mirror of
https://github.com/golang/go.git
synced 2025-05-05 23:53:05 +00:00
Escape analysis is currently very naive about identifying calls to known functions: it only recognizes direct calls to a declared function, or direct calls to a closure. This CL adds a new "staticValue" helper function that can trace back through local variables that were initialized and never reassigned based on a similar optimization already used by inlining. (And to be used by inlining in a followup CL.) Updates #41474. Change-Id: I8204fd3b1e150ab77a27f583985cf099a8572b2e Reviewed-on: https://go-review.googlesource.com/c/go/+/256458 Run-TryBot: Matthew Dempsky <mdempsky@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Matthew Dempsky <mdempsky@google.com> Reviewed-by: Cuong Manh Le <cuong.manhle.vn@gmail.com> Reviewed-by: David Chase <drchase@google.com>
1395 lines
37 KiB
Go
1395 lines
37 KiB
Go
// Copyright 2011 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
//
|
|
// The inlining facility makes 2 passes: first caninl determines which
|
|
// functions are suitable for inlining, and for those that are it
|
|
// saves a copy of the body. Then inlcalls walks each function body to
|
|
// expand calls to inlinable functions.
|
|
//
|
|
// The debug['l'] flag controls the aggressiveness. Note that main() swaps level 0 and 1,
|
|
// making 1 the default and -l disable. Additional levels (beyond -l) may be buggy and
|
|
// are not supported.
|
|
// 0: disabled
|
|
// 1: 80-nodes leaf functions, oneliners, panic, lazy typechecking (default)
|
|
// 2: (unassigned)
|
|
// 3: (unassigned)
|
|
// 4: allow non-leaf functions
|
|
//
|
|
// At some point this may get another default and become switch-offable with -N.
|
|
//
|
|
// The -d typcheckinl flag enables early typechecking of all imported bodies,
|
|
// which is useful to flush out bugs.
|
|
//
|
|
// The debug['m'] flag enables diagnostic output. a single -m is useful for verifying
|
|
// which calls get inlined or not, more is for debugging, and may go away at any point.
|
|
|
|
package gc
|
|
|
|
import (
|
|
"cmd/compile/internal/logopt"
|
|
"cmd/compile/internal/types"
|
|
"cmd/internal/obj"
|
|
"cmd/internal/src"
|
|
"fmt"
|
|
"strings"
|
|
)
|
|
|
|
// Inlining budget parameters, gathered in one place
|
|
const (
|
|
inlineMaxBudget = 80
|
|
inlineExtraAppendCost = 0
|
|
// default is to inline if there's at most one call. -l=4 overrides this by using 1 instead.
|
|
inlineExtraCallCost = 57 // 57 was benchmarked to provided most benefit with no bad surprises; see https://github.com/golang/go/issues/19348#issuecomment-439370742
|
|
inlineExtraPanicCost = 1 // do not penalize inlining panics.
|
|
inlineExtraThrowCost = inlineMaxBudget // with current (2018-05/1.11) code, inlining runtime.throw does not help.
|
|
|
|
inlineBigFunctionNodes = 5000 // Functions with this many nodes are considered "big".
|
|
inlineBigFunctionMaxCost = 20 // Max cost of inlinee when inlining into a "big" function.
|
|
)
|
|
|
|
// Get the function's package. For ordinary functions it's on the ->sym, but for imported methods
|
|
// the ->sym can be re-used in the local package, so peel it off the receiver's type.
|
|
func fnpkg(fn *Node) *types.Pkg {
|
|
if fn.IsMethod() {
|
|
// method
|
|
rcvr := fn.Type.Recv().Type
|
|
|
|
if rcvr.IsPtr() {
|
|
rcvr = rcvr.Elem()
|
|
}
|
|
if rcvr.Sym == nil {
|
|
Fatalf("receiver with no sym: [%v] %L (%v)", fn.Sym, fn, rcvr)
|
|
}
|
|
return rcvr.Sym.Pkg
|
|
}
|
|
|
|
// non-method
|
|
return fn.Sym.Pkg
|
|
}
|
|
|
|
// Lazy typechecking of imported bodies. For local functions, caninl will set ->typecheck
|
|
// because they're a copy of an already checked body.
|
|
func typecheckinl(fn *Node) {
|
|
lno := setlineno(fn)
|
|
|
|
expandInline(fn)
|
|
|
|
// typecheckinl is only for imported functions;
|
|
// their bodies may refer to unsafe as long as the package
|
|
// was marked safe during import (which was checked then).
|
|
// the ->inl of a local function has been typechecked before caninl copied it.
|
|
pkg := fnpkg(fn)
|
|
|
|
if pkg == localpkg || pkg == nil {
|
|
return // typecheckinl on local function
|
|
}
|
|
|
|
if Debug['m'] > 2 || Debug_export != 0 {
|
|
fmt.Printf("typecheck import [%v] %L { %#v }\n", fn.Sym, fn, asNodes(fn.Func.Inl.Body))
|
|
}
|
|
|
|
savefn := Curfn
|
|
Curfn = fn
|
|
typecheckslice(fn.Func.Inl.Body, ctxStmt)
|
|
Curfn = savefn
|
|
|
|
// During typechecking, declarations are added to
|
|
// Curfn.Func.Dcl. Move them to Inl.Dcl for consistency with
|
|
// how local functions behave. (Append because typecheckinl
|
|
// may be called multiple times.)
