{ORSH, TUINT32, TUINT32}: ssa.OpRsh32Ux32,
|
|
opAndTwoTypes{ORSH, TINT32, TUINT64}: ssa.OpRsh32x64,
|
|
opAndTwoTypes{ORSH, TUINT32, TUINT64}: ssa.OpRsh32Ux64,
|
|
|
|
opAndTwoTypes{ORSH, TINT64, TUINT8}: ssa.OpRsh64x8,
|
|
opAndTwoTypes{ORSH, TUINT64, TUINT8}: ssa.OpRsh64Ux8,
|
|
opAndTwoTypes{ORSH, TINT64, TUINT16}: ssa.OpRsh64x16,
|
|
opAndTwoTypes{ORSH, TUINT64, TUINT16}: ssa.OpRsh64Ux16,
|
|
opAndTwoTypes{ORSH, TINT64, TUINT32}: ssa.OpRsh64x32,
|
|
opAndTwoTypes{ORSH, TUINT64, TUINT32}: ssa.OpRsh64Ux32,
|
|
opAndTwoTypes{ORSH, TINT64, TUINT64}: ssa.OpRsh64x64,
|
|
opAndTwoTypes{ORSH, TUINT64, TUINT64}: ssa.OpRsh64Ux64,
|
|
}
|
|
|
|
func (s *state) ssaShiftOp(op Op, t *Type, u *Type) ssa.Op {
|
|
etype1 := s.concreteEtype(t)
|
|
etype2 := s.concreteEtype(u)
|
|
x, ok := shiftOpToSSA[opAndTwoTypes{op, etype1, etype2}]
|
|
if !ok {
|
|
s.Fatalf("unhandled shift op %v etype=%s/%s", op, etype1, etype2)
|
|
}
|
|
return x
|
|
}
|
|
|
|
// expr converts the expression n to ssa, adds it to s and returns the ssa result.
|
|
func (s *state) expr(n *Node) *ssa.Value {
|
|
if !(n.Op == ONAME || n.Op == OLITERAL && n.Sym != nil) {
|
|
// ONAMEs and named OLITERALs have the line number
|
|
// of the decl, not the use. See issue 14742.
|
|
s.pushLine(n.Pos)
|
|
defer s.popLine()
|
|
}
|
|
|
|
s.stmtList(n.Ninit)
|
|
switch n.Op {
|
|
case OARRAYBYTESTRTMP:
|
|
slice := s.expr(n.Left)
|
|
ptr := s.newValue1(ssa.OpSlicePtr, ptrto(Types[TUINT8]), slice)
|
|
len := s.newValue1(ssa.OpSliceLen, Types[TINT], slice)
|
|
return s.newValue2(ssa.OpStringMake, n.Type, ptr, len)
|
|
case OSTRARRAYBYTETMP:
|
|
str := s.expr(n.Left)
|
|
ptr := s.newValue1(ssa.OpStringPtr, ptrto(Types[TUINT8]), str)
|
|
len := s.newValue1(ssa.OpStringLen, Types[TINT], str)
|
|
return s.newValue3(ssa.OpSliceMake, n.Type, ptr, len, len)
|
|
case OCFUNC:
|
|
aux := s.lookupSymbol(n, &ssa.ExternSymbol{Typ: n.Type, Sym: Linksym(n.Left.Sym)})
|
|
return s.entryNewValue1A(ssa.OpAddr, n.Type, aux, s.sb)
|
|
case ONAME:
|
|
if n.Class == PFUNC {
|
|
// "value" of a function is the address of the function's closure
|
|
sym := Linksym(funcsym(n.Sym))
|
|
aux := &ssa.ExternSymbol{Typ: n.Type, Sym: sym}
|
|
return s.entryNewValue1A(ssa.OpAddr, ptrto(n.Type), aux, s.sb)
|
|
}
|
|
if s.canSSA(n) {
|
|
return s.variable(n, n.Type)
|
|
}
|
|
addr := s.addr(n, false)
|
|
return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
|
|
case OCLOSUREVAR:
|
|
addr := s.addr(n, false)
|
|
return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
|
|
case OLITERAL:
|
|
switch u := n.Val().U.(type) {
|
|
case *Mpint:
|
|
i := u.Int64()
|
|
switch n.Type.Size() {
|
|
case 1:
|
|
return s.constInt8(n.Type, int8(i))
|
|
case 2:
|
|
return s.constInt16(n.Type, int16(i))
|
|
case 4:
|
|
return s.constInt32(n.Type, int32(i))
|
|
case 8:
|
|
return s.constInt64(n.Type, i)
|
|
default:
|
|
s.Fatalf("bad integer size %d", n.Type.Size())
|
|
return nil
|
|
}
|
|
case string:
|
|
if u == "" {
|
|
return s.constEmptyString(n.Type)
|
|
}
|
|
return s.entryNewValue0A(ssa.OpConstString, n.Type, u)
|
|
case bool:
|
|
return s.constBool(u)
|
|
case *NilVal:
|
|
t := n.Type
|
|
switch {
|
|
case t.IsSlice():
|
|
return s.constSlice(t)
|
|
case t.IsInterface():
|
|
return s.constInterface(t)
|
|
default:
|
|
return s.constNil(t)
|
|
}
|
|
case *Mpflt:
|
|
switch n.Type.Size() {
|
|
case 4:
|
|
return s.constFloat32(n.Type, u.Float32())
|
|
case 8:
|
|
return s.constFloat64(n.Type, u.Float64())
|
|
default:
|
|
s.Fatalf("bad float size %d", n.Type.Size())
|
|
return nil
|
|
}
|
|
case *Mpcplx:
|
|
r := &u.Real
|
|
i := &u.Imag
|
|
switch n.Type.Size() {
|
|
case 8:
|
|
pt := Types[TFLOAT32]
|
|
return s.newValue2(ssa.OpComplexMake, n.Type,
|
|
s.constFloat32(pt, r.Float32()),
|
|
s.constFloat32(pt, i.Float32()))
|
|
case 16:
|
|
pt := Types[TFLOAT64]
|
|
return s.newValue2(ssa.OpComplexMake, n.Type,
|
|
s.constFloat64(pt, r.Float64()),
|
|
s.constFloat64(pt, i.Float64()))
|
|
default:
|
|
s.Fatalf("bad float size %d", n.Type.Size())
|
|
return nil
|
|
}
|
|
|
|
default:
|
|
s.Fatalf("unhandled OLITERAL %v", n.Val().Ctype())
|
|
return nil
|
|
}
|
|
case OCONVNOP:
|
|
to := n.Type
|
|
from := n.Left.Type
|
|
|
|
// Assume everything will work out, so set up our return value.
|
|
// Anything interesting that happens from here is a fatal.
|
|
x := s.expr(n.Left)
|
|
|
|
// Special case for not confusing GC and liveness.
|
|
// We don't want pointers accidentally classified
|
|
// as not-pointers or vice-versa because of copy
|
|
// elision.
|
|
if to.IsPtrShaped() != from.IsPtrShaped() {
|
|
return s.newValue2(ssa.OpConvert, to, x, s.mem())
|
|
}
|
|
|
|
v := s.newValue1(ssa.OpCopy, to, x) // ensure that v has the right type
|
|
|
|
// CONVNOP closure
|
|
if to.Etype == TFUNC && from.IsPtrShaped() {
|
|
return v
|
|
}
|
|
|
|
// named <--> unnamed type or typed <--> untyped const
|
|
if from.Etype == to.Etype {
|
|
return v
|
|
}
|
|
|
|
// unsafe.Pointer <--> *T
|
|
if to.Etype == TUNSAFEPTR && from.IsPtr() || from.Etype == TUNSAFEPTR && to.IsPtr() {
|
|
return v
|
|
}
|
|
|
|
dowidth(from)
|
|
dowidth(to)
|
|
if from.Width != to.Width {
|
|
s.Fatalf("CONVNOP width mismatch %v (%d) -> %v (%d)\n", from, from.Width, to, to.Width)
|
|
return nil
|
|
}
|
|
if etypesign(from.Etype) != etypesign(to.Etype) {
|
|
s.Fatalf("CONVNOP sign mismatch %v (%s) -> %v (%s)\n", from, from.Etype, to, to.Etype)
|
|
return nil
|
|
}
|
|
|
|
if instrumenting {
|
|
// These appear to be fine, but they fail the
|
|
// integer constraint below, so okay them here.
|
|
// Sample non-integer conversion: map[string]string -> *uint8
|
|
return v
|
|
}
|
|
|
|
if etypesign(from.Etype) == 0 {
|
|
s.Fatalf("CONVNOP unrecognized non-integer %v -> %v\n", from, to)
|
|
return nil
|
|
}
|
|
|
|
// integer, same width, same sign
|
|
return v
|
|
|
|
case OCONV:
|
|
x := s.expr(n.Left)
|
|
ft := n.Left.Type // from type
|
|
tt := n.Type // to type
|
|
if ft.IsBoolean() && tt.IsKind(TUINT8) {
|
|
// Bool -> uint8 is generated internally when indexing into runtime.staticbyte.
|
|
return s.newValue1(ssa.OpCopy, n.Type, x)
|
|
}
|
|
if ft.IsInteger() && tt.IsInteger() {
|
|
var op ssa.Op
|
|
if tt.Size() == ft.Size() {
|
|
op = ssa.OpCopy
|
|
} else if tt.Size() < ft.Size() {
|
|
// truncation
|
|
switch 10*ft.Size() + tt.Size() {
|
|
case 21:
|
|
op = ssa.OpTrunc16to8
|
|
case 41:
|
|
op = ssa.OpTrunc32to8
|
|
case 42:
|
|
op = ssa.OpTrunc32to16
|
|
case 81:
|
|
op = ssa.OpTrunc64to8
|
|
case 82:
|
|
op = ssa.OpTrunc64to16
|
|
case 84:
|
|
op = ssa.OpTrunc64to32
|
|
default:
|
|
s.Fatalf("weird integer truncation %v -> %v", ft, tt)
|
|
}
|
|
} else if ft.IsSigned() {
|
|
// sign extension
|
|
switch 10*ft.Size() + tt.Size() {
|
|
case 12:
|
|
op = ssa.OpSignExt8to16
|
|
case 14:
|
|
op = ssa.OpSignExt8to32
|
|
case 18:
|
|
op = ssa.OpSignExt8to64
|
|
case 24:
|
|
op = ssa.OpSignExt16to32
|
|
case 28:
|
|
op = ssa.OpSignExt16to64
|
|
case 48:
|
|
op = ssa.OpSignExt32to64
|
|
default:
|
|
s.Fatalf("bad integer sign extension %v -> %v", ft, tt)
|
|
}
|
|
} else {
|
|
// zero extension
|
|
switch 10*ft.Size() + tt.Size() {
|
|
case 12:
|
|
op = ssa.OpZeroExt8to16
|
|
case 14:
|
|
op = ssa.OpZeroExt8to32
|
|
case 18:
|
|
op = ssa.OpZeroExt8to64
|
|
case 24:
|
|
op = ssa.OpZeroExt16to32
|
|
case 28:
|
|
op = ssa.OpZeroExt16to64
|
|
case 48:
|
|
op = ssa.OpZeroExt32to64
|
|
default:
|
|
s.Fatalf("weird integer sign extension %v -> %v", ft, tt)
|
|
}
|
|
}
|
|
return s.newValue1(op, n.Type, x)
|
|
}
|
|
|
|
if ft.IsFloat() || tt.IsFloat() {
|
|
conv, ok := fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]
|
|
if s.config.IntSize == 4 && Thearch.LinkArch.Name != "amd64p32" && Thearch.LinkArch.Family != sys.MIPS {
|
|
if conv1, ok1 := fpConvOpToSSA32[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 {
|
|
conv = conv1
|
|
}
|
|
}
|
|
if Thearch.LinkArch.Name == "arm64" {
|
|
if conv1, ok1 := uint64fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 {
|
|
conv = conv1
|
|
}
|
|
}
|
|
|
|
if Thearch.LinkArch.Family == sys.MIPS {
|
|
if ft.Size() == 4 && ft.IsInteger() && !ft.IsSigned() {
|
|
// tt is float32 or float64, and ft is also unsigned
|
|
if tt.Size() == 4 {
|
|
return s.uint32Tofloat32(n, x, ft, tt)
|
|
}
|
|
if tt.Size() == 8 {
|
|
return s.uint32Tofloat64(n, x, ft, tt)
|
|
}
|
|
} else if tt.Size() == 4 && tt.IsInteger() && !tt.IsSigned() {
|
|
// ft is float32 or float64, and tt is unsigned integer
|
|
if ft.Size() == 4 {
|
|
return s.float32ToUint32(n, x, ft, tt)
|
|
}
|
|
if ft.Size() == 8 {
|
|
return s.float64ToUint32(n, x, ft, tt)
|
|
}
|
|
}
|
|
}
|
|
|
|
if !ok {
|
|
s.Fatalf("weird float conversion %v -> %v", ft, tt)
|
|
}
|
|
op1, op2, it := conv.op1, conv.op2, conv.intermediateType
|
|
|
|
if op1 != ssa.OpInvalid && op2 != ssa.OpInvalid {
|
|
// normal case, not tripping over unsigned 64
|
|
if op1 == ssa.OpCopy {
|
|
if op2 == ssa.OpCopy {
|
|
return x
|
|
}
|
|
return s.newValue1(op2, n.Type, x)
|
|
}
|
|
if op2 == ssa.OpCopy {
|
|
return s.newValue1(op1, n.Type, x)
|
|
}
|
|
return s.newValue1(op2, n.Type, s.newValue1(op1, Types[it], x))
|
|
}
|
|
// Tricky 64-bit unsigned cases.
|
|
if ft.IsInteger() {
|
|
// tt is float32 or float64, and ft is also unsigned
|
|
if tt.Size() == 4 {
|
|
return s.uint64Tofloat32(n, x, ft, tt)
|
|
}
|
|
if tt.Size() == 8 {
|
|
return s.uint64Tofloat64(n, x, ft, tt)
|
|
}
|
|
s.Fatalf("weird unsigned integer to float conversion %v -> %v", ft, tt)
|
|
}
|
|
// ft is float32 or float64, and tt is unsigned integer
|
|
if ft.Size() == 4 {
|
|
return s.float32ToUint64(n, x, ft, tt)
|
|
}
|
|
if ft.Size() == 8 {
|
|
return s.float64ToUint64(n, x, ft, tt)
|
|
}
|
|
s.Fatalf("weird float to unsigned integer conversion %v -> %v", ft, tt)
|
|
return nil
|
|
}
|
|
|
|
if ft.IsComplex() && tt.IsComplex() {
|
|
var op ssa.Op
|
|
if ft.Size() == tt.Size() {
|
|
switch ft.Size() {
|
|
case 8:
|
|
op = ssa.OpRound32F
|
|
case 16:
|
|
op = ssa.OpRound64F
|
|
default:
|
|
s.Fatalf("weird complex conversion %v -> %v", ft, tt)
|
|
}
|
|
} else if ft.Size() == 8 && tt.Size() == 16 {
|
|
op = ssa.OpCvt32Fto64F
|
|
} else if ft.Size() == 16 && tt.Size() == 8 {
|
|
op = ssa.OpCvt64Fto32F
|
|
} else {
|
|
s.Fatalf("weird complex conversion %v -> %v", ft, tt)
|
|
}
|
|
ftp := floatForComplex(ft)
|
|
ttp := floatForComplex(tt)
|
|
return s.newValue2(ssa.OpComplexMake, tt,
|
|
s.newValue1(op, ttp, s.newValue1(ssa.OpComplexReal, ftp, x)),
|
|
s.newValue1(op, ttp, s.newValue1(ssa.OpComplexImag, ftp, x)))
|
|
}
|
|
|
|
s.Fatalf("unhandled OCONV %s -> %s", n.Left.Type.Etype, n.Type.Etype)
|
|
return nil
|
|
|
|
case ODOTTYPE:
|
|
res, _ := s.dottype(n, false)
|
|
return res
|
|
|
|
// binary ops
|
|
case OLT, OEQ, ONE, OLE, OGE, OGT:
|
|
a := s.expr(n.Left)
|
|
b := s.expr(n.Right)
|
|
if n.Left.Type.IsComplex() {
|
|
pt := floatForComplex(n.Left.Type)
|
|
op := s.ssaOp(OEQ, pt)
|
|
r := s.newValue2(op, Types[TBOOL], s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b))
|
|
i := s.newValue2(op, Types[TBOOL], s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b))
|
|
c := s.newValue2(ssa.OpAndB, Types[TBOOL], r, i)
|
|
switch n.Op {
|
|
case OEQ:
|
|
return c
|
|
case ONE:
|
|
return s.newValue1(ssa.OpNot, Types[TBOOL], c)
|
|
default:
|
|
s.Fatalf("ordered complex compare %v", n.Op)
|
|
}
|
|
}
|
|
return s.newValue2(s.ssaOp(n.Op, n.Left.Type), Types[TBOOL], a, b)
|
|
case OMUL:
|
|
a := s.expr(n.Left)
|
|
b := s.expr(n.Right)
|
|
if n.Type.IsComplex() {
|
|
mulop := ssa.OpMul64F
|
|
addop := ssa.OpAdd64F
|
|
subop := ssa.OpSub64F
|
|
pt := floatForComplex(n.Type) // Could be Float32 or Float64
|
|
wt := Types[TFLOAT64] // Compute in Float64 to minimize cancelation error
|
|
|
|
areal := s.newValue1(ssa.OpComplexReal, pt, a)
|
|
breal := s.newValue1(ssa.OpComplexReal, pt, b)
|
|
aimag := s.newValue1(ssa.OpComplexImag, pt, a)
|
|
bimag := s.newValue1(ssa.OpComplexImag, pt, b)
|
|
|
|
if pt != wt { // Widen for calculation
|
|
areal = s.newValue1(ssa.OpCvt32Fto64F, wt, areal)
|
|
breal = s.newValue1(ssa.OpCvt32Fto64F, wt, breal)
|
|
aimag = s.newValue1(ssa.OpCvt32Fto64F, wt, aimag)
|
|
bimag = s.newValue1(ssa.OpCvt32Fto64F, wt, bimag)
|
|
}
|
|
|
|
xreal := s.newValue2(subop, wt, s.newValue2(mulop, wt, areal, breal), s.newValue2(mulop, wt, aimag, bimag))
|
|
ximag := s.newValue2(addop, wt, s.newValue2(mulop, wt, areal, bimag), s.newValue2(mulop, wt, aimag, breal))
|
|
|
|
if pt != wt { // Narrow to store back
|
|
xreal = s.newValue1(ssa.OpCvt64Fto32F, pt, xreal)
|
|
ximag = s.newValue1(ssa.OpCvt64Fto32F, pt, ximag)
|
|
}
|
|
|
|
return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag)
|
|
}
|
|
return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
|
|
|
|
case ODIV:
|
|
a := s.expr(n.Left)
|
|
b := s.expr(n.Right)
|
|
if n.Type.IsComplex() {
|
|
// TODO this is not executed because the front-end substitutes a runtime call.
|
|
// That probably ought to change; with modest optimization the widen/narrow
|
|
// conversions could all be elided in larger expression trees.
|
|
mulop := ssa.OpMul64F
|
|
addop := ssa.OpAdd64F
|
|
subop := ssa.OpSub64F
|
|
divop := ssa.OpDiv64F
|
|
pt := floatForComplex(n.Type) // Could be Float32 or Float64
|
|
wt := Types[TFLOAT64] // Compute in Float64 to minimize cancelation error
|
|
|
|
areal := s.newValue1(ssa.OpComplexReal, pt, a)
|
|
breal := s.newValue1(ssa.OpComplexReal, pt, b)
|
|
aimag := s.newValue1(ssa.OpComplexImag, pt, a)
|
|
bimag := s.newValue1(ssa.OpComplexImag, pt, b)
|
|
|
|
if pt != wt { // Widen for calculation
|
|
areal = s.newValue1(ssa.OpCvt32Fto64F, wt, areal)
|
|
breal = s.newValue1(ssa.OpCvt32Fto64F, wt, breal)
|
|
aimag = s.newValue1(ssa.OpCvt32Fto64F, wt, aimag)
|
|
bimag = s.newValue1(ssa.OpCvt32Fto64F, wt, bimag)
|
|
}
|
|
|
|
denom := s.newValue2(addop, wt, s.newValue2(mulop, wt, breal, breal), s.newValue2(mulop, wt, bimag, bimag))
|
|
xreal := s.newValue2(addop, wt, s.newValue2(mulop, wt, areal, breal), s.newValue2(mulop, wt, aimag, bimag))
|
|
ximag := s.newValue2(subop, wt, s.newValue2(mulop, wt, aimag, breal), s.newValue2(mulop, wt, areal, bimag))
|
|
|
|
// TODO not sure if this is best done in wide precision or narrow
|
|
// Double-rounding might be an issue.
|
|
// Note that the pre-SSA implementation does the entire calculation
|
|
// in wide format, so wide is compatible.
|
|
xreal = s.newValue2(divop, wt, xreal, denom)
|
|
ximag = s.newValue2(divop, wt, ximag, denom)
|
|
|
|
if pt != wt { // Narrow to store back
|
|
xreal = s.newValue1(ssa.OpCvt64Fto32F, pt, xreal)
|
|
ximag = s.newValue1(ssa.OpCvt64Fto32F, pt, ximag)
|
|
}
|
|
return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag)
|
|
}
|
|
if n.Type.IsFloat() {
|
|
return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
|
|
}
|
|
return s.intDivide(n, a, b)
|
|
case OMOD:
|
|
a := s.expr(n.Left)
|
|
b := s.expr(n.Right)
|
|
return s.intDivide(n, a, b)
|
|
case OADD, OSUB:
|
|
a := s.expr(n.Left)
|
|
b := s.expr(n.Right)
|
|
if n.Type.IsComplex() {
|
|
pt := floatForComplex(n.Type)
|
|
op := s.ssaOp(n.Op, pt)
|
|
return s.newValue2(ssa.OpComplexMake, n.Type,
|
|
s.newValue2(op, pt, s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)),
|
|
s.newValue2(op, pt, s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b)))
|
|
}
|
|
return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
|
|
case OAND, OOR, OXOR:
|
|
a := s.expr(n.Left)
|
|
b := s.expr(n.Right)
|
|
return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
|
|
case OLSH, ORSH:
|
|
a := s.expr(n.Left)
|
|
b := s.expr(n.Right)
|
|
return s.newValue2(s.ssaShiftOp(n.Op, n.Type, n.Right.Type), a.Type, a, b)
|
|
case OANDAND, OOROR:
|
|
// To implement OANDAND (and OOROR), we introduce a
|
|
// new temporary variable to hold the result. The
|
|
// variable is associated with the OANDAND node in the
|
|
// s.vars table (normally variables are only
|
|
// associated with ONAME nodes). We convert
|
|
// A && B
|
|
// to
|
|
// var = A
|
|
// if var {
|
|
// var = B
|
|
// }
|
|
// Using var in the subsequent block introduces the
|
|
// necessary phi variable.
|
|
el := s.expr(n.Left)
|
|
s.vars[n] = el
|
|
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockIf
|
|
b.SetControl(el)
|
|
// In theory, we should set b.Likely here based on context.
|
|
// However, gc only gives us likeliness hints
|
|
// in a single place, for plain OIF statements,
|
|
// and passing around context is finnicky, so don't bother for now.
|
|
|
|
bRight := s.f.NewBlock(ssa.BlockPlain)
|
|
bResult := s.f.NewBlock(ssa.BlockPlain)
|
|
if n.Op == OANDAND {
|
|
b.AddEdgeTo(bRight)
|
|
b.AddEdgeTo(bResult)
|
|
} else if n.Op == OOROR {
|
|
b.AddEdgeTo(bResult)
|
|
b.AddEdgeTo(bRight)
|
|
}
|
|
|
|
s.startBlock(bRight)
|
|
er := s.expr(n.Right)
|
|
s.vars[n] = er
|
|
|
|
b = s.endBlock()
|
|
b.AddEdgeTo(bResult)
|
|
|
|
s.startBlock(bResult)
|
|
return s.variable(n, Types[TBOOL])
|
|
case OCOMPLEX:
|
|
r := s.expr(n.Left)
|
|
i := s.expr(n.Right)
|
|
return s.newValue2(ssa.OpComplexMake, n.Type, r, i)
|
|
|
|
// unary ops
|
|
case OMINUS:
|
|
a := s.expr(n.Left)
|
|
if n.Type.IsComplex() {
|
|
tp := floatForComplex(n.Type)
|
|
negop := s.ssaOp(n.Op, tp)
|
|
return s.newValue2(ssa.OpComplexMake, n.Type,
|
|
s.newValue1(negop, tp, s.newValue1(ssa.OpComplexReal, tp, a)),
|
|
s.newValue1(negop, tp, s.newValue1(ssa.OpComplexImag, tp, a)))
|
|
}
|
|
return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a)
|
|
case ONOT, OCOM:
|
|
a := s.expr(n.Left)
|
|
return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a)
|
|
case OIMAG, OREAL:
|
|
a := s.expr(n.Left)
|
|
return s.newValue1(s.ssaOp(n.Op, n.Left.Type), n.Type, a)
|
|
case OPLUS:
|
|
return s.expr(n.Left)
|
|
|
|
case OADDR:
|
|
return s.addr(n.Left, n.Bounded())
|
|
|
|
case OINDREGSP:
|
|
addr := s.constOffPtrSP(ptrto(n.Type), n.Xoffset)
|
|
return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
|
|
|
|
case OIND:
|
|
p := s.exprPtr(n.Left, false, n.Pos)
|
|
return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
|
|
|
|
case ODOT:
|
|
t := n.Left.Type
|
|
if canSSAType(t) {
|
|
v := s.expr(n.Left)
|
|
return s.newValue1I(ssa.OpStructSelect, n.Type, int64(fieldIdx(n)), v)
|
|
}
|
|
if n.Left.Op == OSTRUCTLIT {
|
|
// All literals with nonzero fields have already been
|
|
// rewritten during walk. Any that remain are just T{}
|
|
// or equivalents. Use the zero value.
|
|
if !iszero(n.Left) {
|
|
Fatalf("literal with nonzero value in SSA: %v", n.Left)
|
|
}
|
|
return s.zeroVal(n.Type)
|
|
}
|
|
p := s.addr(n, false)
|
|
return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
|
|
|
|
case ODOTPTR:
|
|
p := s.exprPtr(n.Left, false, n.Pos)
|
|
p = s.newValue1I(ssa.OpOffPtr, ptrto(n.Type), n.Xoffset, p)
|
|
return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
|
|
|
|
case OINDEX:
|
|
switch {
|
|
case n.Left.Type.IsString():
|
|
if n.Bounded() && Isconst(n.Left, CTSTR) && Isconst(n.Right, CTINT) {
|
|
// Replace "abc"[1] with 'b'.
|
|
// Delayed until now because "abc"[1] is not an ideal constant.
|
|
// See test/fixedbugs/issue11370.go.
|
|
return s.newValue0I(ssa.OpConst8, Types[TUINT8], int64(int8(n.Left.Val().U.(string)[n.Right.Int64()])))
|
|
}
|
|
a := s.expr(n.Left)
|
|
i := s.expr(n.Right)
|
|
i = s.extendIndex(i, panicindex)
|
|
if !n.Bounded() {
|
|
len := s.newValue1(ssa.OpStringLen, Types[TINT], a)
|
|
s.boundsCheck(i, len)
|
|
}
|
|
ptrtyp := ptrto(Types[TUINT8])
|
|
ptr := s.newValue1(ssa.OpStringPtr, ptrtyp, a)
|
|
if Isconst(n.Right, CTINT) {
|
|
ptr = s.newValue1I(ssa.OpOffPtr, ptrtyp, n.Right.Int64(), ptr)
|
|
} else {
|
|
ptr = s.newValue2(ssa.OpAddPtr, ptrtyp, ptr, i)
|
|
}
|
|
return s.newValue2(ssa.OpLoad, Types[TUINT8], ptr, s.mem())
|
|
case n.Left.Type.IsSlice():
|
|
p := s.addr(n, false)
|
|
return s.newValue2(ssa.OpLoad, n.Left.Type.Elem(), p, s.mem())
|
|
case n.Left.Type.IsArray():
|
|
if bound := n.Left.Type.NumElem(); bound <= 1 {
|
|
// SSA can handle arrays of length at most 1.
|
|
a := s.expr(n.Left)
|
|
i := s.expr(n.Right)
|
|
if bound == 0 {
|
|
// Bounds check will never succeed. Might as well
|
|
// use constants for the bounds check.
|
|
z := s.constInt(Types[TINT], 0)
|
|
s.boundsCheck(z, z)
|
|
// The return value won't be live, return junk.
|
|
return s.newValue0(ssa.OpUnknown, n.Type)
|
|
}
|
|
i = s.extendIndex(i, panicindex)
|
|
s.boundsCheck(i, s.constInt(Types[TINT], bound))
|
|
return s.newValue1I(ssa.OpArraySelect, n.Type, 0, a)
|
|
}
|
|
p := s.addr(n, false)
|
|
return s.newValue2(ssa.OpLoad, n.Left.Type.Elem(), p, s.mem())
|
|
default:
|
|
s.Fatalf("bad type for index %v", n.Left.Type)
|
|
return nil
|
|
}
|
|
|
|
case OLEN, OCAP:
|
|
switch {
|
|
case n.Left.Type.IsSlice():
|
|
op := ssa.OpSliceLen
|
|
if n.Op == OCAP {
|
|
op = ssa.OpSliceCap
|
|
}
|
|
return s.newValue1(op, Types[TINT], s.expr(n.Left))
|
|
case n.Left.Type.IsString(): // string; not reachable for OCAP
|
|
return s.newValue1(ssa.OpStringLen, Types[TINT], s.expr(n.Left))
|
|
case n.Left.Type.IsMap(), n.Left.Type.IsChan():
|
|
return s.referenceTypeBuiltin(n, s.expr(n.Left))
|
|
default: // array
|
|
return s.constInt(Types[TINT], n.Left.Type.NumElem())
|
|
}
|
|
|
|
case OSPTR:
|
|
a := s.expr(n.Left)
|
|
if n.Left.Type.IsSlice() {
|
|
return s.newValue1(ssa.OpSlicePtr, n.Type, a)
|
|
} else {
|
|
return s.newValue1(ssa.OpStringPtr, n.Type, a)
|
|
}
|
|
|
|
case OITAB:
|
|
a := s.expr(n.Left)
|
|
return s.newValue1(ssa.OpITab, n.Type, a)
|
|
|
|
case OIDATA:
|
|
a := s.expr(n.Left)
|
|
return s.newValue1(ssa.OpIData, n.Type, a)
|
|
|
|
case OEFACE:
|
|
tab := s.expr(n.Left)
|
|
data := s.expr(n.Right)
|
|
return s.newValue2(ssa.OpIMake, n.Type, tab, data)
|
|
|
|
case OSLICE, OSLICEARR, OSLICE3, OSLICE3ARR:
|
|
v := s.expr(n.Left)
|
|
var i, j, k *ssa.Value
|
|
low, high, max := n.SliceBounds()
|
|
if low != nil {
|
|
i = s.extendIndex(s.expr(low), panicslice)
|
|
}
|
|
if high != nil {
|
|
j = s.extendIndex(s.expr(high), panicslice)
|
|
}
|
|
if max != nil {
|
|
k = s.extendIndex(s.expr(max), panicslice)
|
|
}
|
|
p, l, c := s.slice(n.Left.Type, v, i, j, k)
|
|
return s.newValue3(ssa.OpSliceMake, n.Type, p, l, c)
|
|
|
|
case OSLICESTR:
|
|
v := s.expr(n.Left)
|
|
var i, j *ssa.Value
|
|
low, high, _ := n.SliceBounds()
|
|
if low != nil {
|
|
i = s.extendIndex(s.expr(low), panicslice)
|
|
}
|
|
if high != nil {
|
|
j = s.extendIndex(s.expr(high), panicslice)
|
|
}
|
|
p, l, _ := s.slice(n.Left.Type, v, i, j, nil)
|
|
return s.newValue2(ssa.OpStringMake, n.Type, p, l)
|
|
|
|
case OCALLFUNC:
|
|
if isIntrinsicCall(n) {
|
|
return s.intrinsicCall(n)
|
|
}
|
|
fallthrough
|
|
|
|
case OCALLINTER, OCALLMETH:
|
|
a := s.call(n, callNormal)
|
|
return s.newValue2(ssa.OpLoad, n.Type, a, s.mem())
|
|
|
|
case OGETG:
|
|
return s.newValue1(ssa.OpGetG, n.Type, s.mem())
|
|
|
|
case OAPPEND:
|
|
return s.append(n, false)
|
|
|
|
case OSTRUCTLIT, OARRAYLIT:
|
|
// All literals with nonzero fields have already been
|
|
// rewritten during walk. Any that remain are just T{}
|
|
// or equivalents. Use the zero value.
|
|
if !iszero(n) {
|
|
Fatalf("literal with nonzero value in SSA: %v", n)
|
|
}
|
|
return s.zeroVal(n.Type)
|
|
|
|
default:
|
|
s.Fatalf("unhandled expr %v", n.Op)
|
|
return nil
|
|
}
|
|
}
|
|
|
|
// append converts an OAPPEND node to SSA.
|
|
// If inplace is false, it converts the OAPPEND expression n to an ssa.Value,
|
|
// adds it to s, and returns the Value.
|
|
// If inplace is true, it writes the result of the OAPPEND expression n
|
|
// back to the slice being appended to, and returns nil.
|
|
// inplace MUST be set to false if the slice can be SSA'd.
|
|
func (s *state) append(n *Node, inplace bool) *ssa.Value {
|
|
// If inplace is false, process as expression "append(s, e1, e2, e3)":
|
|
//
|
|
// ptr, len, cap := s
|
|
// newlen := len + 3
|
|
// if newlen > cap {
|
|
// ptr, len, cap = growslice(s, newlen)
|
|
// newlen = len + 3 // recalculate to avoid a spill
|
|
// }
|
|
// // with write barriers, if needed:
|
|
// *(ptr+len) = e1
|
|
// *(ptr+len+1) = e2
|
|
// *(ptr+len+2) = e3
|
|
// return makeslice(ptr, newlen, cap)
|
|
//
|
|
//
|
|
// If inplace is true, process as statement "s = append(s, e1, e2, e3)":
|
|
//
|
|
// a := &s
|
|
// ptr, len, cap := s
|
|
// newlen := len + 3
|
|
// if newlen > cap {
|
|
// newptr, len, newcap = growslice(ptr, len, cap, newlen)
|
|
// vardef(a) // if necessary, advise liveness we are writing a new a
|
|
// *a.cap = newcap // write before ptr to avoid a spill
|
|
// *a.ptr = newptr // with write barrier
|
|
// }
|
|
// newlen = len + 3 // recalculate to avoid a spill
|
|
// *a.len = newlen
|
|
// // with write barriers, if needed:
|
|
// *(ptr+len) = e1
|
|
// *(ptr+len+1) = e2
|
|
// *(ptr+len+2) = e3
|
|
|
|
et := n.Type.Elem()
|
|
pt := ptrto(et)
|
|
|
|
// Evaluate slice
|
|
sn := n.List.First() // the slice node is the first in the list
|
|
|
|
var slice, addr *ssa.Value
|
|
if inplace {
|
|
addr = s.addr(sn, false)
|
|
slice = s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
|
|
} else {
|
|
slice = s.expr(sn)
|
|
}
|
|
|
|
// Allocate new blocks
|
|
grow := s.f.NewBlock(ssa.BlockPlain)
|
|
assign := s.f.NewBlock(ssa.BlockPlain)
|
|
|
|
// Decide if we need to grow
|
|
nargs := int64(n.List.Len() - 1)
|
|
p := s.newValue1(ssa.OpSlicePtr, pt, slice)
|
|
l := s.newValue1(ssa.OpSliceLen, Types[TINT], slice)
|
|
c := s.newValue1(ssa.OpSliceCap, Types[TINT], slice)
|
|
nl := s.newValue2(s.ssaOp(OADD, Types[TINT]), Types[TINT], l, s.constInt(Types[TINT], nargs))
|
|
|
|
cmp := s.newValue2(s.ssaOp(OGT, Types[TINT]), Types[TBOOL], nl, c)
|
|
s.vars[&ptrVar] = p
|
|
|
|
if !inplace {
|
|
s.vars[&newlenVar] = nl
|
|
s.vars[&capVar] = c
|
|
} else {
|
|
s.vars[&lenVar] = l
|
|
}
|
|
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockIf
|
|
b.Likely = ssa.BranchUnlikely
|
|
b.SetControl(cmp)
|
|
b.AddEdgeTo(grow)
|
|
b.AddEdgeTo(assign)
|
|
|
|
// Call growslice
|
|
s.startBlock(grow)
|
|
taddr := s.newValue1A(ssa.OpAddr, Types[TUINTPTR], &ssa.ExternSymbol{Typ: Types[TUINTPTR], Sym: Linksym(typenamesym(n.Type.Elem()))}, s.sb)
|
|
|
|
r := s.rtcall(growslice, true, []*Type{pt, Types[TINT], Types[TINT]}, taddr, p, l, c, nl)
|
|
|
|
if inplace {
|
|
if sn.Op == ONAME {
|
|
// Tell liveness we're about to build a new slice
|
|
s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, sn, s.mem())
|
|
}
|
|
capaddr := s.newValue1I(ssa.OpOffPtr, ptrto(Types[TINT]), int64(array_cap), addr)
|
|
s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, capaddr, r[2], s.mem())
|
|
if ssa.IsStackAddr(addr) {
|
|
s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, pt.Size(), addr, r[0], s.mem())
|
|
} else {
|
|
s.insertWBstore(pt, addr, r[0], 0)
|
|
}
|
|
// load the value we just stored to avoid having to spill it
|
|
s.vars[&ptrVar] = s.newValue2(ssa.OpLoad, pt, addr, s.mem())
|
|
s.vars[&lenVar] = r[1] // avoid a spill in the fast path
|
|
} else {
|
|
s.vars[&ptrVar] = r[0]
|
|
s.vars[&newlenVar] = s.newValue2(s.ssaOp(OADD, Types[TINT]), Types[TINT], r[1], s.constInt(Types[TINT], nargs))
|
|
s.vars[&capVar] = r[2]
|
|
}
|
|
|
|
b = s.endBlock()
|
|
b.AddEdgeTo(assign)
|
|
|
|
// assign new elements to slots
|
|
s.startBlock(assign)
|
|
|
|
if inplace {
|
|
l = s.variable(&lenVar, Types[TINT]) // generates phi for len
|
|
nl = s.newValue2(s.ssaOp(OADD, Types[TINT]), Types[TINT], l, s.constInt(Types[TINT], nargs))
|
|
lenaddr := s.newValue1I(ssa.OpOffPtr, ptrto(Types[TINT]), int64(array_nel), addr)
|
|
s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, lenaddr, nl, s.mem())
|
|
}
|
|
|
|
// Evaluate args
|
|
type argRec struct {
|
|
// if store is true, we're appending the value v. If false, we're appending the
|
|
// value at *v.
|
|
v *ssa.Value
|
|
store bool
|
|
}
|
|
args := make([]argRec, 0, nargs)
|
|
for _, n := range n.List.Slice()[1:] {
|
|
if canSSAType(n.Type) {
|
|
args = append(args, argRec{v: s.expr(n), store: true})
|
|
} else {
|
|
v := s.addr(n, false)
|
|
args = append(args, argRec{v: v})
|
|
}
|
|
}
|
|
|
|
p = s.variable(&ptrVar, pt) // generates phi for ptr
|
|
if !inplace {
|
|
nl = s.variable(&newlenVar, Types[TINT]) // generates phi for nl
|
|
c = s.variable(&capVar, Types[TINT]) // generates phi for cap
|
|
}
|
|
p2 := s.newValue2(ssa.OpPtrIndex, pt, p, l)
|
|
// TODO: just one write barrier call for all of these writes?
|
|
// TODO: maybe just one writeBarrier.enabled check?
|
|
for i, arg := range args {
|
|
addr := s.newValue2(ssa.OpPtrIndex, pt, p2, s.constInt(Types[TINT], int64(i)))
|
|
if arg.store {
|
|
if haspointers(et) {
|
|
s.insertWBstore(et, addr, arg.v, 0)
|
|
} else {
|
|
s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, et.Size(), addr, arg.v, s.mem())
|
|
}
|
|
} else {
|
|
if haspointers(et) {
|
|
s.insertWBmove(et, addr, arg.v)
|
|
} else {
|
|
s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, sizeAlignAuxInt(et), addr, arg.v, s.mem())
|
|
}
|
|
}
|
|
}
|
|
|
|
delete(s.vars, &ptrVar)
|
|
if inplace {
|
|
delete(s.vars, &lenVar)
|
|
return nil
|
|
}
|
|
delete(s.vars, &newlenVar)
|
|
delete(s.vars, &capVar)
|
|
// make result
|
|
return s.newValue3(ssa.OpSliceMake, n.Type, p, nl, c)
|
|
}
|
|
|
|
// condBranch evaluates the boolean expression cond and branches to yes
|
|
// if cond is true and no if cond is false.
|
|
// This function is intended to handle && and || better than just calling
|
|
// s.expr(cond) and branching on the result.
|
|
func (s *state) condBranch(cond *Node, yes, no *ssa.Block, likely int8) {
|
|
if cond.Op == OANDAND {
|
|
mid := s.f.NewBlock(ssa.BlockPlain)
|
|
s.stmtList(cond.Ninit)
|
|
s.condBranch(cond.Left, mid, no, max8(likely, 0))
|
|
s.startBlock(mid)
|
|
s.condBranch(cond.Right, yes, no, likely)
|
|
return
|
|
// Note: if likely==1, then both recursive calls pass 1.
|
|
// If likely==-1, then we don't have enough information to decide
|
|
// whether the first branch is likely or not. So we pass 0 for
|
|
// the likeliness of the first branch.
|
|
// TODO: have the frontend give us branch prediction hints for
|
|
// OANDAND and OOROR nodes (if it ever has such info).
|
|
}
|
|
if cond.Op == OOROR {
|
|
mid := s.f.NewBlock(ssa.BlockPlain)
|
|
s.stmtList(cond.Ninit)
|
|
s.condBranch(cond.Left, yes, mid, min8(likely, 0))
|
|
s.startBlock(mid)
|
|
s.condBranch(cond.Right, yes, no, likely)
|
|
return
|
|
// Note: if likely==-1, then both recursive calls pass -1.
|
|
// If likely==1, then we don't have enough info to decide
|
|
// the likelihood of the first branch.
|
|
}
|
|
if cond.Op == ONOT {
|
|
s.stmtList(cond.Ninit)
|
|
s.condBranch(cond.Left, no, yes, -likely)
|
|
return
|
|
}
|
|
c := s.expr(cond)
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockIf
|
|
b.SetControl(c)
|
|
b.Likely = ssa.BranchPrediction(likely) // gc and ssa both use -1/0/+1 for likeliness
|
|
b.AddEdgeTo(yes)
|
|
b.AddEdgeTo(no)
|
|
}
|
|
|
|
type skipMask uint8
|
|
|
|
const (
|
|
skipPtr skipMask = 1 << iota
|
|
skipLen
|
|
skipCap
|
|
)
|
|
|
|
// assign does left = right.
|
|
// Right has already been evaluated to ssa, left has not.
|
|
// If deref is true, then we do left = *right instead (and right has already been nil-checked).
|
|
// If deref is true and right == nil, just do left = 0.
|
|
// Include a write barrier if wb is true.
|
|
// skip indicates assignments (at the top level) that can be avoided.
|
|
func (s *state) assign(left *Node, right *ssa.Value, wb, deref bool, skip skipMask) {
|
|
if left.Op == ONAME && isblank(left) {
|
|
return
|
|
}
|
|
t := left.Type
|
|
dowidth(t)
|
|
if s.canSSA(left) {
|
|
if deref {
|
|
s.Fatalf("can SSA LHS %v but not RHS %s", left, right)
|
|
}
|
|
if left.Op == ODOT {
|
|
// We're assigning to a field of an ssa-able value.
|
|
// We need to build a new structure with the new value for the
|
|
// field we're assigning and the old values for the other fields.
|
|
// For instance:
|
|
// type T struct {a, b, c int}
|
|
// var T x
|
|
// x.b = 5
|
|
// For the x.b = 5 assignment we want to generate x = T{x.a, 5, x.c}
|
|
|
|
// Grab information about the structure type.
|
|
t := left.Left.Type
|
|
nf := t.NumFields()
|
|
idx := fieldIdx(left)
|
|
|
|
// Grab old value of structure.
|
|
old := s.expr(left.Left)
|
|
|
|
// Make new structure.
|
|
new := s.newValue0(ssa.StructMakeOp(t.NumFields()), t)
|
|
|
|
// Add fields as args.
|
|
for i := 0; i < nf; i++ {
|
|
if i == idx {
|
|
new.AddArg(right)
|
|
} else {
|
|
new.AddArg(s.newValue1I(ssa.OpStructSelect, t.FieldType(i), int64(i), old))
|
|
}
|
|
}
|
|
|
|
// Recursively assign the new value we've made to the base of the dot op.
|
|
s.assign(left.Left, new, false, false, 0)
|
|
// TODO: do we need to update named values here?
|
|
return
|
|
}
|
|
if left.Op == OINDEX && left.Left.Type.IsArray() {
|
|
// We're assigning to an element of an ssa-able array.
|
|
// a[i] = v
|
|
t := left.Left.Type
|
|
n := t.NumElem()
|
|
|
|
i := s.expr(left.Right) // index
|
|
if n == 0 {
|
|
// The bounds check must fail. Might as well
|
|
// ignore the actual index and just use zeros.
|
|
z := s.constInt(Types[TINT], 0)
|
|
s.boundsCheck(z, z)
|
|
return
|
|
}
|
|
if n != 1 {
|
|
s.Fatalf("assigning to non-1-length array")
|
|
}
|
|
// Rewrite to a = [1]{v}
|
|
i = s.extendIndex(i, panicindex)
|
|
s.boundsCheck(i, s.constInt(Types[TINT], 1))
|
|
v := s.newValue1(ssa.OpArrayMake1, t, right)
|
|
s.assign(left.Left, v, false, false, 0)
|
|
return
|
|
}
|
|
// Update variable assignment.
|
|
s.vars[left] = right
|
|
s.addNamedValue(left, right)
|
|
return
|
|
}
|
|
// Left is not ssa-able. Compute its address.
|
|
addr := s.addr(left, false)
|
|
if left.Op == ONAME && skip == 0 {
|
|
s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, left, s.mem())
|
|
}
|
|
if deref {
|
|
// Treat as a mem->mem move.
|
|
if wb && !ssa.IsStackAddr(addr) {
|
|
s.insertWBmove(t, addr, right)
|
|
return
|
|
}
|
|
if right == nil {
|
|
s.vars[&memVar] = s.newValue2I(ssa.OpZero, ssa.TypeMem, sizeAlignAuxInt(t), addr, s.mem())
|
|
return
|
|
}
|
|
s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, sizeAlignAuxInt(t), addr, right, s.mem())
|
|
return
|
|
}
|
|
// Treat as a store.
|
|
if wb && !ssa.IsStackAddr(addr) {
|
|
if skip&skipPtr != 0 {
|
|
// Special case: if we don't write back the pointers, don't bother
|
|
// doing the write barrier check.
|
|
s.storeTypeScalars(t, addr, right, skip)
|
|
return
|
|
}
|
|
s.insertWBstore(t, addr, right, skip)
|
|
return
|
|
}
|
|
if skip != 0 {
|
|
if skip&skipPtr == 0 {
|
|
s.storeTypePtrs(t, addr, right)
|
|
}
|
|
s.storeTypeScalars(t, addr, right, skip)
|
|
return
|
|
}
|
|
s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, t.Size(), addr, right, s.mem())
|
|
}
|
|
|
|
// zeroVal returns the zero value for type t.
|
|
func (s *state) zeroVal(t *Type) *ssa.Value {
|
|
switch {
|
|
case t.IsInteger():
|
|
switch t.Size() {
|
|
case 1:
|
|
return s.constInt8(t, 0)
|
|
case 2:
|
|
return s.constInt16(t, 0)
|
|
case 4:
|
|
return s.constInt32(t, 0)
|
|
case 8:
|
|
return s.constInt64(t, 0)
|
|
default:
|
|
s.Fatalf("bad sized integer type %v", t)
|
|
}
|
|
case t.IsFloat():
|
|
switch t.Size() {
|
|
case 4:
|
|
return s.constFloat32(t, 0)
|
|
case 8:
|
|
return s.constFloat64(t, 0)
|
|
default:
|
|
s.Fatalf("bad sized float type %v", t)
|
|
}
|
|
case t.IsComplex():
|
|
switch t.Size() {
|
|
case 8:
|
|
z := s.constFloat32(Types[TFLOAT32], 0)
|
|
return s.entryNewValue2(ssa.OpComplexMake, t, z, z)
|
|
case 16:
|
|
z := s.constFloat64(Types[TFLOAT64], 0)
|
|
return s.entryNewValue2(ssa.OpComplexMake, t, z, z)
|
|
default:
|
|
s.Fatalf("bad sized complex type %v", t)
|
|
}
|
|
|
|
case t.IsString():
|
|
return s.constEmptyString(t)
|
|
case t.IsPtrShaped():
|
|
return s.constNil(t)
|
|
case t.IsBoolean():
|
|
return s.constBool(false)
|
|
case t.IsInterface():
|
|
return s.constInterface(t)
|
|
case t.IsSlice():
|
|
return s.constSlice(t)
|
|
case t.IsStruct():
|
|
n := t.NumFields()
|
|
v := s.entryNewValue0(ssa.StructMakeOp(t.NumFields()), t)
|
|
for i := 0; i < n; i++ {
|
|
v.AddArg(s.zeroVal(t.FieldType(i).(*Type)))
|
|
}
|
|
return v
|
|
case t.IsArray():
|
|
switch t.NumElem() {
|
|
case 0:
|
|
return s.entryNewValue0(ssa.OpArrayMake0, t)
|
|
case 1:
|
|
return s.entryNewValue1(ssa.OpArrayMake1, t, s.zeroVal(t.Elem()))
|
|
}
|
|
}
|
|
s.Fatalf("zero for type %v not implemented", t)
|
|
return nil
|
|
}
|
|
|
|
type callKind int8
|
|
|
|
const (
|
|
callNormal callKind = iota
|
|
callDefer
|
|
callGo
|
|
)
|
|
|
|
// TODO: make this a field of a configuration object instead of a global.
|
|
var intrinsics *intrinsicInfo
|
|
|
|
type intrinsicInfo struct {
|
|
std map[intrinsicKey]intrinsicBuilder
|
|
intSized map[sizedIntrinsicKey]intrinsicBuilder
|
|
ptrSized map[sizedIntrinsicKey]intrinsicBuilder
|
|
}
|
|
|
|
// An intrinsicBuilder converts a call node n into an ssa value that
|
|
// implements that call as an intrinsic. args is a list of arguments to the func.
|
|
type intrinsicBuilder func(s *state, n *Node, args []*ssa.Value) *ssa.Value
|
|
|
|
type intrinsicKey struct {
|
|
pkg string
|
|
fn string
|
|
}
|
|
|
|
type sizedIntrinsicKey struct {
|
|
pkg string
|
|
fn string
|
|
size int
|
|
}
|
|
|
|
// disableForInstrumenting returns nil when instrumenting, fn otherwise
|
|
func disableForInstrumenting(fn intrinsicBuilder) intrinsicBuilder {
|
|
if instrumenting {
|
|
return nil
|
|
}
|
|
return fn
|
|
}
|
|
|
|
// enableOnArch returns fn on given archs, nil otherwise
|
|
func enableOnArch(fn intrinsicBuilder, archs ...sys.ArchFamily) intrinsicBuilder {
|
|
if Thearch.LinkArch.InFamily(archs...) {
|
|
return fn
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func intrinsicInit() {
|
|
i := &intrinsicInfo{}
|
|
intrinsics = i
|
|
|
|
// initial set of intrinsics.
|
|
i.std = map[intrinsicKey]intrinsicBuilder{
|
|
/******** runtime ********/
|
|
intrinsicKey{"runtime", "slicebytetostringtmp"}: disableForInstrumenting(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
// Compiler frontend optimizations emit OARRAYBYTESTRTMP nodes
|
|
// for the backend instead of slicebytetostringtmp calls
|
|
// when not instrumenting.
|
|
slice := args[0]
|
|
ptr := s.newValue1(ssa.OpSlicePtr, ptrto(Types[TUINT8]), slice)
|
|
len := s.newValue1(ssa.OpSliceLen, Types[TINT], slice)
|
|
return s.newValue2(ssa.OpStringMake, n.Type, ptr, len)
|
|
}),
|
|
intrinsicKey{"runtime", "KeepAlive"}: func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
data := s.newValue1(ssa.OpIData, ptrto(Types[TUINT8]), args[0])
|
|
s.vars[&memVar] = s.newValue2(ssa.OpKeepAlive, ssa.TypeMem, data, s.mem())
|
|
return nil
|
|
},
|
|
|
|
/******** runtime/internal/sys ********/
|
|
intrinsicKey{"runtime/internal/sys", "Ctz32"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue1(ssa.OpCtz32, Types[TUINT32], args[0])
|
|
}, sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS),
|
|
intrinsicKey{"runtime/internal/sys", "Ctz64"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue1(ssa.OpCtz64, Types[TUINT64], args[0])
|
|
}, sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS),
|
|
intrinsicKey{"runtime/internal/sys", "Bswap32"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue1(ssa.OpBswap32, Types[TUINT32], args[0])
|
|
}, sys.AMD64, sys.ARM64, sys.ARM, sys.S390X),
|
|
intrinsicKey{"runtime/internal/sys", "Bswap64"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue1(ssa.OpBswap64, Types[TUINT64], args[0])
|
|
}, sys.AMD64, sys.ARM64, sys.ARM, sys.S390X),
|
|
|
|
/******** runtime/internal/atomic ********/
|
|
intrinsicKey{"runtime/internal/atomic", "Load"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
v := s.newValue2(ssa.OpAtomicLoad32, ssa.MakeTuple(Types[TUINT32], ssa.TypeMem), args[0], s.mem())
|
|
s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
|
|
return s.newValue1(ssa.OpSelect0, Types[TUINT32], v)
|
|
}, sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.PPC64),
|
|
intrinsicKey{"runtime/internal/atomic", "Load64"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
v := s.newValue2(ssa.OpAtomicLoad64, ssa.MakeTuple(Types[TUINT64], ssa.TypeMem), args[0], s.mem())
|
|
s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
|
|
return s.newValue1(ssa.OpSelect0, Types[TUINT64], v)
|
|
}, sys.AMD64, sys.ARM64, sys.S390X, sys.PPC64),
|
|
intrinsicKey{"runtime/internal/atomic", "Loadp"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
v := s.newValue2(ssa.OpAtomicLoadPtr, ssa.MakeTuple(ptrto(Types[TUINT8]), ssa.TypeMem), args[0], s.mem())
|
|
s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
|
|
return s.newValue1(ssa.OpSelect0, ptrto(Types[TUINT8]), v)
|
|
}, sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.PPC64),
|
|
|
|
intrinsicKey{"runtime/internal/atomic", "Store"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
s.vars[&memVar] = s.newValue3(ssa.OpAtomicStore32, ssa.TypeMem, args[0], args[1], s.mem())
|
|
return nil
|
|
}, sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.PPC64),
|
|
intrinsicKey{"runtime/internal/atomic", "Store64"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
s.vars[&memVar] = s.newValue3(ssa.OpAtomicStore64, ssa.TypeMem, args[0], args[1], s.mem())
|
|
return nil
|
|
}, sys.AMD64, sys.ARM64, sys.S390X, sys.PPC64),
|
|
intrinsicKey{"runtime/internal/atomic", "StorepNoWB"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
s.vars[&memVar] = s.newValue3(ssa.OpAtomicStorePtrNoWB, ssa.TypeMem, args[0], args[1], s.mem())
|
|
return nil
|
|
}, sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS),
|
|
|
|
intrinsicKey{"runtime/internal/atomic", "Xchg"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
v := s.newValue3(ssa.OpAtomicExchange32, ssa.MakeTuple(Types[TUINT32], ssa.TypeMem), args[0], args[1], s.mem())
|
|
s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
|
|
return s.newValue1(ssa.OpSelect0, Types[TUINT32], v)
|
|
}, sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.PPC64),
|
|
intrinsicKey{"runtime/internal/atomic", "Xchg64"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
v := s.newValue3(ssa.OpAtomicExchange64, ssa.MakeTuple(Types[TUINT64], ssa.TypeMem), args[0], args[1], s.mem())
|
|
s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
|
|
return s.newValue1(ssa.OpSelect0, Types[TUINT64], v)
|
|
}, sys.AMD64, sys.ARM64, sys.S390X, sys.PPC64),
|
|
|
|
intrinsicKey{"runtime/internal/atomic", "Xadd"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
v := s.newValue3(ssa.OpAtomicAdd32, ssa.MakeTuple(Types[TUINT32], ssa.TypeMem), args[0], args[1], s.mem())
|
|
s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
|
|
return s.newValue1(ssa.OpSelect0, Types[TUINT32], v)
|
|
}, sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.PPC64),
|
|
intrinsicKey{"runtime/internal/atomic", "Xadd64"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
v := s.newValue3(ssa.OpAtomicAdd64, ssa.MakeTuple(Types[TUINT64], ssa.TypeMem), args[0], args[1], s.mem())
|
|
s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
|
|
return s.newValue1(ssa.OpSelect0, Types[TUINT64], v)
|
|
}, sys.AMD64, sys.ARM64, sys.S390X, sys.PPC64),
|
|
|
|
intrinsicKey{"runtime/internal/atomic", "Cas"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
v := s.newValue4(ssa.OpAtomicCompareAndSwap32, ssa.MakeTuple(Types[TBOOL], ssa.TypeMem), args[0], args[1], args[2], s.mem())
|
|
s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
|
|
return s.newValue1(ssa.OpSelect0, Types[TBOOL], v)
|
|
}, sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.PPC64),
|
|
intrinsicKey{"runtime/internal/atomic", "Cas64"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
v := s.newValue4(ssa.OpAtomicCompareAndSwap64, ssa.MakeTuple(Types[TBOOL], ssa.TypeMem), args[0], args[1], args[2], s.mem())
|
|
s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, v)
|
|
return s.newValue1(ssa.OpSelect0, Types[TBOOL], v)
|
|
}, sys.AMD64, sys.ARM64, sys.S390X, sys.PPC64),
|
|
|
|
intrinsicKey{"runtime/internal/atomic", "And8"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
s.vars[&memVar] = s.newValue3(ssa.OpAtomicAnd8, ssa.TypeMem, args[0], args[1], s.mem())
|
|
return nil
|
|
}, sys.AMD64, sys.ARM64, sys.MIPS, sys.PPC64),
|
|
intrinsicKey{"runtime/internal/atomic", "Or8"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
s.vars[&memVar] = s.newValue3(ssa.OpAtomicOr8, ssa.TypeMem, args[0], args[1], s.mem())
|
|
return nil
|
|
}, sys.AMD64, sys.ARM64, sys.MIPS, sys.PPC64),
|
|
|
|
/******** math ********/
|
|
intrinsicKey{"math", "Sqrt"}: enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue1(ssa.OpSqrt, Types[TFLOAT64], args[0])
|
|
}, sys.AMD64, sys.ARM, sys.ARM64, sys.MIPS, sys.PPC64, sys.S390X),
|
|
}
|
|
|
|
// aliases internal to runtime/internal/atomic
|
|
i.std[intrinsicKey{"runtime/internal/atomic", "Loadint64"}] =
|
|
i.std[intrinsicKey{"runtime/internal/atomic", "Load64"}]
|
|
i.std[intrinsicKey{"runtime/internal/atomic", "Xaddint64"}] =
|
|
i.std[intrinsicKey{"runtime/internal/atomic", "Xadd64"}]
|
|
|
|
// intrinsics which vary depending on the size of int/ptr.
|
|
i.intSized = map[sizedIntrinsicKey]intrinsicBuilder{
|
|
sizedIntrinsicKey{"runtime/internal/atomic", "Loaduint", 4}: i.std[intrinsicKey{"runtime/internal/atomic", "Load"}],
|
|
sizedIntrinsicKey{"runtime/internal/atomic", "Loaduint", 8}: i.std[intrinsicKey{"runtime/internal/atomic", "Load64"}],
|
|
}
|
|
i.ptrSized = map[sizedIntrinsicKey]intrinsicBuilder{
|
|
sizedIntrinsicKey{"runtime/internal/atomic", "Loaduintptr", 4}: i.std[intrinsicKey{"runtime/internal/atomic", "Load"}],
|
|
sizedIntrinsicKey{"runtime/internal/atomic", "Loaduintptr", 8}: i.std[intrinsicKey{"runtime/internal/atomic", "Load64"}],
|
|
sizedIntrinsicKey{"runtime/internal/atomic", "Storeuintptr", 4}: i.std[intrinsicKey{"runtime/internal/atomic", "Store"}],
|
|
sizedIntrinsicKey{"runtime/internal/atomic", "Storeuintptr", 8}: i.std[intrinsicKey{"runtime/internal/atomic", "Store64"}],
|
|
sizedIntrinsicKey{"runtime/internal/atomic", "Xchguintptr", 4}: i.std[intrinsicKey{"runtime/internal/atomic", "Xchg"}],
|
|
sizedIntrinsicKey{"runtime/internal/atomic", "Xchguintptr", 8}: i.std[intrinsicKey{"runtime/internal/atomic", "Xchg64"}],
|
|
sizedIntrinsicKey{"runtime/internal/atomic", "Xadduintptr", 4}: i.std[intrinsicKey{"runtime/internal/atomic", "Xadd"}],
|
|
sizedIntrinsicKey{"runtime/internal/atomic", "Xadduintptr", 8}: i.std[intrinsicKey{"runtime/internal/atomic", "Xadd64"}],
|
|
sizedIntrinsicKey{"runtime/internal/atomic", "Casuintptr", 4}: i.std[intrinsicKey{"runtime/internal/atomic", "Cas"}],
|
|
sizedIntrinsicKey{"runtime/internal/atomic", "Casuintptr", 8}: i.std[intrinsicKey{"runtime/internal/atomic", "Cas64"}],
|
|
sizedIntrinsicKey{"runtime/internal/atomic", "Casp1", 4}: i.std[intrinsicKey{"runtime/internal/atomic", "Cas"}],
|
|
sizedIntrinsicKey{"runtime/internal/atomic", "Casp1", 8}: i.std[intrinsicKey{"runtime/internal/atomic", "Cas64"}],
|
|
}
|
|
|
|
/******** sync/atomic ********/
|
|
if flag_race {
|
|
// The race detector needs to be able to intercept these calls.
|
|
// We can't intrinsify them.
|
|
return
|
|
}
|
|
// these are all aliases to runtime/internal/atomic implementations.
|
|
i.std[intrinsicKey{"sync/atomic", "LoadInt32"}] =
|
|
i.std[intrinsicKey{"runtime/internal/atomic", "Load"}]
|
|
i.std[intrinsicKey{"sync/atomic", "LoadInt64"}] =
|
|
i.std[intrinsicKey{"runtime/internal/atomic", "Load64"}]
|
|
i.std[intrinsicKey{"sync/atomic", "LoadPointer"}] =
|
|
i.std[intrinsicKey{"runtime/internal/atomic", "Loadp"}]
|
|
i.std[intrinsicKey{"sync/atomic", "LoadUint32"}] =
|
|
i.std[intrinsicKey{"runtime/internal/atomic", "Load"}]
|
|
i.std[intrinsicKey{"sync/atomic", "LoadUint64"}] =
|
|
i.std[intrinsicKey{"runtime/internal/atomic", "Load64"}]
|
|
i.ptrSized[sizedIntrinsicKey{"sync/atomic", "LoadUintptr", 4}] =
|
|
i.std[intrinsicKey{"runtime/internal/atomic", "Load"}]
|
|
i.ptrSized[sizedIntrinsicKey{"sync/atomic", "LoadUintptr", 8}] =
|
|
i.std[intrinsicKey{"runtime/internal/atomic", "Load64"}]
|
|
|
|
i.std[intrinsicKey{"sync/atomic", "StoreInt32"}] =
|
|
i.std[intrinsicKey{"runtime/internal/atomic", "Store"}]
|
|
i.std[intrinsicKey{"sync/atomic", "StoreInt64"}] =
|
|
i.std[intrinsicKey{"runtime/internal/atomic", "Store64"}]
|
|
// Note: not StorePointer, that needs a write barrier. Same below for {CompareAnd}Swap.
|
|
i.std[intrinsicKey{"sync/atomic", "StoreUint32"}] =
|
|
i.std[intrinsicKey{"runtime/internal/atomic", "Store"}]
|
|
i.std[intrinsicKey{"sync/atomic", "StoreUint64"}] =
|
|
i.std[intrinsicKey{"runtime/internal/atomic", "Store64"}]
|
|
i.ptrSized[sizedIntrinsicKey{"sync/atomic", "StoreUintptr", 4}] =
|
|
i.std[intrinsicKey{"runtime/internal/atomic", "Store"}]
|
|
i.ptrSized[sizedIntrinsicKey{"sync/atomic", "StoreUintptr", 8}] =
|
|
i.std[intrinsicKey{"runtime/internal/atomic", "Store64"}]
|
|
|
|
i.std[intrinsicKey{"sync/atomic", "SwapInt32"}] =
|
|
i.std[intrinsicKey{"runtime/internal/atomic", "Xchg"}]
|
|
i.std[intrinsicKey{"sync/atomic", "SwapInt64"}] =
|
|
i.std[intrinsicKey{"runtime/internal/atomic", "Xchg64"}]
|
|
i.std[intrinsicKey{"sync/atomic", "SwapUint32"}] =
|
|
i.std[intrinsicKey{"runtime/internal/atomic", "Xchg"}]
|
|
i.std[intrinsicKey{"sync/atomic", "SwapUint64"}] =
|
|
i.std[intrinsicKey{"runtime/internal/atomic", "Xchg64"}]
|
|
i.ptrSized[sizedIntrinsicKey{"sync/atomic", "SwapUintptr", 4}] =
|
|
i.std[intrinsicKey{"runtime/internal/atomic", "Xchg"}]
|
|
i.ptrSized[sizedIntrinsicKey{"sync/atomic", "SwapUintptr", 8}] =
|
|
i.std[intrinsicKey{"runtime/internal/atomic", "Xchg64"}]
|
|
|
|
i.std[intrinsicKey{"sync/atomic", "CompareAndSwapInt32"}] =
|
|
i.std[intrinsicKey{"runtime/internal/atomic", "Cas"}]
|
|
i.std[intrinsicKey{"sync/atomic", "CompareAndSwapInt64"}] =
|
|
i.std[intrinsicKey{"runtime/internal/atomic", "Cas64"}]
|
|
i.std[intrinsicKey{"sync/atomic", "CompareAndSwapUint32"}] =
|
|
i.std[intrinsicKey{"runtime/internal/atomic", "Cas"}]
|
|
i.std[intrinsicKey{"sync/atomic", "CompareAndSwapUint64"}] =
|
|
i.std[intrinsicKey{"runtime/internal/atomic", "Cas64"}]
|
|
i.ptrSized[sizedIntrinsicKey{"sync/atomic", "CompareAndSwapUintptr", 4}] =
|
|
i.std[intrinsicKey{"runtime/internal/atomic", "Cas"}]
|
|
i.ptrSized[sizedIntrinsicKey{"sync/atomic", "CompareAndSwapUintptr", 8}] =
|
|
i.std[intrinsicKey{"runtime/internal/atomic", "Cas64"}]
|
|
|
|
i.std[intrinsicKey{"sync/atomic", "AddInt32"}] =
|
|
i.std[intrinsicKey{"runtime/internal/atomic", "Xadd"}]
|
|
i.std[intrinsicKey{"sync/atomic", "AddInt64"}] =
|
|
i.std[intrinsicKey{"runtime/internal/atomic", "Xadd64"}]
|
|
i.std[intrinsicKey{"sync/atomic", "AddUint32"}] =
|
|
i.std[intrinsicKey{"runtime/internal/atomic", "Xadd"}]
|
|
i.std[intrinsicKey{"sync/atomic", "AddUint64"}] =
|
|
i.std[intrinsicKey{"runtime/internal/atomic", "Xadd64"}]
|
|
i.ptrSized[sizedIntrinsicKey{"sync/atomic", "AddUintptr", 4}] =
|
|
i.std[intrinsicKey{"runtime/internal/atomic", "Xadd"}]
|
|
i.ptrSized[sizedIntrinsicKey{"sync/atomic", "AddUintptr", 8}] =
|
|
i.std[intrinsicKey{"runtime/internal/atomic", "Xadd64"}]
|
|
|
|
/******** math/big ********/
|
|
i.intSized[sizedIntrinsicKey{"math/big", "mulWW", 8}] =
|
|
enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue2(ssa.OpMul64uhilo, ssa.MakeTuple(Types[TUINT64], Types[TUINT64]), args[0], args[1])
|
|
}, sys.AMD64)
|
|
i.intSized[sizedIntrinsicKey{"math/big", "divWW", 8}] =
|
|
enableOnArch(func(s *state, n *Node, args []*ssa.Value) *ssa.Value {
|
|
return s.newValue3(ssa.OpDiv128u, ssa.MakeTuple(Types[TUINT64], Types[TUINT64]), args[0], args[1], args[2])
|
|
}, sys.AMD64)
|
|
}
|
|
|
|
// findIntrinsic returns a function which builds the SSA equivalent of the
|
|
// function identified by the symbol sym. If sym is not an intrinsic call, returns nil.
|
|
func findIntrinsic(sym *Sym) intrinsicBuilder {
|
|
if ssa.IntrinsicsDisable {
|
|
return nil
|
|
}
|
|
if sym == nil || sym.Pkg == nil {
|
|
return nil
|
|
}
|
|
if intrinsics == nil {
|
|
intrinsicInit()
|
|
}
|
|
pkg := sym.Pkg.Path
|
|
if sym.Pkg == localpkg {
|
|
pkg = myimportpath
|
|
}
|
|
fn := sym.Name
|
|
f := intrinsics.std[intrinsicKey{pkg, fn}]
|
|
if f != nil {
|
|
return f
|
|
}
|
|
f = intrinsics.intSized[sizedIntrinsicKey{pkg, fn, Widthint}]
|
|
if f != nil {
|
|
return f
|
|
}
|
|
return intrinsics.ptrSized[sizedIntrinsicKey{pkg, fn, Widthptr}]
|
|
}
|
|
|
|
func isIntrinsicCall(n *Node) bool {
|
|
if n == nil || n.Left == nil {
|
|
return false
|
|
}
|
|
return findIntrinsic(n.Left.Sym) != nil
|
|
}
|
|
|
|
// intrinsicCall converts a call to a recognized intrinsic function into the intrinsic SSA operation.
|
|
func (s *state) intrinsicCall(n *Node) *ssa.Value {
|
|
v := findIntrinsic(n.Left.Sym)(s, n, s.intrinsicArgs(n))
|
|
if ssa.IntrinsicsDebug > 0 {
|
|
x := v
|
|
if x == nil {
|
|
x = s.mem()
|
|
}
|
|
if x.Op == ssa.OpSelect0 || x.Op == ssa.OpSelect1 {
|
|
x = x.Args[0]
|
|
}
|
|
Warnl(n.Pos, "intrinsic substitution for %v with %s", n.Left.Sym.Name, x.LongString())
|
|
}
|
|
return v
|
|
}
|
|
|
|
type callArg struct {
|
|
offset int64
|
|
v *ssa.Value
|
|
}
|
|
type byOffset []callArg
|
|
|
|
func (x byOffset) Len() int { return len(x) }
|
|
func (x byOffset) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
|
|
func (x byOffset) Less(i, j int) bool {
|
|
return x[i].offset < x[j].offset
|
|
}
|
|
|
|
// intrinsicArgs extracts args from n, evaluates them to SSA values, and returns them.
|
|
func (s *state) intrinsicArgs(n *Node) []*ssa.Value {
|
|
// This code is complicated because of how walk transforms calls. For a call node,
|
|
// each entry in n.List is either an assignment to OINDREGSP which actually
|
|
// stores an arg, or an assignment to a temporary which computes an arg
|
|
// which is later assigned.
|
|
// The args can also be out of order.
|
|
// TODO: when walk goes away someday, this code can go away also.
|
|
var args []callArg
|
|
temps := map[*Node]*ssa.Value{}
|
|
for _, a := range n.List.Slice() {
|
|
if a.Op != OAS {
|
|
s.Fatalf("non-assignment as a function argument %s", opnames[a.Op])
|
|
}
|
|
l, r := a.Left, a.Right
|
|
switch l.Op {
|
|
case ONAME:
|
|
// Evaluate and store to "temporary".
|
|
// Walk ensures these temporaries are dead outside of n.
|
|
temps[l] = s.expr(r)
|
|
case OINDREGSP:
|
|
// Store a value to an argument slot.
|
|
var v *ssa.Value
|
|
if x, ok := temps[r]; ok {
|
|
// This is a previously computed temporary.
|
|
v = x
|
|
} else {
|
|
// This is an explicit value; evaluate it.
|
|
v = s.expr(r)
|
|
}
|
|
args = append(args, callArg{l.Xoffset, v})
|
|
default:
|
|
s.Fatalf("function argument assignment target not allowed: %s", opnames[l.Op])
|
|
}
|
|
}
|
|
sort.Sort(byOffset(args))
|
|
res := make([]*ssa.Value, len(args))
|
|
for i, a := range args {
|
|
res[i] = a.v
|
|
}
|
|
return res
|
|
}
|
|
|
|
// Calls the function n using the specified call type.
|
|
// Returns the address of the return value (or nil if none).
|
|
func (s *state) call(n *Node, k callKind) *ssa.Value {
|
|
var sym *Sym // target symbol (if static)
|
|
var closure *ssa.Value // ptr to closure to run (if dynamic)
|
|
var codeptr *ssa.Value // ptr to target code (if dynamic)
|
|
var rcvr *ssa.Value // receiver to set
|
|
fn := n.Left
|
|
switch n.Op {
|
|
case OCALLFUNC:
|
|
if k == callNormal && fn.Op == ONAME && fn.Class == PFUNC {
|
|
sym = fn.Sym
|
|
break
|
|
}
|
|
closure = s.expr(fn)
|
|
case OCALLMETH:
|
|
if fn.Op != ODOTMETH {
|
|
Fatalf("OCALLMETH: n.Left not an ODOTMETH: %v", fn)
|
|
}
|
|
if k == callNormal {
|
|
sym = fn.Sym
|
|
break
|
|
}
|
|
// Make a name n2 for the function.
|
|
// fn.Sym might be sync.(*Mutex).Unlock.
|
|
// Make a PFUNC node out of that, then evaluate it.
|
|
// We get back an SSA value representing &sync.(*Mutex).Unlock·f.
|
|
// We can then pass that to defer or go.
|
|
n2 := newname(fn.Sym)
|
|
n2.Class = PFUNC
|
|
n2.Pos = fn.Pos
|
|
n2.Type = Types[TUINT8] // dummy type for a static closure. Could use runtime.funcval if we had it.
|
|
closure = s.expr(n2)
|
|
// Note: receiver is already assigned in n.List, so we don't
|
|
// want to set it here.
|
|
case OCALLINTER:
|
|
if fn.Op != ODOTINTER {
|
|
Fatalf("OCALLINTER: n.Left not an ODOTINTER: %v", fn.Op)
|
|
}
|
|
i := s.expr(fn.Left)
|
|
itab := s.newValue1(ssa.OpITab, Types[TUINTPTR], i)
|
|
if k != callNormal {
|
|
s.nilCheck(itab)
|
|
}
|
|
itabidx := fn.Xoffset + 3*int64(Widthptr) + 8 // offset of fun field in runtime.itab
|
|
itab = s.newValue1I(ssa.OpOffPtr, ptrto(Types[TUINTPTR]), itabidx, itab)
|
|
if k == callNormal {
|
|
codeptr = s.newValue2(ssa.OpLoad, Types[TUINTPTR], itab, s.mem())
|
|
} else {
|
|
closure = itab
|
|
}
|
|
rcvr = s.newValue1(ssa.OpIData, Types[TUINTPTR], i)
|
|
}
|
|
dowidth(fn.Type)
|
|
stksize := fn.Type.ArgWidth() // includes receiver
|
|
|
|
// Run all argument assignments. The arg slots have already
|
|
// been offset by the appropriate amount (+2*widthptr for go/defer,
|
|
// +widthptr for interface calls).
|
|
// For OCALLMETH, the receiver is set in these statements.
|
|
s.stmtList(n.List)
|
|
|
|
// Set receiver (for interface calls)
|
|
if rcvr != nil {
|
|
argStart := Ctxt.FixedFrameSize()
|
|
if k != callNormal {
|
|
argStart += int64(2 * Widthptr)
|
|
}
|
|
addr := s.constOffPtrSP(ptrto(Types[TUINTPTR]), argStart)
|
|
s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, int64(Widthptr), addr, rcvr, s.mem())
|
|
}
|
|
|
|
// Defer/go args
|
|
if k != callNormal {
|
|
// Write argsize and closure (args to Newproc/Deferproc).
|
|
argStart := Ctxt.FixedFrameSize()
|
|
argsize := s.constInt32(Types[TUINT32], int32(stksize))
|
|
addr := s.constOffPtrSP(ptrto(Types[TUINT32]), argStart)
|
|
s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, 4, addr, argsize, s.mem())
|
|
addr = s.constOffPtrSP(ptrto(Types[TUINTPTR]), argStart+int64(Widthptr))
|
|
s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, int64(Widthptr), addr, closure, s.mem())
|
|
stksize += 2 * int64(Widthptr)
|
|
}
|
|
|
|
// call target
|
|
var call *ssa.Value
|
|
switch {
|
|
case k == callDefer:
|
|
call = s.newValue1A(ssa.OpStaticCall, ssa.TypeMem, Deferproc, s.mem())
|
|
case k == callGo:
|
|
call = s.newValue1A(ssa.OpStaticCall, ssa.TypeMem, Newproc, s.mem())
|
|
case closure != nil:
|
|
codeptr = s.newValue2(ssa.OpLoad, Types[TUINTPTR], closure, s.mem())
|
|
call = s.newValue3(ssa.OpClosureCall, ssa.TypeMem, codeptr, closure, s.mem())
|
|
case codeptr != nil:
|
|
call = s.newValue2(ssa.OpInterCall, ssa.TypeMem, codeptr, s.mem())
|
|
case sym != nil:
|
|
call = s.newValue1A(ssa.OpStaticCall, ssa.TypeMem, Linksym(sym), s.mem())
|
|
default:
|
|
Fatalf("bad call type %v %v", n.Op, n)
|
|
}
|
|
call.AuxInt = stksize // Call operations carry the argsize of the callee along with them
|
|
s.vars[&memVar] = call
|
|
|
|
// Finish block for defers
|
|
if k == callDefer {
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockDefer
|
|
b.SetControl(call)
|
|
bNext := s.f.NewBlock(ssa.BlockPlain)
|
|
b.AddEdgeTo(bNext)
|
|
// Add recover edge to exit code.
|
|
r := s.f.NewBlock(ssa.BlockPlain)
|
|
s.startBlock(r)
|
|
s.exit()
|
|
b.AddEdgeTo(r)
|
|
b.Likely = ssa.BranchLikely
|
|
s.startBlock(bNext)
|
|
}
|
|
|
|
res := n.Left.Type.Results()
|
|
if res.NumFields() == 0 || k != callNormal {
|
|
// call has no return value. Continue with the next statement.
|
|
return nil
|
|
}
|
|
fp := res.Field(0)
|
|
return s.constOffPtrSP(ptrto(fp.Type), fp.Offset+Ctxt.FixedFrameSize())
|
|
}
|
|
|
|
// etypesign returns the signed-ness of e, for integer/pointer etypes.
|
|
// -1 means signed, +1 means unsigned, 0 means non-integer/non-pointer.
|
|
func etypesign(e EType) int8 {
|
|
switch e {
|
|
case TINT8, TINT16, TINT32, TINT64, TINT:
|
|
return -1
|
|
case TUINT8, TUINT16, TUINT32, TUINT64, TUINT, TUINTPTR, TUNSAFEPTR:
|
|
return +1
|
|
}
|
|
return 0
|
|
}
|
|
|
|
// lookupSymbol is used to retrieve the symbol (Extern, Arg or Auto) used for a particular node.
|
|
// This improves the effectiveness of cse by using the same Aux values for the
|
|
// same symbols.
|
|
func (s *state) lookupSymbol(n *Node, sym interface{}) interface{} {
|
|
switch sym.(type) {
|
|
default:
|
|
s.Fatalf("sym %v is of uknown type %T", sym, sym)
|
|
case *ssa.ExternSymbol, *ssa.ArgSymbol, *ssa.AutoSymbol:
|
|
// these are the only valid types
|
|
}
|
|
|
|
if lsym, ok := s.varsyms[n]; ok {
|
|
return lsym
|
|
} else {
|
|
s.varsyms[n] = sym
|
|
return sym
|
|
}
|
|
}
|
|
|
|
// addr converts the address of the expression n to SSA, adds it to s and returns the SSA result.
|
|
// The value that the returned Value represents is guaranteed to be non-nil.
|
|
// If bounded is true then this address does not require a nil check for its operand
|
|
// even if that would otherwise be implied.
|
|
func (s *state) addr(n *Node, bounded bool) *ssa.Value {
|
|
t := ptrto(n.Type)
|
|
switch n.Op {
|
|
case ONAME:
|
|
switch n.Class {
|
|
case PEXTERN:
|
|
// global variable
|
|
aux := s.lookupSymbol(n, &ssa.ExternSymbol{Typ: n.Type, Sym: Linksym(n.Sym)})
|
|
v := s.entryNewValue1A(ssa.OpAddr, t, aux, s.sb)
|
|
// TODO: Make OpAddr use AuxInt as well as Aux.
|
|
if n.Xoffset != 0 {
|
|
v = s.entryNewValue1I(ssa.OpOffPtr, v.Type, n.Xoffset, v)
|
|
}
|
|
return v
|
|
case PPARAM:
|
|
// parameter slot
|
|
v := s.decladdrs[n]
|
|
if v != nil {
|
|
return v
|
|
}
|
|
if n == nodfp {
|
|
// Special arg that points to the frame pointer (Used by ORECOVER).
|
|
aux := s.lookupSymbol(n, &ssa.ArgSymbol{Typ: n.Type, Node: n})
|
|
return s.entryNewValue1A(ssa.OpAddr, t, aux, s.sp)
|
|
}
|
|
s.Fatalf("addr of undeclared ONAME %v. declared: %v", n, s.decladdrs)
|
|
return nil
|
|
case PAUTO:
|
|
aux := s.lookupSymbol(n, &ssa.AutoSymbol{Typ: n.Type, Node: n})
|
|
return s.newValue1A(ssa.OpAddr, t, aux, s.sp)
|
|
case PPARAMOUT: // Same as PAUTO -- cannot generate LEA early.
|
|
// ensure that we reuse symbols for out parameters so
|
|
// that cse works on their addresses
|
|
aux := s.lookupSymbol(n, &ssa.ArgSymbol{Typ: n.Type, Node: n})
|
|
return s.newValue1A(ssa.OpAddr, t, aux, s.sp)
|
|
default:
|
|
s.Fatalf("variable address class %v not implemented", classnames[n.Class])
|
|
return nil
|
|
}
|
|
case OINDREGSP:
|
|
// indirect off REGSP
|
|
// used for storing/loading arguments/returns to/from callees
|
|
return s.constOffPtrSP(t, n.Xoffset)
|
|
case OINDEX:
|
|
if n.Left.Type.IsSlice() {
|
|
a := s.expr(n.Left)
|
|
i := s.expr(n.Right)
|
|
i = s.extendIndex(i, panicindex)
|
|
len := s.newValue1(ssa.OpSliceLen, Types[TINT], a)
|
|
if !n.Bounded() {
|
|
s.boundsCheck(i, len)
|
|
}
|
|
p := s.newValue1(ssa.OpSlicePtr, t, a)
|
|
return s.newValue2(ssa.OpPtrIndex, t, p, i)
|
|
} else { // array
|
|
a := s.addr(n.Left, bounded)
|
|
i := s.expr(n.Right)
|
|
i = s.extendIndex(i, panicindex)
|
|
len := s.constInt(Types[TINT], n.Left.Type.NumElem())
|
|
if !n.Bounded() {
|
|
s.boundsCheck(i, len)
|
|
}
|
|
return s.newValue2(ssa.OpPtrIndex, ptrto(n.Left.Type.Elem()), a, i)
|
|
}
|
|
case OIND:
|
|
return s.exprPtr(n.Left, bounded, n.Pos)
|
|
case ODOT:
|
|
p := s.addr(n.Left, bounded)
|
|
return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p)
|
|
case ODOTPTR:
|
|
p := s.exprPtr(n.Left, bounded, n.Pos)
|
|
return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p)
|
|
case OCLOSUREVAR:
|
|
return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset,
|
|
s.entryNewValue0(ssa.OpGetClosurePtr, ptrto(Types[TUINT8])))
|
|
case OCONVNOP:
|
|
addr := s.addr(n.Left, bounded)
|
|
return s.newValue1(ssa.OpCopy, t, addr) // ensure that addr has the right type
|
|
case OCALLFUNC, OCALLINTER, OCALLMETH:
|
|
return s.call(n, callNormal)
|
|
case ODOTTYPE:
|
|
v, _ := s.dottype(n, false)
|
|
if v.Op != ssa.OpLoad {
|
|
s.Fatalf("dottype of non-load")
|
|
}
|
|
if v.Args[1] != s.mem() {
|
|
s.Fatalf("memory no longer live from dottype load")
|
|
}
|
|
return v.Args[0]
|
|
default:
|
|
s.Fatalf("unhandled addr %v", n.Op)
|
|
return nil
|
|
}
|
|
}
|
|
|
|
// canSSA reports whether n is SSA-able.
|
|
// n must be an ONAME (or an ODOT sequence with an ONAME base).
|
|
func (s *state) canSSA(n *Node) bool {
|
|
if Debug['N'] != 0 {
|
|
return false
|
|
}
|
|
for n.Op == ODOT || (n.Op == OINDEX && n.Left.Type.IsArray()) {
|
|
n = n.Left
|
|
}
|
|
if n.Op != ONAME {
|
|
return false
|
|
}
|
|
if n.Addrtaken() {
|
|
return false
|
|
}
|
|
if n.isParamHeapCopy() {
|
|
return false
|
|
}
|
|
if n.Class == PAUTOHEAP {
|
|
Fatalf("canSSA of PAUTOHEAP %v", n)
|
|
}
|
|
switch n.Class {
|
|
case PEXTERN:
|
|
return false
|
|
case PPARAMOUT:
|
|
if hasdefer {
|
|
// TODO: handle this case? Named return values must be
|
|
// in memory so that the deferred function can see them.
|
|
// Maybe do: if !strings.HasPrefix(n.String(), "~") { return false }
|
|
// Or maybe not, see issue 18860. Even unnamed return values
|
|
// must be written back so if a defer recovers, the caller can see them.
|
|
return false
|
|
}
|
|
if s.cgoUnsafeArgs {
|
|
// Cgo effectively takes the address of all result args,
|
|
// but the compiler can't see that.
|
|
return false
|
|
}
|
|
}
|
|
if n.Class == PPARAM && n.String() == ".this" {
|
|
// wrappers generated by genwrapper need to update
|
|
// the .this pointer in place.
|
|
// TODO: treat as a PPARMOUT?
|
|
return false
|
|
}
|
|
return canSSAType(n.Type)
|
|
// TODO: try to make more variables SSAable?
|
|
}
|
|
|
|
// canSSA reports whether variables of type t are SSA-able.
|
|
func canSSAType(t *Type) bool {
|
|
dowidth(t)
|
|
if t.Width > int64(4*Widthptr) {
|
|
// 4*Widthptr is an arbitrary constant. We want it
|
|
// to be at least 3*Widthptr so slices can be registerized.
|
|
// Too big and we'll introduce too much register pressure.
|
|
return false
|
|
}
|
|
switch t.Etype {
|
|
case TARRAY:
|
|
// We can't do larger arrays because dynamic indexing is
|
|
// not supported on SSA variables.
|
|
// TODO: allow if all indexes are constant.
|
|
if t.NumElem() == 0 {
|
|
return true
|
|
}
|
|
if t.NumElem() == 1 {
|
|
return canSSAType(t.Elem())
|
|
}
|
|
return false
|
|
case TSTRUCT:
|
|
if t.NumFields() > ssa.MaxStruct {
|
|
return false
|
|
}
|
|
for _, t1 := range t.Fields().Slice() {
|
|
if !canSSAType(t1.Type) {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
default:
|
|
return true
|
|
}
|
|
}
|
|
|
|
// exprPtr evaluates n to a pointer and nil-checks it.
|
|
func (s *state) exprPtr(n *Node, bounded bool, lineno src.XPos) *ssa.Value {
|
|
p := s.expr(n)
|
|
if bounded || n.NonNil() {
|
|
if s.f.Config.Debug_checknil() && lineno.Line() > 1 {
|
|
s.f.Config.Warnl(lineno, "removed nil check")
|
|
}
|
|
return p
|
|
}
|
|
s.nilCheck(p)
|
|
return p
|
|
}
|
|
|
|
// nilCheck generates nil pointer checking code.
|
|
// Used only for automatically inserted nil checks,
|
|
// not for user code like 'x != nil'.
|
|
func (s *state) nilCheck(ptr *ssa.Value) {
|
|
if disable_checknil != 0 {
|
|
return
|
|
}
|
|
s.newValue2(ssa.OpNilCheck, ssa.TypeVoid, ptr, s.mem())
|
|
}
|
|
|
|
// boundsCheck generates bounds checking code. Checks if 0 <= idx < len, branches to exit if not.
|
|
// Starts a new block on return.
|
|
// idx is already converted to full int width.
|
|
func (s *state) boundsCheck(idx, len *ssa.Value) {
|
|
if Debug['B'] != 0 {
|
|
return
|
|
}
|
|
|
|
// bounds check
|
|
cmp := s.newValue2(ssa.OpIsInBounds, Types[TBOOL], idx, len)
|
|
s.check(cmp, panicindex)
|
|
}
|
|
|
|
// sliceBoundsCheck generates slice bounds checking code. Checks if 0 <= idx <= len, branches to exit if not.
|
|
// Starts a new block on return.
|
|
// idx and len are already converted to full int width.
|
|
func (s *state) sliceBoundsCheck(idx, len *ssa.Value) {
|
|
if Debug['B'] != 0 {
|
|
return
|
|
}
|
|
|
|
// bounds check
|
|
cmp := s.newValue2(ssa.OpIsSliceInBounds, Types[TBOOL], idx, len)
|
|
s.check(cmp, panicslice)
|
|
}
|
|
|
|
// If cmp (a bool) is false, panic using the given function.
|
|
func (s *state) check(cmp *ssa.Value, fn *obj.LSym) {
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockIf
|
|
b.SetControl(cmp)
|
|
b.Likely = ssa.BranchLikely
|
|
bNext := s.f.NewBlock(ssa.BlockPlain)
|
|
line := s.peekPos()
|
|
bPanic := s.panics[funcLine{fn, line}]
|
|
if bPanic == nil {
|
|
bPanic = s.f.NewBlock(ssa.BlockPlain)
|
|
s.panics[funcLine{fn, line}] = bPanic
|
|
s.startBlock(bPanic)
|
|
// The panic call takes/returns memory to ensure that the right
|
|
// memory state is observed if the panic happens.
|
|
s.rtcall(fn, false, nil)
|
|
}
|
|
b.AddEdgeTo(bNext)
|
|
b.AddEdgeTo(bPanic)
|
|
s.startBlock(bNext)
|
|
}
|
|
|
|
func (s *state) intDivide(n *Node, a, b *ssa.Value) *ssa.Value {
|
|
needcheck := true
|
|
switch b.Op {
|
|
case ssa.OpConst8, ssa.OpConst16, ssa.OpConst32, ssa.OpConst64:
|
|
if b.AuxInt != 0 {
|
|
needcheck = false
|
|
}
|
|
}
|
|
if needcheck {
|
|
// do a size-appropriate check for zero
|
|
cmp := s.newValue2(s.ssaOp(ONE, n.Type), Types[TBOOL], b, s.zeroVal(n.Type))
|
|
s.check(cmp, panicdivide)
|
|
}
|
|
return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
|
|
}
|
|
|
|
// rtcall issues a call to the given runtime function fn with the listed args.
|
|
// Returns a slice of results of the given result types.
|
|
// The call is added to the end of the current block.
|
|
// If returns is false, the block is marked as an exit block.
|
|
func (s *state) rtcall(fn *obj.LSym, returns bool, results []*Type, args ...*ssa.Value) []*ssa.Value {
|
|
// Write args to the stack
|
|
off := Ctxt.FixedFrameSize()
|
|
for _, arg := range args {
|
|
t := arg.Type
|
|
off = Rnd(off, t.Alignment())
|
|
ptr := s.constOffPtrSP(t.PtrTo(), off)
|
|
size := t.Size()
|
|
s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, size, ptr, arg, s.mem())
|
|
off += size
|
|
}
|
|
off = Rnd(off, int64(Widthptr))
|
|
if Thearch.LinkArch.Name == "amd64p32" {
|
|
// amd64p32 wants 8-byte alignment of the start of the return values.
|
|
off = Rnd(off, 8)
|
|
}
|
|
|
|
// Issue call
|
|
call := s.newValue1A(ssa.OpStaticCall, ssa.TypeMem, fn, s.mem())
|
|
s.vars[&memVar] = call
|
|
|
|
if !returns {
|
|
// Finish block
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockExit
|
|
b.SetControl(call)
|
|
call.AuxInt = off - Ctxt.FixedFrameSize()
|
|
if len(results) > 0 {
|
|
Fatalf("panic call can't have results")
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Load results
|
|
res := make([]*ssa.Value, len(results))
|
|
for i, t := range results {
|
|
off = Rnd(off, t.Alignment())
|
|
ptr := s.constOffPtrSP(ptrto(t), off)
|
|
res[i] = s.newValue2(ssa.OpLoad, t, ptr, s.mem())
|
|
off += t.Size()
|
|
}
|
|
off = Rnd(off, int64(Widthptr))
|
|
|
|
// Remember how much callee stack space we needed.
|
|
call.AuxInt = off
|
|
|
|
return res
|
|
}
|
|
|
|
// insertWBmove inserts the assignment *left = *right including a write barrier.
|
|
// t is the type being assigned.
|
|
// If right == nil, then we're zeroing *left.
|
|
func (s *state) insertWBmove(t *Type, left, right *ssa.Value) {
|
|
// if writeBarrier.enabled {
|
|
// typedmemmove(&t, left, right)
|
|
// } else {
|
|
// *left = *right
|
|
// }
|
|
//
|
|
// or
|
|
//
|
|
// if writeBarrier.enabled {
|
|
// typedmemclr(&t, left)
|
|
// } else {
|
|
// *left = zeroValue
|
|
// }
|
|
|
|
if s.noWB {
|
|
s.Error("write barrier prohibited")
|
|
}
|
|
if !s.WBPos.IsKnown() {
|
|
s.WBPos = left.Pos
|
|
}
|
|
|
|
var val *ssa.Value
|
|
if right == nil {
|
|
val = s.newValue2I(ssa.OpZeroWB, ssa.TypeMem, sizeAlignAuxInt(t), left, s.mem())
|
|
} else {
|
|
val = s.newValue3I(ssa.OpMoveWB, ssa.TypeMem, sizeAlignAuxInt(t), left, right, s.mem())
|
|
}
|
|
val.Aux = &ssa.ExternSymbol{Typ: Types[TUINTPTR], Sym: Linksym(typenamesym(t))}
|
|
s.vars[&memVar] = val
|
|
}
|
|
|
|
// insertWBstore inserts the assignment *left = right including a write barrier.
|
|
// t is the type being assigned.
|
|
func (s *state) insertWBstore(t *Type, left, right *ssa.Value, skip skipMask) {
|
|
// store scalar fields
|
|
// if writeBarrier.enabled {
|
|
// writebarrierptr for pointer fields
|
|
// } else {
|
|
// store pointer fields
|
|
// }
|
|
|
|
if s.noWB {
|
|
s.Error("write barrier prohibited")
|
|
}
|
|
if !s.WBPos.IsKnown() {
|
|
s.WBPos = left.Pos
|
|
}
|
|
if t == Types[TUINTPTR] {
|
|
// Stores to reflect.{Slice,String}Header.Data.
|
|
s.vars[&memVar] = s.newValue3I(ssa.OpStoreWB, ssa.TypeMem, s.config.PtrSize, left, right, s.mem())
|
|
return
|
|
}
|
|
s.storeTypeScalars(t, left, right, skip)
|
|
s.storeTypePtrsWB(t, left, right)
|
|
}
|
|
|
|
// do *left = right for all scalar (non-pointer) parts of t.
|
|
func (s *state) storeTypeScalars(t *Type, left, right *ssa.Value, skip skipMask) {
|
|
switch {
|
|
case t.IsBoolean() || t.IsInteger() || t.IsFloat() || t.IsComplex():
|
|
s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, t.Size(), left, right, s.mem())
|
|
case t.IsPtrShaped():
|
|
// no scalar fields.
|
|
case t.IsString():
|
|
if skip&skipLen != 0 {
|
|
return
|
|
}
|
|
len := s.newValue1(ssa.OpStringLen, Types[TINT], right)
|
|
lenAddr := s.newValue1I(ssa.OpOffPtr, ptrto(Types[TINT]), s.config.IntSize, left)
|
|
s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, lenAddr, len, s.mem())
|
|
case t.IsSlice():
|
|
if skip&skipLen == 0 {
|
|
len := s.newValue1(ssa.OpSliceLen, Types[TINT], right)
|
|
lenAddr := s.newValue1I(ssa.OpOffPtr, ptrto(Types[TINT]), s.config.IntSize, left)
|
|
s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, lenAddr, len, s.mem())
|
|
}
|
|
if skip&skipCap == 0 {
|
|
cap := s.newValue1(ssa.OpSliceCap, Types[TINT], right)
|
|
capAddr := s.newValue1I(ssa.OpOffPtr, ptrto(Types[TINT]), 2*s.config.IntSize, left)
|
|
s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, capAddr, cap, s.mem())
|
|
}
|
|
case t.IsInterface():
|
|
// itab field doesn't need a write barrier (even though it is a pointer).
|
|
itab := s.newValue1(ssa.OpITab, ptrto(Types[TUINT8]), right)
|
|
s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, left, itab, s.mem())
|
|
case t.IsStruct():
|
|
n := t.NumFields()
|
|
for i := 0; i < n; i++ {
|
|
ft := t.FieldType(i)
|
|
addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
|
|
val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
|
|
s.storeTypeScalars(ft.(*Type), addr, val, 0)
|
|
}
|
|
case t.IsArray() && t.NumElem() == 0:
|
|
// nothing
|
|
case t.IsArray() && t.NumElem() == 1:
|
|
s.storeTypeScalars(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right), 0)
|
|
default:
|
|
s.Fatalf("bad write barrier type %v", t)
|
|
}
|
|
}
|
|
|
|
// do *left = right for all pointer parts of t.
|
|
func (s *state) storeTypePtrs(t *Type, left, right *ssa.Value) {
|
|
switch {
|
|
case t.IsPtrShaped():
|
|
s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, left, right, s.mem())
|
|
case t.IsString():
|
|
ptr := s.newValue1(ssa.OpStringPtr, ptrto(Types[TUINT8]), right)
|
|
s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, left, ptr, s.mem())
|
|
case t.IsSlice():
|
|
ptr := s.newValue1(ssa.OpSlicePtr, ptrto(Types[TUINT8]), right)
|
|
s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, left, ptr, s.mem())
|
|
case t.IsInterface():
|
|
// itab field is treated as a scalar.
|
|
idata := s.newValue1(ssa.OpIData, ptrto(Types[TUINT8]), right)
|
|
idataAddr := s.newValue1I(ssa.OpOffPtr, ptrto(ptrto(Types[TUINT8])), s.config.PtrSize, left)
|
|
s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, idataAddr, idata, s.mem())
|
|
case t.IsStruct():
|
|
n := t.NumFields()
|
|
for i := 0; i < n; i++ {
|
|
ft := t.FieldType(i)
|
|
if !haspointers(ft.(*Type)) {
|
|
continue
|
|
}
|
|
addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
|
|
val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
|
|
s.storeTypePtrs(ft.(*Type), addr, val)
|
|
}
|
|
case t.IsArray() && t.NumElem() == 0:
|
|
// nothing
|
|
case t.IsArray() && t.NumElem() == 1:
|
|
s.storeTypePtrs(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right))
|
|
default:
|
|
s.Fatalf("bad write barrier type %v", t)
|
|
}
|
|
}
|
|
|
|
// do *left = right for all pointer parts of t, with write barriers if necessary.
|
|
func (s *state) storeTypePtrsWB(t *Type, left, right *ssa.Value) {
|
|
switch {
|
|
case t.IsPtrShaped():
|
|
s.vars[&memVar] = s.newValue3I(ssa.OpStoreWB, ssa.TypeMem, s.config.PtrSize, left, right, s.mem())
|
|
case t.IsString():
|
|
ptr := s.newValue1(ssa.OpStringPtr, ptrto(Types[TUINT8]), right)
|
|
s.vars[&memVar] = s.newValue3I(ssa.OpStoreWB, ssa.TypeMem, s.config.PtrSize, left, ptr, s.mem())
|
|
case t.IsSlice():
|
|
ptr := s.newValue1(ssa.OpSlicePtr, ptrto(Types[TUINT8]), right)
|
|
s.vars[&memVar] = s.newValue3I(ssa.OpStoreWB, ssa.TypeMem, s.config.PtrSize, left, ptr, s.mem())
|
|
case t.IsInterface():
|
|
// itab field is treated as a scalar.
|
|
idata := s.newValue1(ssa.OpIData, ptrto(Types[TUINT8]), right)
|
|
idataAddr := s.newValue1I(ssa.OpOffPtr, ptrto(ptrto(Types[TUINT8])), s.config.PtrSize, left)
|
|
s.vars[&memVar] = s.newValue3I(ssa.OpStoreWB, ssa.TypeMem, s.config.PtrSize, idataAddr, idata, s.mem())
|
|
case t.IsStruct():
|
|
n := t.NumFields()
|
|
for i := 0; i < n; i++ {
|
|
ft := t.FieldType(i)
|
|
if !haspointers(ft.(*Type)) {
|
|
continue
|
|
}
|
|
addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
|
|
val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
|
|
s.storeTypePtrsWB(ft.(*Type), addr, val)
|
|
}
|
|
case t.IsArray() && t.NumElem() == 0:
|
|
// nothing
|
|
case t.IsArray() && t.NumElem() == 1:
|
|
s.storeTypePtrsWB(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right))
|
|
default:
|
|
s.Fatalf("bad write barrier type %v", t)
|
|
}
|
|
}
|
|
|
|
// slice computes the slice v[i:j:k] and returns ptr, len, and cap of result.
|
|
// i,j,k may be nil, in which case they are set to their default value.
|
|
// t is a slice, ptr to array, or string type.
|
|
func (s *state) slice(t *Type, v, i, j, k *ssa.Value) (p, l, c *ssa.Value) {
|
|
var elemtype *Type
|
|
var ptrtype *Type
|
|
var ptr *ssa.Value
|
|
var len *ssa.Value
|
|
var cap *ssa.Value
|
|
zero := s.constInt(Types[TINT], 0)
|
|
switch {
|
|
case t.IsSlice():
|
|
elemtype = t.Elem()
|
|
ptrtype = ptrto(elemtype)
|
|
ptr = s.newValue1(ssa.OpSlicePtr, ptrtype, v)
|
|
len = s.newValue1(ssa.OpSliceLen, Types[TINT], v)
|
|
cap = s.newValue1(ssa.OpSliceCap, Types[TINT], v)
|
|
case t.IsString():
|
|
elemtype = Types[TUINT8]
|
|
ptrtype = ptrto(elemtype)
|
|
ptr = s.newValue1(ssa.OpStringPtr, ptrtype, v)
|
|
len = s.newValue1(ssa.OpStringLen, Types[TINT], v)
|
|
cap = len
|
|
case t.IsPtr():
|
|
if !t.Elem().IsArray() {
|
|
s.Fatalf("bad ptr to array in slice %v\n", t)
|
|
}
|
|
elemtype = t.Elem().Elem()
|
|
ptrtype = ptrto(elemtype)
|
|
s.nilCheck(v)
|
|
ptr = v
|
|
len = s.constInt(Types[TINT], t.Elem().NumElem())
|
|
cap = len
|
|
default:
|
|
s.Fatalf("bad type in slice %v\n", t)
|
|
}
|
|
|
|
// Set default values
|
|
if i == nil {
|
|
i = zero
|
|
}
|
|
if j == nil {
|
|
j = len
|
|
}
|
|
if k == nil {
|
|
k = cap
|
|
}
|
|
|
|
// Panic if slice indices are not in bounds.
|
|
s.sliceBoundsCheck(i, j)
|
|
if j != k {
|
|
s.sliceBoundsCheck(j, k)
|
|
}
|
|
if k != cap {
|
|
s.sliceBoundsCheck(k, cap)
|
|
}
|
|
|
|
// Generate the following code assuming that indexes are in bounds.
|
|
// The masking is to make sure that we don't generate a slice
|
|
// that points to the next object in memory.
|
|
// rlen = j - i
|
|
// rcap = k - i
|
|
// delta = i * elemsize
|
|
// rptr = p + delta&mask(rcap)
|
|
// result = (SliceMake rptr rlen rcap)
|
|
// where mask(x) is 0 if x==0 and -1 if x>0.
|
|
subOp := s.ssaOp(OSUB, Types[TINT])
|
|
mulOp := s.ssaOp(OMUL, Types[TINT])
|
|
andOp := s.ssaOp(OAND, Types[TINT])
|
|
rlen := s.newValue2(subOp, Types[TINT], j, i)
|
|
var rcap *ssa.Value
|
|
switch {
|
|
case t.IsString():
|
|
// Capacity of the result is unimportant. However, we use
|
|
// rcap to test if we've generated a zero-length slice.
|
|
// Use length of strings for that.
|
|
rcap = rlen
|
|
case j == k:
|
|
rcap = rlen
|
|
default:
|
|
rcap = s.newValue2(subOp, Types[TINT], k, i)
|
|
}
|
|
|
|
var rptr *ssa.Value
|
|
if (i.Op == ssa.OpConst64 || i.Op == ssa.OpConst32) && i.AuxInt == 0 {
|
|
// No pointer arithmetic necessary.
|
|
rptr = ptr
|
|
} else {
|
|
// delta = # of bytes to offset pointer by.
|
|
delta := s.newValue2(mulOp, Types[TINT], i, s.constInt(Types[TINT], elemtype.Width))
|
|
// If we're slicing to the point where the capacity is zero,
|
|
// zero out the delta.
|
|
mask := s.newValue1(ssa.OpSlicemask, Types[TINT], rcap)
|
|
delta = s.newValue2(andOp, Types[TINT], delta, mask)
|
|
// Compute rptr = ptr + delta
|
|
rptr = s.newValue2(ssa.OpAddPtr, ptrtype, ptr, delta)
|
|
}
|
|
|
|
return rptr, rlen, rcap
|
|
}
|
|
|
|
type u642fcvtTab struct {
|
|
geq, cvt2F, and, rsh, or, add ssa.Op
|
|
one func(*state, ssa.Type, int64) *ssa.Value
|
|
}
|
|
|
|
var u64_f64 u642fcvtTab = u642fcvtTab{
|
|
geq: ssa.OpGeq64,
|
|
cvt2F: ssa.OpCvt64to64F,
|
|
and: ssa.OpAnd64,
|
|
rsh: ssa.OpRsh64Ux64,
|
|
or: ssa.OpOr64,
|
|
add: ssa.OpAdd64F,
|
|
one: (*state).constInt64,
|
|
}
|
|
|
|
var u64_f32 u642fcvtTab = u642fcvtTab{
|
|
geq: ssa.OpGeq64,
|
|
cvt2F: ssa.OpCvt64to32F,
|
|
and: ssa.OpAnd64,
|
|
rsh: ssa.OpRsh64Ux64,
|
|
or: ssa.OpOr64,
|
|
add: ssa.OpAdd32F,
|
|
one: (*state).constInt64,
|
|
}
|
|
|
|
func (s *state) uint64Tofloat64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
|
|
return s.uint64Tofloat(&u64_f64, n, x, ft, tt)
|
|
}
|
|
|
|
func (s *state) uint64Tofloat32(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
|
|
return s.uint64Tofloat(&u64_f32, n, x, ft, tt)
|
|
}
|
|
|
|
func (s *state) uint64Tofloat(cvttab *u642fcvtTab, n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
|
|
// if x >= 0 {
|
|
// result = (floatY) x
|
|
// } else {
|
|
// y = uintX(x) ; y = x & 1
|
|
// z = uintX(x) ; z = z >> 1
|
|
// z = z >> 1
|
|
// z = z | y
|
|
// result = floatY(z)
|
|
// result = result + result
|
|
// }
|
|
//
|
|
// Code borrowed from old code generator.
|
|
// What's going on: large 64-bit "unsigned" looks like
|
|
// negative number to hardware's integer-to-float
|
|
// conversion. However, because the mantissa is only
|
|
// 63 bits, we don't need the LSB, so instead we do an
|
|
// unsigned right shift (divide by two), convert, and
|
|
// double. However, before we do that, we need to be
|
|
// sure that we do not lose a "1" if that made the
|
|
// difference in the resulting rounding. Therefore, we
|
|
// preserve it, and OR (not ADD) it back in. The case
|
|
// that matters is when the eleven discarded bits are
|
|
// equal to 10000000001; that rounds up, and the 1 cannot
|
|
// be lost else it would round down if the LSB of the
|
|
// candidate mantissa is 0.
|
|
cmp := s.newValue2(cvttab.geq, Types[TBOOL], x, s.zeroVal(ft))
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockIf
|
|
b.SetControl(cmp)
|
|
b.Likely = ssa.BranchLikely
|
|
|
|
bThen := s.f.NewBlock(ssa.BlockPlain)
|
|
bElse := s.f.NewBlock(ssa.BlockPlain)
|
|
bAfter := s.f.NewBlock(ssa.BlockPlain)
|
|
|
|
b.AddEdgeTo(bThen)
|
|
s.startBlock(bThen)
|
|
a0 := s.newValue1(cvttab.cvt2F, tt, x)
|
|
s.vars[n] = a0
|
|
s.endBlock()
|
|
bThen.AddEdgeTo(bAfter)
|
|
|
|
b.AddEdgeTo(bElse)
|
|
s.startBlock(bElse)
|
|
one := cvttab.one(s, ft, 1)
|
|
y := s.newValue2(cvttab.and, ft, x, one)
|
|
z := s.newValue2(cvttab.rsh, ft, x, one)
|
|
z = s.newValue2(cvttab.or, ft, z, y)
|
|
a := s.newValue1(cvttab.cvt2F, tt, z)
|
|
a1 := s.newValue2(cvttab.add, tt, a, a)
|
|
s.vars[n] = a1
|
|
s.endBlock()
|
|
bElse.AddEdgeTo(bAfter)
|
|
|
|
s.startBlock(bAfter)
|
|
return s.variable(n, n.Type)
|
|
}
|
|
|
|
type u322fcvtTab struct {
|
|
cvtI2F, cvtF2F ssa.Op
|
|
}
|
|
|
|
var u32_f64 u322fcvtTab = u322fcvtTab{
|
|
cvtI2F: ssa.OpCvt32to64F,
|
|
cvtF2F: ssa.OpCopy,
|
|
}
|
|
|
|
var u32_f32 u322fcvtTab = u322fcvtTab{
|
|
cvtI2F: ssa.OpCvt32to32F,
|
|
cvtF2F: ssa.OpCvt64Fto32F,
|
|
}
|
|
|
|
func (s *state) uint32Tofloat64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
|
|
return s.uint32Tofloat(&u32_f64, n, x, ft, tt)
|
|
}
|
|
|
|
func (s *state) uint32Tofloat32(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
|
|
return s.uint32Tofloat(&u32_f32, n, x, ft, tt)
|
|
}
|
|
|
|
func (s *state) uint32Tofloat(cvttab *u322fcvtTab, n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
|
|
// if x >= 0 {
|
|
// result = floatY(x)
|
|
// } else {
|
|
// result = floatY(float64(x) + (1<<32))
|
|
// }
|
|
cmp := s.newValue2(ssa.OpGeq32, Types[TBOOL], x, s.zeroVal(ft))
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockIf
|
|
b.SetControl(cmp)
|
|
b.Likely = ssa.BranchLikely
|
|
|
|
bThen := s.f.NewBlock(ssa.BlockPlain)
|
|
bElse := s.f.NewBlock(ssa.BlockPlain)
|
|
bAfter := s.f.NewBlock(ssa.BlockPlain)
|
|
|
|
b.AddEdgeTo(bThen)
|
|
s.startBlock(bThen)
|
|
a0 := s.newValue1(cvttab.cvtI2F, tt, x)
|
|
s.vars[n] = a0
|
|
s.endBlock()
|
|
bThen.AddEdgeTo(bAfter)
|
|
|
|
b.AddEdgeTo(bElse)
|
|
s.startBlock(bElse)
|
|
a1 := s.newValue1(ssa.OpCvt32to64F, Types[TFLOAT64], x)
|
|
twoToThe32 := s.constFloat64(Types[TFLOAT64], float64(1<<32))
|
|
a2 := s.newValue2(ssa.OpAdd64F, Types[TFLOAT64], a1, twoToThe32)
|
|
a3 := s.newValue1(cvttab.cvtF2F, tt, a2)
|
|
|
|
s.vars[n] = a3
|
|
s.endBlock()
|
|
bElse.AddEdgeTo(bAfter)
|
|
|
|
s.startBlock(bAfter)
|
|
return s.variable(n, n.Type)
|
|
}
|
|
|
|
// referenceTypeBuiltin generates code for the len/cap builtins for maps and channels.
|
|
func (s *state) referenceTypeBuiltin(n *Node, x *ssa.Value) *ssa.Value {
|
|
if !n.Left.Type.IsMap() && !n.Left.Type.IsChan() {
|
|
s.Fatalf("node must be a map or a channel")
|
|
}
|
|
// if n == nil {
|
|
// return 0
|
|
// } else {
|
|
// // len
|
|
// return *((*int)n)
|
|
// // cap
|
|
// return *(((*int)n)+1)
|
|
// }
|
|
lenType := n.Type
|
|
nilValue := s.constNil(Types[TUINTPTR])
|
|
cmp := s.newValue2(ssa.OpEqPtr, Types[TBOOL], x, nilValue)
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockIf
|
|
b.SetControl(cmp)
|
|
b.Likely = ssa.BranchUnlikely
|
|
|
|
bThen := s.f.NewBlock(ssa.BlockPlain)
|
|
bElse := s.f.NewBlock(ssa.BlockPlain)
|
|
bAfter := s.f.NewBlock(ssa.BlockPlain)
|
|
|
|
// length/capacity of a nil map/chan is zero
|
|
b.AddEdgeTo(bThen)
|
|
s.startBlock(bThen)
|
|
s.vars[n] = s.zeroVal(lenType)
|
|
s.endBlock()
|
|
bThen.AddEdgeTo(bAfter)
|
|
|
|
b.AddEdgeTo(bElse)
|
|
s.startBlock(bElse)
|
|
if n.Op == OLEN {
|
|
// length is stored in the first word for map/chan
|
|
s.vars[n] = s.newValue2(ssa.OpLoad, lenType, x, s.mem())
|
|
} else if n.Op == OCAP {
|
|
// capacity is stored in the second word for chan
|
|
sw := s.newValue1I(ssa.OpOffPtr, lenType.PtrTo(), lenType.Width, x)
|
|
s.vars[n] = s.newValue2(ssa.OpLoad, lenType, sw, s.mem())
|
|
} else {
|
|
s.Fatalf("op must be OLEN or OCAP")
|
|
}
|
|
s.endBlock()
|
|
bElse.AddEdgeTo(bAfter)
|
|
|
|
s.startBlock(bAfter)
|
|
return s.variable(n, lenType)
|
|
}
|
|
|
|
type f2uCvtTab struct {
|
|
ltf, cvt2U, subf, or ssa.Op
|
|
floatValue func(*state, ssa.Type, float64) *ssa.Value
|
|
intValue func(*state, ssa.Type, int64) *ssa.Value
|
|
cutoff uint64
|
|
}
|
|
|
|
var f32_u64 f2uCvtTab = f2uCvtTab{
|
|
ltf: ssa.OpLess32F,
|
|
cvt2U: ssa.OpCvt32Fto64,
|
|
subf: ssa.OpSub32F,
|
|
or: ssa.OpOr64,
|
|
floatValue: (*state).constFloat32,
|
|
intValue: (*state).constInt64,
|
|
cutoff: 9223372036854775808,
|
|
}
|
|
|
|
var f64_u64 f2uCvtTab = f2uCvtTab{
|
|
ltf: ssa.OpLess64F,
|
|
cvt2U: ssa.OpCvt64Fto64,
|
|
subf: ssa.OpSub64F,
|
|
or: ssa.OpOr64,
|
|
floatValue: (*state).constFloat64,
|
|
intValue: (*state).constInt64,
|
|
cutoff: 9223372036854775808,
|
|
}
|
|
|
|
var f32_u32 f2uCvtTab = f2uCvtTab{
|
|
ltf: ssa.OpLess32F,
|
|
cvt2U: ssa.OpCvt32Fto32,
|
|
subf: ssa.OpSub32F,
|
|
or: ssa.OpOr32,
|
|
floatValue: (*state).constFloat32,
|
|
intValue: func(s *state, t ssa.Type, v int64) *ssa.Value { return s.constInt32(t, int32(v)) },
|
|
cutoff: 2147483648,
|
|
}
|
|
|
|
var f64_u32 f2uCvtTab = f2uCvtTab{
|
|
ltf: ssa.OpLess64F,
|
|
cvt2U: ssa.OpCvt64Fto32,
|
|
subf: ssa.OpSub64F,
|
|
or: ssa.OpOr32,
|
|
floatValue: (*state).constFloat64,
|
|
intValue: func(s *state, t ssa.Type, v int64) *ssa.Value { return s.constInt32(t, int32(v)) },
|
|
cutoff: 2147483648,
|
|
}
|
|
|
|
func (s *state) float32ToUint64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
|
|
return s.floatToUint(&f32_u64, n, x, ft, tt)
|
|
}
|
|
func (s *state) float64ToUint64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
|
|
return s.floatToUint(&f64_u64, n, x, ft, tt)
|
|
}
|
|
|
|
func (s *state) float32ToUint32(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
|
|
return s.floatToUint(&f32_u32, n, x, ft, tt)
|
|
}
|
|
|
|
func (s *state) float64ToUint32(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
|
|
return s.floatToUint(&f64_u32, n, x, ft, tt)
|
|
}
|
|
|
|
func (s *state) floatToUint(cvttab *f2uCvtTab, n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
|
|
// cutoff:=1<<(intY_Size-1)
|
|
// if x < floatX(cutoff) {
|
|
// result = uintY(x)
|
|
// } else {
|
|
// y = x - floatX(cutoff)
|
|
// z = uintY(y)
|
|
// result = z | -(cutoff)
|
|
// }
|
|
cutoff := cvttab.floatValue(s, ft, float64(cvttab.cutoff))
|
|
cmp := s.newValue2(cvttab.ltf, Types[TBOOL], x, cutoff)
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockIf
|
|
b.SetControl(cmp)
|
|
b.Likely = ssa.BranchLikely
|
|
|
|
bThen := s.f.NewBlock(ssa.BlockPlain)
|
|
bElse := s.f.NewBlock(ssa.BlockPlain)
|
|
bAfter := s.f.NewBlock(ssa.BlockPlain)
|
|
|
|
b.AddEdgeTo(bThen)
|
|
s.startBlock(bThen)
|
|
a0 := s.newValue1(cvttab.cvt2U, tt, x)
|
|
s.vars[n] = a0
|
|
s.endBlock()
|
|
bThen.AddEdgeTo(bAfter)
|
|
|
|
b.AddEdgeTo(bElse)
|
|
s.startBlock(bElse)
|
|
y := s.newValue2(cvttab.subf, ft, x, cutoff)
|
|
y = s.newValue1(cvttab.cvt2U, tt, y)
|
|
z := cvttab.intValue(s, tt, int64(-cvttab.cutoff))
|
|
a1 := s.newValue2(cvttab.or, tt, y, z)
|
|
s.vars[n] = a1
|
|
s.endBlock()
|
|
bElse.AddEdgeTo(bAfter)
|
|
|
|
s.startBlock(bAfter)
|
|
return s.variable(n, n.Type)
|
|
}
|
|
|
|
// dottype generates SSA for a type assertion node.
|
|
// commaok indicates whether to panic or return a bool.
|
|
// If commaok is false, resok will be nil.
|
|
func (s *state) dottype(n *Node, commaok bool) (res, resok *ssa.Value) {
|
|
iface := s.expr(n.Left) // input interface
|
|
target := s.expr(typename(n.Type)) // target type
|
|
byteptr := ptrto(Types[TUINT8])
|
|
|
|
if n.Type.IsInterface() {
|
|
if n.Type.IsEmptyInterface() {
|
|
// Converting to an empty interface.
|
|
// Input could be an empty or nonempty interface.
|
|
if Debug_typeassert > 0 {
|
|
Warnl(n.Pos, "type assertion inlined")
|
|
}
|
|
|
|
// Get itab/type field from input.
|
|
itab := s.newValue1(ssa.OpITab, byteptr, iface)
|
|
// Conversion succeeds iff that field is not nil.
|
|
cond := s.newValue2(ssa.OpNeqPtr, Types[TBOOL], itab, s.constNil(byteptr))
|
|
|
|
if n.Left.Type.IsEmptyInterface() && commaok {
|
|
// Converting empty interface to empty interface with ,ok is just a nil check.
|
|
return iface, cond
|
|
}
|
|
|
|
// Branch on nilness.
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockIf
|
|
b.SetControl(cond)
|
|
b.Likely = ssa.BranchLikely
|
|
bOk := s.f.NewBlock(ssa.BlockPlain)
|
|
bFail := s.f.NewBlock(ssa.BlockPlain)
|
|
b.AddEdgeTo(bOk)
|
|
b.AddEdgeTo(bFail)
|
|
|
|
if !commaok {
|
|
// On failure, panic by calling panicnildottype.
|
|
s.startBlock(bFail)
|
|
s.rtcall(panicnildottype, false, nil, target)
|
|
|
|
// On success, return (perhaps modified) input interface.
|
|
s.startBlock(bOk)
|
|
if n.Left.Type.IsEmptyInterface() {
|
|
res = iface // Use input interface unchanged.
|
|
return
|
|
}
|
|
// Load type out of itab, build interface with existing idata.
|
|
off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), itab)
|
|
typ := s.newValue2(ssa.OpLoad, byteptr, off, s.mem())
|
|
idata := s.newValue1(ssa.OpIData, n.Type, iface)
|
|
res = s.newValue2(ssa.OpIMake, n.Type, typ, idata)
|
|
return
|
|
}
|
|
|
|
s.startBlock(bOk)
|
|
// nonempty -> empty
|
|
// Need to load type from itab
|
|
off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), itab)
|
|
s.vars[&typVar] = s.newValue2(ssa.OpLoad, byteptr, off, s.mem())
|
|
s.endBlock()
|
|
|
|
// itab is nil, might as well use that as the nil result.
|
|
s.startBlock(bFail)
|
|
s.vars[&typVar] = itab
|
|
s.endBlock()
|
|
|
|
// Merge point.
|
|
bEnd := s.f.NewBlock(ssa.BlockPlain)
|
|
bOk.AddEdgeTo(bEnd)
|
|
bFail.AddEdgeTo(bEnd)
|
|
s.startBlock(bEnd)
|
|
idata := s.newValue1(ssa.OpIData, n.Type, iface)
|
|
res = s.newValue2(ssa.OpIMake, n.Type, s.variable(&typVar, byteptr), idata)
|
|
resok = cond
|
|
delete(s.vars, &typVar)
|
|
return
|
|
}
|
|
// converting to a nonempty interface needs a runtime call.
|
|
if Debug_typeassert > 0 {
|
|
Warnl(n.Pos, "type assertion not inlined")
|
|
}
|
|
if n.Left.Type.IsEmptyInterface() {
|
|
if commaok {
|
|
call := s.rtcall(assertE2I2, true, []*Type{n.Type, Types[TBOOL]}, target, iface)
|
|
return call[0], call[1]
|
|
}
|
|
return s.rtcall(assertE2I, true, []*Type{n.Type}, target, iface)[0], nil
|
|
}
|
|
if commaok {
|
|
call := s.rtcall(assertI2I2, true, []*Type{n.Type, Types[TBOOL]}, target, iface)
|
|
return call[0], call[1]
|
|
}
|
|
return s.rtcall(assertI2I, true, []*Type{n.Type}, target, iface)[0], nil
|
|
}
|
|
|
|
if Debug_typeassert > 0 {
|
|
Warnl(n.Pos, "type assertion inlined")
|
|
}
|
|
|
|
// Converting to a concrete type.
|
|
direct := isdirectiface(n.Type)
|
|
itab := s.newValue1(ssa.OpITab, byteptr, iface) // type word of interface
|
|
if Debug_typeassert > 0 {
|
|
Warnl(n.Pos, "type assertion inlined")
|
|
}
|
|
var targetITab *ssa.Value
|
|
if n.Left.Type.IsEmptyInterface() {
|
|
// Looking for pointer to target type.
|
|
targetITab = target
|
|
} else {
|
|
// Looking for pointer to itab for target type and source interface.
|
|
targetITab = s.expr(itabname(n.Type, n.Left.Type))
|
|
}
|
|
|
|
var tmp *Node // temporary for use with large types
|
|
var addr *ssa.Value // address of tmp
|
|
if commaok && !canSSAType(n.Type) {
|
|
// unSSAable type, use temporary.
|
|
// TODO: get rid of some of these temporaries.
|
|
tmp = temp(n.Type)
|
|
addr = s.addr(tmp, false)
|
|
s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, tmp, s.mem())
|
|
}
|
|
|
|
cond := s.newValue2(ssa.OpEqPtr, Types[TBOOL], itab, targetITab)
|
|
b := s.endBlock()
|
|
b.Kind = ssa.BlockIf
|
|
b.SetControl(cond)
|
|
b.Likely = ssa.BranchLikely
|
|
|
|
bOk := s.f.NewBlock(ssa.BlockPlain)
|
|
bFail := s.f.NewBlock(ssa.BlockPlain)
|
|
b.AddEdgeTo(bOk)
|
|
b.AddEdgeTo(bFail)
|
|
|
|
if !commaok {
|
|
// on failure, panic by calling panicdottype
|
|
s.startBlock(bFail)
|
|
taddr := s.newValue1A(ssa.OpAddr, byteptr, &ssa.ExternSymbol{Typ: byteptr, Sym: Linksym(typenamesym(n.Left.Type))}, s.sb)
|
|
if n.Left.Type.IsEmptyInterface() {
|
|
s.rtcall(panicdottypeE, false, nil, itab, target, taddr)
|
|
} else {
|
|
s.rtcall(panicdottypeI, false, nil, itab, target, taddr)
|
|
}
|
|
|
|
// on success, return data from interface
|
|
s.startBlock(bOk)
|
|
if direct {
|
|
return s.newValue1(ssa.OpIData, n.Type, iface), nil
|
|
}
|
|
p := s.newValue1(ssa.OpIData, ptrto(n.Type), iface)
|
|
return s.newValue2(ssa.OpLoad, n.Type, p, s.mem()), nil
|
|
}
|
|
|
|
// commaok is the more complicated case because we have
|
|
// a control flow merge point.
|
|
bEnd := s.f.NewBlock(ssa.BlockPlain)
|
|
// Note that we need a new valVar each time (unlike okVar where we can
|
|
// reuse the variable) because it might have a different type every time.
|
|
valVar := &Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "val"}}
|
|
|
|
// type assertion succeeded
|
|
s.startBlock(bOk)
|
|
if tmp == nil {
|
|
if direct {
|
|
s.vars[valVar] = s.newValue1(ssa.OpIData, n.Type, iface)
|
|
} else {
|
|
p := s.newValue1(ssa.OpIData, ptrto(n.Type), iface)
|
|
s.vars[valVar] = s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
|
|
}
|
|
} else {
|
|
p := s.newValue1(ssa.OpIData, ptrto(n.Type), iface)
|
|
s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, sizeAlignAuxInt(n.Type), addr, p, s.mem())
|
|
}
|
|
s.vars[&okVar] = s.constBool(true)
|
|
s.endBlock()
|
|
bOk.AddEdgeTo(bEnd)
|
|
|
|
// type assertion failed
|
|
s.startBlock(bFail)
|
|
if tmp == nil {
|
|
s.vars[valVar] = s.zeroVal(n.Type)
|
|
} else {
|
|
s.vars[&memVar] = s.newValue2I(ssa.OpZero, ssa.TypeMem, sizeAlignAuxInt(n.Type), addr, s.mem())
|
|
}
|
|
s.vars[&okVar] = s.constBool(false)
|
|
s.endBlock()
|
|
bFail.AddEdgeTo(bEnd)
|
|
|
|
// merge point
|
|
s.startBlock(bEnd)
|
|
if tmp == nil {
|
|
res = s.variable(valVar, n.Type)
|
|
delete(s.vars, valVar)
|
|
} else {
|
|
res = s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
|
|
s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, ssa.TypeMem, tmp, s.mem())
|
|
}
|
|
resok = s.variable(&okVar, Types[TBOOL])
|
|
delete(s.vars, &okVar)
|
|
return res, resok
|
|
}
|
|
|
|
// variable returns the value of a variable at the current location.
|
|
func (s *state) variable(name *Node, t ssa.Type) *ssa.Value {
|
|
v := s.vars[name]
|
|
if v != nil {
|
|
return v
|
|
}
|
|
v = s.fwdVars[name]
|
|
if v != nil {
|
|
return v
|
|
}
|
|
|
|
if s.curBlock == s.f.Entry {
|
|
// No variable should be live at entry.
|
|
s.Fatalf("Value live at entry. It shouldn't be. func %s, node %v, value %v", s.f.Name, name, v)
|
|
}
|
|
// Make a FwdRef, which records a value that's live on block input.
|
|
// We'll find the matching definition as part of insertPhis.
|
|
v = s.newValue0A(ssa.OpFwdRef, t, name)
|
|
s.fwdVars[name] = v
|
|
s.addNamedValue(name, v)
|
|
return v
|
|
}
|
|
|
|
func (s *state) mem() *ssa.Value {
|
|
return s.variable(&memVar, ssa.TypeMem)
|
|
}
|
|
|
|
func (s *state) addNamedValue(n *Node, v *ssa.Value) {
|
|
if n.Class == Pxxx {
|
|
// Don't track our dummy nodes (&memVar etc.).
|
|
return
|
|
}
|
|
if n.IsAutoTmp() {
|
|
// Don't track temporary variables.
|
|
return
|
|
}
|
|
if n.Class == PPARAMOUT {
|
|
// Don't track named output values. This prevents return values
|
|
// from being assigned too early. See #14591 and #14762. TODO: allow this.
|
|
return
|
|
}
|
|
if n.Class == PAUTO && n.Xoffset != 0 {
|
|
s.Fatalf("AUTO var with offset %v %d", n, n.Xoffset)
|
|
}
|
|
loc := ssa.LocalSlot{N: n, Type: n.Type, Off: 0}
|
|
values, ok := s.f.NamedValues[loc]
|
|
if !ok {
|
|
s.f.Names = append(s.f.Names, loc)
|
|
}
|
|
s.f.NamedValues[loc] = append(values, v)
|
|
}
|
|
|
|
// Branch is an unresolved branch.
|
|
type Branch struct {
|
|
P *obj.Prog // branch instruction
|
|
B *ssa.Block // target
|
|
}
|
|
|
|
// SSAGenState contains state needed during Prog generation.
|
|
type SSAGenState struct {
|
|
// Branches remembers all the branch instructions we've seen
|
|
// and where they would like to go.
|
|
Branches []Branch
|
|
|
|
// bstart remembers where each block starts (indexed by block ID)
|
|
bstart []*obj.Prog
|
|
|
|
// 387 port: maps from SSE registers (REG_X?) to 387 registers (REG_F?)
|
|
SSEto387 map[int16]int16
|
|
// Some architectures require a 64-bit temporary for FP-related register shuffling. Examples include x86-387, PPC, and Sparc V8.
|
|
ScratchFpMem *Node
|
|
}
|
|
|
|
// Pc returns the current Prog.
|
|
func (s *SSAGenState) Pc() *obj.Prog {
|
|
return pc
|
|
}
|
|
|
|
// SetPos sets the current source position.
|
|
func (s *SSAGenState) SetPos(pos src.XPos) {
|
|
lineno = pos
|
|
}
|
|
|
|
// genssa appends entries to ptxt for each instruction in f.
|
|
// gcargs and gclocals are filled in with pointer maps for the frame.
|
|
func genssa(f *ssa.Func, ptxt *obj.Prog, gcargs, gclocals *Sym) {
|
|
var s SSAGenState
|
|
|
|
e := f.Config.Frontend().(*ssaExport)
|
|
|
|
// Remember where each block starts.
|
|
s.bstart = make([]*obj.Prog, f.NumBlocks())
|
|
|
|
var valueProgs map[*obj.Prog]*ssa.Value
|
|
var blockProgs map[*obj.Prog]*ssa.Block
|
|
var logProgs = e.log
|
|
if logProgs {
|
|
valueProgs = make(map[*obj.Prog]*ssa.Value, f.NumValues())
|
|
blockProgs = make(map[*obj.Prog]*ssa.Block, f.NumBlocks())
|
|
f.Logf("genssa %s\n", f.Name)
|
|
blockProgs[pc] = f.Blocks[0]
|
|
}
|
|
|
|
if Thearch.Use387 {
|
|
s.SSEto387 = map[int16]int16{}
|
|
}
|
|
|
|
s.ScratchFpMem = scratchFpMem
|
|
scratchFpMem = nil
|
|
|
|
// Emit basic blocks
|
|
for i, b := range f.Blocks {
|
|
s.bstart[b.ID] = pc
|
|
// Emit values in block
|
|
Thearch.SSAMarkMoves(&s, b)
|
|
for _, v := range b.Values {
|
|
x := pc
|
|
s.SetPos(v.Pos)
|
|
|
|
switch v.Op {
|
|
case ssa.OpInitMem:
|
|
// memory arg needs no code
|
|
case ssa.OpArg:
|
|
// input args need no code
|
|
case ssa.OpSP, ssa.OpSB:
|
|
// nothing to do
|
|
case ssa.OpSelect0, ssa.OpSelect1:
|
|
// nothing to do
|
|
case ssa.OpGetG:
|
|
// nothing to do when there's a g register,
|
|
// and checkLower complains if there's not
|
|
case ssa.OpVarDef:
|
|
Gvardef(v.Aux.(*Node))
|
|
case ssa.OpVarKill:
|
|
Gvarkill(v.Aux.(*Node))
|
|
case ssa.OpVarLive:
|
|
Gvarlive(v.Aux.(*Node))
|
|
case ssa.OpKeepAlive:
|
|
KeepAlive(v)
|
|
case ssa.OpPhi:
|
|
CheckLoweredPhi(v)
|
|
|
|
default:
|
|
// let the backend handle it
|
|
Thearch.SSAGenValue(&s, v)
|
|
}
|
|
|
|
if logProgs {
|
|
for ; x != pc; x = x.Link {
|
|
valueProgs[x] = v
|
|
}
|
|
}
|
|
}
|
|
// Emit control flow instructions for block
|
|
var next *ssa.Block
|
|
if i < len(f.Blocks)-1 && Debug['N'] == 0 {
|
|
// If -N, leave next==nil so every block with successors
|
|
// ends in a JMP (except call blocks - plive doesn't like
|
|
// select{send,recv} followed by a JMP call). Helps keep
|
|
// line numbers for otherwise empty blocks.
|
|
next = f.Blocks[i+1]
|
|
}
|
|
x := pc
|
|
Thearch.SSAGenBlock(&s, b, next)
|
|
if logProgs {
|
|
for ; x != pc; x = x.Link {
|
|
blockProgs[x] = b
|
|
}
|
|
}
|
|
}
|
|
|
|
// Resolve branches
|
|
for _, br := range s.Branches {
|
|
br.P.To.Val = s.bstart[br.B.ID]
|
|
}
|
|
|
|
if logProgs {
|
|
for p := ptxt; p != nil; p = p.Link {
|
|
var s string
|
|
if v, ok := valueProgs[p]; ok {
|
|
s = v.String()
|
|
} else if b, ok := blockProgs[p]; ok {
|
|
s = b.String()
|
|
} else {
|
|
s = " " // most value and branch strings are 2-3 characters long
|
|
}
|
|
f.Logf("%s\t%s\n", s, p)
|
|
}
|
|
if f.Config.HTML != nil {
|
|
// LineHist is defunct now - this code won't do
|
|
// anything.
|
|
// TODO: fix this (ideally without a global variable)
|
|
// saved := ptxt.Ctxt.LineHist.PrintFilenameOnly
|
|
// ptxt.Ctxt.LineHist.PrintFilenameOnly = true
|
|
var buf bytes.Buffer
|
|
buf.WriteString("<code>")
|
|
buf.WriteString("<dl class=\"ssa-gen\">")
|
|
for p := ptxt; p != nil; p = p.Link {
|
|
buf.WriteString("<dt class=\"ssa-prog-src\">")
|
|
if v, ok := valueProgs[p]; ok {
|
|
buf.WriteString(v.HTML())
|
|
} else if b, ok := blockProgs[p]; ok {
|
|
buf.WriteString(b.HTML())
|
|
}
|
|
buf.WriteString("</dt>")
|
|
buf.WriteString("<dd class=\"ssa-prog\">")
|
|
buf.WriteString(html.EscapeString(p.String()))
|
|
buf.WriteString("</dd>")
|
|
buf.WriteString("</li>")
|
|
}
|
|
buf.WriteString("</dl>")
|
|
buf.WriteString("</code>")
|
|
f.Config.HTML.WriteColumn("genssa", buf.String())
|
|
// ptxt.Ctxt.LineHist.PrintFilenameOnly = saved
|
|
}
|
|
}
|
|
|
|
// Generate gc bitmaps.
|
|
liveness(Curfn, ptxt, gcargs, gclocals)
|
|
|
|
// Add frame prologue. Zero ambiguously live variables.
|
|
Thearch.Defframe(ptxt)
|
|
if Debug['f'] != 0 {
|
|
frame(0)
|
|
}
|
|
|
|
// Remove leftover instrumentation from the instruction stream.
|
|
removevardef(ptxt)
|
|
|
|
f.Config.HTML.Close()
|
|
f.Config.HTML = nil
|
|
}
|
|
|
|
type FloatingEQNEJump struct {
|
|
Jump obj.As
|
|
Index int
|
|
}
|
|
|
|
func oneFPJump(b *ssa.Block, jumps *FloatingEQNEJump, likely ssa.BranchPrediction, branches []Branch) []Branch {
|
|
p := Prog(jumps.Jump)
|
|
p.To.Type = obj.TYPE_BRANCH
|
|
to := jumps.Index
|
|
branches = append(branches, Branch{p, b.Succs[to].Block()})
|
|
if to == 1 {
|
|
likely = -likely
|
|
}
|
|
// liblink reorders the instruction stream as it sees fit.
|
|
// Pass along what we know so liblink can make use of it.
|
|
// TODO: Once we've fully switched to SSA,
|
|
// make liblink leave our output alone.
|
|
switch likely {
|
|
case ssa.BranchUnlikely:
|
|
p.From.Type = obj.TYPE_CONST
|
|
p.From.Offset = 0
|
|
case ssa.BranchLikely:
|
|
p.From.Type = obj.TYPE_CONST
|
|
p.From.Offset = 1
|
|
}
|
|
return branches
|
|
}
|
|
|
|
func SSAGenFPJump(s *SSAGenState, b, next *ssa.Block, jumps *[2][2]FloatingEQNEJump) {
|
|
likely := b.Likely
|
|
switch next {
|
|
case b.Succs[0].Block():
|
|
s.Branches = oneFPJump(b, &jumps[0][0], likely, s.Branches)
|
|
s.Branches = oneFPJump(b, &jumps[0][1], likely, s.Branches)
|
|
case b.Succs[1].Block():
|
|
s.Branches = oneFPJump(b, &jumps[1][0], likely, s.Branches)
|
|
s.Branches = oneFPJump(b, &jumps[1][1], likely, s.Branches)
|
|
default:
|
|
s.Branches = oneFPJump(b, &jumps[1][0], likely, s.Branches)
|
|
s.Branches = oneFPJump(b, &jumps[1][1], likely, s.Branches)
|
|
q := Prog(obj.AJMP)
|
|
q.To.Type = obj.TYPE_BRANCH
|
|
s.Branches = append(s.Branches, Branch{q, b.Succs[1].Block()})
|
|
}
|
|
}
|
|
|
|
func AuxOffset(v *ssa.Value) (offset int64) {
|
|
if v.Aux == nil {
|
|
return 0
|
|
}
|
|
switch sym := v.Aux.(type) {
|
|
|
|
case *ssa.AutoSymbol:
|
|
n := sym.Node.(*Node)
|
|
return n.Xoffset
|
|
}
|
|
return 0
|
|
}
|
|
|
|
// AddAux adds the offset in the aux fields (AuxInt and Aux) of v to a.
|
|
func AddAux(a *obj.Addr, v *ssa.Value) {
|
|
AddAux2(a, v, v.AuxInt)
|
|
}
|
|
func AddAux2(a *obj.Addr, v *ssa.Value, offset int64) {
|
|
if a.Type != obj.TYPE_MEM && a.Type != obj.TYPE_ADDR {
|
|
v.Fatalf("bad AddAux addr %v", a)
|
|
}
|
|
// add integer offset
|
|
a.Offset += offset
|
|
|
|
// If no additional symbol offset, we're done.
|
|
if v.Aux == nil {
|
|
return
|
|
}
|
|
// Add symbol's offset from its base register.
|
|
switch sym := v.Aux.(type) {
|
|
case *ssa.ExternSymbol:
|
|
a.Name = obj.NAME_EXTERN
|
|
a.Sym = sym.Sym
|
|
case *ssa.ArgSymbol:
|
|
n := sym.Node.(*Node)
|
|
a.Name = obj.NAME_PARAM
|
|
a.Node = n
|
|
a.Sym = Linksym(n.Orig.Sym)
|
|
a.Offset += n.Xoffset
|
|
case *ssa.AutoSymbol:
|
|
n := sym.Node.(*Node)
|
|
a.Name = obj.NAME_AUTO
|
|
a.Node = n
|
|
a.Sym = Linksym(n.Sym)
|
|
a.Offset += n.Xoffset
|
|
default:
|
|
v.Fatalf("aux in %s not implemented %#v", v, v.Aux)
|
|
}
|
|
}
|
|
|
|
// sizeAlignAuxInt returns an AuxInt encoding the size and alignment of type t.
|
|
func sizeAlignAuxInt(t *Type) int64 {
|
|
return ssa.MakeSizeAndAlign(t.Size(), t.Alignment()).Int64()
|
|
}
|
|
|
|
// extendIndex extends v to a full int width.
|
|
// panic using the given function if v does not fit in an int (only on 32-bit archs).
|
|
func (s *state) extendIndex(v *ssa.Value, panicfn *obj.LSym) *ssa.Value {
|
|
size := v.Type.Size()
|
|
if size == s.config.IntSize {
|
|
return v
|
|
}
|
|
if size > s.config.IntSize {
|
|
// truncate 64-bit indexes on 32-bit pointer archs. Test the
|
|
// high word and branch to out-of-bounds failure if it is not 0.
|
|
if Debug['B'] == 0 {
|
|
hi := s.newValue1(ssa.OpInt64Hi, Types[TUINT32], v)
|
|
cmp := s.newValue2(ssa.OpEq32, Types[TBOOL], hi, s.constInt32(Types[TUINT32], 0))
|
|
s.check(cmp, panicfn)
|
|
}
|
|
return s.newValue1(ssa.OpTrunc64to32, Types[TINT], v)
|
|
}
|
|
|
|
// Extend value to the required size
|
|
var op ssa.Op
|
|
if v.Type.IsSigned() {
|
|
switch 10*size + s.config.IntSize {
|
|
case 14:
|
|
op = ssa.OpSignExt8to32
|
|
case 18:
|
|
op = ssa.OpSignExt8to64
|
|
case 24:
|
|
op = ssa.OpSignExt16to32
|
|
case 28:
|
|
op = ssa.OpSignExt16to64
|
|
case 48:
|
|
op = ssa.OpSignExt32to64
|
|
default:
|
|
s.Fatalf("bad signed index extension %s", v.Type)
|
|
}
|
|
} else {
|
|
switch 10*size + s.config.IntSize {
|
|
case 14:
|
|
op = ssa.OpZeroExt8to32
|
|
case 18:
|
|
op = ssa.OpZeroExt8to64
|
|
case 24:
|
|
op = ssa.OpZeroExt16to32
|
|
case 28:
|
|
op = ssa.OpZeroExt16to64
|
|
case 48:
|
|
op = ssa.OpZeroExt32to64
|
|
default:
|
|
s.Fatalf("bad unsigned index extension %s", v.Type)
|
|
}
|
|
}
|
|
return s.newValue1(op, Types[TINT], v)
|
|
}
|
|
|
|
// CheckLoweredPhi checks that regalloc and stackalloc correctly handled phi values.
|
|
// Called during ssaGenValue.
|
|
func CheckLoweredPhi(v *ssa.Value) {
|
|
if v.Op != ssa.OpPhi {
|
|
v.Fatalf("CheckLoweredPhi called with non-phi value: %v", v.LongString())
|
|
}
|
|
if v.Type.IsMemory() {
|
|
return
|
|
}
|
|
f := v.Block.Func
|
|
loc := f.RegAlloc[v.ID]
|
|
for _, a := range v.Args {
|
|
if aloc := f.RegAlloc[a.ID]; aloc != loc { // TODO: .Equal() instead?
|
|
v.Fatalf("phi arg at different location than phi: %v @ %v, but arg %v @ %v\n%s\n", v, loc, a, aloc, v.Block.Func)
|
|
}
|
|
}
|
|
}
|
|
|
|
// CheckLoweredGetClosurePtr checks that v is the first instruction in the function's entry block.
|
|
// The output of LoweredGetClosurePtr is generally hardwired to the correct register.
|
|
// That register contains the closure pointer on closure entry.
|
|
func CheckLoweredGetClosurePtr(v *ssa.Value) {
|
|
entry := v.Block.Func.Entry
|
|
if entry != v.Block || entry.Values[0] != v {
|
|
Fatalf("in %s, badly placed LoweredGetClosurePtr: %v %v", v.Block.Func.Name, v.Block, v)
|
|
}
|
|
}
|
|
|
|
// KeepAlive marks the variable referenced by OpKeepAlive as live.
|
|
// Called during ssaGenValue.
|
|
func KeepAlive(v *ssa.Value) {
|
|
if v.Op != ssa.OpKeepAlive {
|
|
v.Fatalf("KeepAlive called with non-KeepAlive value: %v", v.LongString())
|
|
}
|
|
if !v.Args[0].Type.IsPtrShaped() {
|
|
v.Fatalf("keeping non-pointer alive %v", v.Args[0])
|
|
}
|
|
n, _ := AutoVar(v.Args[0])
|
|
if n == nil {
|
|
v.Fatalf("KeepAlive with non-spilled value %s %s", v, v.Args[0])
|
|
}
|
|
// Note: KeepAlive arg may be a small part of a larger variable n. We keep the
|
|
// whole variable n alive at this point. (Typically, this happens when
|
|
// we are requested to keep the idata portion of an interface{} alive, and
|
|
// we end up keeping the whole interface{} alive. That's ok.)
|
|
Gvarlive(n)
|
|
}
|
|
|
|
// AutoVar returns a *Node and int64 representing the auto variable and offset within it
|
|
// where v should be spilled.
|
|
func AutoVar(v *ssa.Value) (*Node, int64) {
|
|
loc := v.Block.Func.RegAlloc[v.ID].(ssa.LocalSlot)
|
|
if v.Type.Size() > loc.Type.Size() {
|
|
v.Fatalf("spill/restore type %s doesn't fit in slot type %s", v.Type, loc.Type)
|
|
}
|
|
return loc.N.(*Node), loc.Off
|
|
}
|
|
|
|
func AddrAuto(a *obj.Addr, v *ssa.Value) {
|
|
n, off := AutoVar(v)
|
|
a.Type = obj.TYPE_MEM
|
|
a.Node = n
|
|
a.Sym = Linksym(n.Sym)
|
|
a.Reg = int16(Thearch.REGSP)
|
|
a.Offset = n.Xoffset + off
|
|
if n.Class == PPARAM || n.Class == PPARAMOUT {
|
|
a.Name = obj.NAME_PARAM
|
|
} else {
|
|
a.Name = obj.NAME_AUTO
|
|
}
|
|
}
|
|
|
|
func (s *SSAGenState) AddrScratch(a *obj.Addr) {
|
|
if s.ScratchFpMem == nil {
|
|
panic("no scratch memory available; forgot to declare usesScratch for Op?")
|
|
}
|
|
a.Type = obj.TYPE_MEM
|
|
a.Name = obj.NAME_AUTO
|
|
a.Node = s.ScratchFpMem
|
|
a.Sym = Linksym(s.ScratchFpMem.Sym)
|
|
a.Reg = int16(Thearch.REGSP)
|
|
a.Offset = s.ScratchFpMem.Xoffset
|
|
}
|
|
|
|
func (s *SSAGenState) Call(v *ssa.Value) *obj.Prog {
|
|
if sym, _ := v.Aux.(*obj.LSym); sym == Deferreturn {
|
|
// Deferred calls will appear to be returning to
|
|
// the CALL deferreturn(SB) that we are about to emit.
|
|
// However, the stack trace code will show the line
|
|
// of the instruction byte before the return PC.
|
|
// To avoid that being an unrelated instruction,
|
|
// insert an actual hardware NOP that will have the right line number.
|
|
// This is different from obj.ANOP, which is a virtual no-op
|
|
// that doesn't make it into the instruction stream.
|
|
Thearch.Ginsnop()
|
|
}
|
|
|
|
p := Prog(obj.ACALL)
|
|
if sym, ok := v.Aux.(*obj.LSym); ok {
|
|
p.To.Type = obj.TYPE_MEM
|
|
p.To.Name = obj.NAME_EXTERN
|
|
p.To.Sym = sym
|
|
} else {
|
|
// TODO(mdempsky): Can these differences be eliminated?
|
|
switch Thearch.LinkArch.Family {
|
|
case sys.AMD64, sys.I386, sys.PPC64, sys.S390X:
|
|
p.To.Type = obj.TYPE_REG
|
|
case sys.ARM, sys.ARM64, sys.MIPS, sys.MIPS64:
|
|
p.To.Type = obj.TYPE_MEM
|
|
default:
|
|
Fatalf("unknown indirect call family")
|
|
}
|
|
p.To.Reg = v.Args[0].Reg()
|
|
}
|
|
if Maxarg < v.AuxInt {
|
|
Maxarg = v.AuxInt
|
|
}
|
|
return p
|
|
}
|
|
|
|
// fieldIdx finds the index of the field referred to by the ODOT node n.
|
|
func fieldIdx(n *Node) int {
|
|
t := n.Left.Type
|
|
f := n.Sym
|
|
if !t.IsStruct() {
|
|
panic("ODOT's LHS is not a struct")
|
|
}
|
|
|
|
var i int
|
|
for _, t1 := range t.Fields().Slice() {
|
|
if t1.Sym != f {
|
|
i++
|
|
continue
|
|
}
|
|
if t1.Offset != n.Xoffset {
|
|
panic("field offset doesn't match")
|
|
}
|
|
return i
|
|
}
|
|
panic(fmt.Sprintf("can't find field in expr %v\n", n))
|
|
|
|
// TODO: keep the result of this function somewhere in the ODOT Node
|
|
// so we don't have to recompute it each time we need it.
|
|
}
|
|
|
|
// ssaExport exports a bunch of compiler services for the ssa backend.
|
|
type ssaExport struct {
|
|
log bool
|
|
}
|
|
|
|
func (s *ssaExport) TypeBool() ssa.Type { return Types[TBOOL] }
|
|
func (s *ssaExport) TypeInt8() ssa.Type { return Types[TINT8] }
|
|
func (s *ssaExport) TypeInt16() ssa.Type { return Types[TINT16] }
|
|
func (s *ssaExport) TypeInt32() ssa.Type { return Types[TINT32] }
|
|
func (s *ssaExport) TypeInt64() ssa.Type { return Types[TINT64] }
|
|
func (s *ssaExport) TypeUInt8() ssa.Type { return Types[TUINT8] }
|
|
func (s *ssaExport) TypeUInt16() ssa.Type { return Types[TUINT16] }
|
|
func (s *ssaExport) TypeUInt32() ssa.Type { return Types[TUINT32] }
|
|
func (s *ssaExport) TypeUInt64() ssa.Type { return Types[TUINT64] }
|
|
func (s *ssaExport) TypeFloat32() ssa.Type { return Types[TFLOAT32] }
|
|
func (s *ssaExport) TypeFloat64() ssa.Type { return Types[TFLOAT64] }
|
|
func (s *ssaExport) TypeInt() ssa.Type { return Types[TINT] }
|
|
func (s *ssaExport) TypeUintptr() ssa.Type { return Types[TUINTPTR] }
|
|
func (s *ssaExport) TypeString() ssa.Type { return Types[TSTRING] }
|
|
func (s *ssaExport) TypeBytePtr() ssa.Type { return ptrto(Types[TUINT8]) }
|
|
|
|
// StringData returns a symbol (a *Sym wrapped in an interface) which
|
|
// is the data component of a global string constant containing s.
|
|
func (*ssaExport) StringData(s string) interface{} {
|
|
// TODO: is idealstring correct? It might not matter...
|
|
data := stringsym(s)
|
|
return &ssa.ExternSymbol{Typ: idealstring, Sym: data}
|
|
}
|
|
|
|
func (e *ssaExport) Auto(t ssa.Type) ssa.GCNode {
|
|
n := temp(t.(*Type)) // Note: adds new auto to Curfn.Func.Dcl list
|
|
return n
|
|
}
|
|
|
|
func (e *ssaExport) SplitString(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
|
|
n := name.N.(*Node)
|
|
ptrType := ptrto(Types[TUINT8])
|
|
lenType := Types[TINT]
|
|
if n.Class == PAUTO && !n.Addrtaken() {
|
|
// Split this string up into two separate variables.
|
|
p := e.namedAuto(n.Sym.Name+".ptr", ptrType)
|
|
l := e.namedAuto(n.Sym.Name+".len", lenType)
|
|
return ssa.LocalSlot{N: p, Type: ptrType, Off: 0}, ssa.LocalSlot{N: l, Type: lenType, Off: 0}
|
|
}
|
|
// Return the two parts of the larger variable.
|
|
return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off}, ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)}
|
|
}
|
|
|
|
func (e *ssaExport) SplitInterface(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
|
|
n := name.N.(*Node)
|
|
t := ptrto(Types[TUINT8])
|
|
if n.Class == PAUTO && !n.Addrtaken() {
|
|
// Split this interface up into two separate variables.
|
|
f := ".itab"
|
|
if n.Type.IsEmptyInterface() {
|
|
f = ".type"
|
|
}
|
|
c := e.namedAuto(n.Sym.Name+f, t)
|
|
d := e.namedAuto(n.Sym.Name+".data", t)
|
|
return ssa.LocalSlot{N: c, Type: t, Off: 0}, ssa.LocalSlot{N: d, Type: t, Off: 0}
|
|
}
|
|
// Return the two parts of the larger variable.
|
|
return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + int64(Widthptr)}
|
|
}
|
|
|
|
func (e *ssaExport) SplitSlice(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot, ssa.LocalSlot) {
|
|
n := name.N.(*Node)
|
|
ptrType := ptrto(name.Type.ElemType().(*Type))
|
|
lenType := Types[TINT]
|
|
if n.Class == PAUTO && !n.Addrtaken() {
|
|
// Split this slice up into three separate variables.
|
|
p := e.namedAuto(n.Sym.Name+".ptr", ptrType)
|
|
l := e.namedAuto(n.Sym.Name+".len", lenType)
|
|
c := e.namedAuto(n.Sym.Name+".cap", lenType)
|
|
return ssa.LocalSlot{N: p, Type: ptrType, Off: 0}, ssa.LocalSlot{N: l, Type: lenType, Off: 0}, ssa.LocalSlot{N: c, Type: lenType, Off: 0}
|
|
}
|
|
// Return the three parts of the larger variable.
|
|
return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off},
|
|
ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)},
|
|
ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(2*Widthptr)}
|
|
}
|
|
|
|
func (e *ssaExport) SplitComplex(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
|
|
n := name.N.(*Node)
|
|
s := name.Type.Size() / 2
|
|
var t *Type
|
|
if s == 8 {
|
|
t = Types[TFLOAT64]
|
|
} else {
|
|
t = Types[TFLOAT32]
|
|
}
|
|
if n.Class == PAUTO && !n.Addrtaken() {
|
|
// Split this complex up into two separate variables.
|
|
c := e.namedAuto(n.Sym.Name+".real", t)
|
|
d := e.namedAuto(n.Sym.Name+".imag", t)
|
|
return ssa.LocalSlot{N: c, Type: t, Off: 0}, ssa.LocalSlot{N: d, Type: t, Off: 0}
|
|
}
|
|
// Return the two parts of the larger variable.
|
|
return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + s}
|
|
}
|
|
|
|
func (e *ssaExport) SplitInt64(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
|
|
n := name.N.(*Node)
|
|
var t *Type
|
|
if name.Type.IsSigned() {
|
|
t = Types[TINT32]
|
|
} else {
|
|
t = Types[TUINT32]
|
|
}
|
|
if n.Class == PAUTO && !n.Addrtaken() {
|
|
// Split this int64 up into two separate variables.
|
|
h := e.namedAuto(n.Sym.Name+".hi", t)
|
|
l := e.namedAuto(n.Sym.Name+".lo", Types[TUINT32])
|
|
return ssa.LocalSlot{N: h, Type: t, Off: 0}, ssa.LocalSlot{N: l, Type: Types[TUINT32], Off: 0}
|
|
}
|
|
// Return the two parts of the larger variable.
|
|
if Thearch.LinkArch.ByteOrder == binary.BigEndian {
|
|
return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: Types[TUINT32], Off: name.Off + 4}
|
|
}
|
|
return ssa.LocalSlot{N: n, Type: t, Off: name.Off + 4}, ssa.LocalSlot{N: n, Type: Types[TUINT32], Off: name.Off}
|
|
}
|
|
|
|
func (e *ssaExport) SplitStruct(name ssa.LocalSlot, i int) ssa.LocalSlot {
|
|
n := name.N.(*Node)
|
|
st := name.Type
|
|
ft := st.FieldType(i)
|
|
if n.Class == PAUTO && !n.Addrtaken() {
|
|
// Note: the _ field may appear several times. But
|
|
// have no fear, identically-named but distinct Autos are
|
|
// ok, albeit maybe confusing for a debugger.
|
|
x := e.namedAuto(n.Sym.Name+"."+st.FieldName(i), ft)
|
|
return ssa.LocalSlot{N: x, Type: ft, Off: 0}
|
|
}
|
|
return ssa.LocalSlot{N: n, Type: ft, Off: name.Off + st.FieldOff(i)}
|
|
}
|
|
|
|
func (e *ssaExport) SplitArray(name ssa.LocalSlot) ssa.LocalSlot {
|
|
n := name.N.(*Node)
|
|
at := name.Type
|
|
if at.NumElem() != 1 {
|
|
Fatalf("bad array size")
|
|
}
|
|
et := at.ElemType()
|
|
if n.Class == PAUTO && !n.Addrtaken() {
|
|
x := e.namedAuto(n.Sym.Name+"[0]", et)
|
|
return ssa.LocalSlot{N: x, Type: et, Off: 0}
|
|
}
|
|
return ssa.LocalSlot{N: n, Type: et, Off: name.Off}
|
|
}
|
|
|
|
func (e *ssaExport) DerefItab(it *obj.LSym, offset int64) *obj.LSym {
|
|
return itabsym(it, offset)
|
|
}
|
|
|
|
// namedAuto returns a new AUTO variable with the given name and type.
|
|
// These are exposed to the debugger.
|
|
func (e *ssaExport) namedAuto(name string, typ ssa.Type) ssa.GCNode {
|
|
t := typ.(*Type)
|
|
s := &Sym{Name: name, Pkg: localpkg}
|
|
n := nod(ONAME, nil, nil)
|
|
s.Def = n
|
|
s.Def.SetUsed(true)
|
|
n.Sym = s
|
|
n.Type = t
|
|
n.Class = PAUTO
|
|
n.SetAddable(true)
|
|
n.Esc = EscNever
|
|
n.Xoffset = 0
|
|
n.Name.Curfn = Curfn
|
|
Curfn.Func.Dcl = append(Curfn.Func.Dcl, n)
|
|
|
|
dowidth(t)
|
|
return n
|
|
}
|
|
|
|
func (e *ssaExport) CanSSA(t ssa.Type) bool {
|
|
return canSSAType(t.(*Type))
|
|
}
|
|
|
|
func (e *ssaExport) Line(pos src.XPos) string {
|
|
return linestr(pos)
|
|
}
|
|
|
|
// Log logs a message from the compiler.
|
|
func (e *ssaExport) Logf(msg string, args ...interface{}) {
|
|
if e.log {
|
|
fmt.Printf(msg, args...)
|
|
}
|
|
}
|
|
|
|
func (e *ssaExport) Log() bool {
|
|
return e.log
|
|
}
|
|
|
|
// Fatal reports a compiler error and exits.
|
|
func (e *ssaExport) Fatalf(pos src.XPos, msg string, args ...interface{}) {
|
|
lineno = pos
|
|
Fatalf(msg, args...)
|
|
}
|
|
|
|
// Warnl reports a "warning", which is usually flag-triggered
|
|
// logging output for the benefit of tests.
|
|
func (e *ssaExport) Warnl(pos src.XPos, fmt_ string, args ...interface{}) {
|
|
Warnl(pos, fmt_, args...)
|
|
}
|
|
|
|
func (e *ssaExport) Debug_checknil() bool {
|
|
return Debug_checknil != 0
|
|
}
|
|
|
|
func (e *ssaExport) Debug_wb() bool {
|
|
return Debug_wb != 0
|
|
}
|
|
|
|
func (e *ssaExport) Syslook(name string) *obj.LSym {
|
|
return Linksym(syslook(name).Sym)
|
|
}
|
|
|
|
func (n *Node) Typ() ssa.Type {
|
|
return n.Type
|
|
}
|