|
|
fn.Func.Inl.Dcl = append(fn.Func.Inl.Dcl, fn.Func.Dcl...)
|
|
fn.Func.Dcl = nil
|
|
|
|
lineno = lno
|
|
}
|
|
|
|
// Caninl determines whether fn is inlineable.
|
|
// If so, caninl saves fn->nbody in fn->inl and substitutes it with a copy.
|
|
// fn and ->nbody will already have been typechecked.
|
|
func caninl(fn *Node) {
|
|
if fn.Op != ODCLFUNC {
|
|
Fatalf("caninl %v", fn)
|
|
}
|
|
if fn.Func.Nname == nil {
|
|
Fatalf("caninl no nname %+v", fn)
|
|
}
|
|
|
|
var reason string // reason, if any, that the function was not inlined
|
|
if Debug['m'] > 1 || logopt.Enabled() {
|
|
defer func() {
|
|
if reason != "" {
|
|
if Debug['m'] > 1 {
|
|
fmt.Printf("%v: cannot inline %v: %s\n", fn.Line(), fn.Func.Nname, reason)
|
|
}
|
|
if logopt.Enabled() {
|
|
logopt.LogOpt(fn.Pos, "cannotInlineFunction", "inline", fn.funcname(), reason)
|
|
}
|
|
}
|
|
}()
|
|
}
|
|
|
|
// If marked "go:noinline", don't inline
|
|
if fn.Func.Pragma&Noinline != 0 {
|
|
reason = "marked go:noinline"
|
|
return
|
|
}
|
|
|
|
// If marked "go:norace" and -race compilation, don't inline.
|
|
if flag_race && fn.Func.Pragma&Norace != 0 {
|
|
reason = "marked go:norace with -race compilation"
|
|
return
|
|
}
|
|
|
|
// If marked "go:nocheckptr" and -d checkptr compilation, don't inline.
|
|
if Debug_checkptr != 0 && fn.Func.Pragma&NoCheckPtr != 0 {
|
|
reason = "marked go:nocheckptr"
|
|
return
|
|
}
|
|
|
|
// If marked "go:cgo_unsafe_args", don't inline, since the
|
|
// function makes assumptions about its argument frame layout.
|
|
if fn.Func.Pragma&CgoUnsafeArgs != 0 {
|
|
reason = "marked go:cgo_unsafe_args"
|
|
return
|
|
}
|
|
|
|
// If marked as "go:uintptrescapes", don't inline, since the
|
|
// escape information is lost during inlining.
|
|
if fn.Func.Pragma&UintptrEscapes != 0 {
|
|
reason = "marked as having an escaping uintptr argument"
|
|
return
|
|
}
|
|
|
|
// The nowritebarrierrec checker currently works at function
|
|
// granularity, so inlining yeswritebarrierrec functions can
|
|
// confuse it (#22342). As a workaround, disallow inlining
|
|
// them for now.
|
|
if fn.Func.Pragma&Yeswritebarrierrec != 0 {
|
|
reason = "marked go:yeswritebarrierrec"
|
|
return
|
|
}
|
|
|
|
// If fn has no body (is defined outside of Go), cannot inline it.
|
|
if fn.Nbody.Len() == 0 {
|
|
reason = "no function body"
|
|
return
|
|
}
|
|
|
|
if fn.Typecheck() == 0 {
|
|
Fatalf("caninl on non-typechecked function %v", fn)
|
|
}
|
|
|
|
n := fn.Func.Nname
|
|
if n.Func.InlinabilityChecked() {
|
|
return
|
|
}
|
|
defer n.Func.SetInlinabilityChecked(true)
|
|
|
|
cc := int32(inlineExtraCallCost)
|
|
if Debug['l'] == 4 {
|
|
cc = 1 // this appears to yield better performance than 0.
|
|
}
|
|
|
|
// At this point in the game the function we're looking at may
|
|
// have "stale" autos, vars that still appear in the Dcl list, but
|
|
// which no longer have any uses in the function body (due to
|
|
// elimination by deadcode). We'd like to exclude these dead vars
|
|
// when creating the "Inline.Dcl" field below; to accomplish this,
|
|
// the hairyVisitor below builds up a map of used/referenced
|
|
// locals, and we use this map to produce a pruned Inline.Dcl
|
|
// list. See issue 25249 for more context.
|
|
|
|
visitor := hairyVisitor{
|
|
budget: inlineMaxBudget,
|
|
extraCallCost: cc,
|
|
usedLocals: make(map[*Node]bool),
|
|
}
|
|
if visitor.visitList(fn.Nbody) {
|
|
reason = visitor.reason
|
|
return
|
|
}
|
|
if visitor.budget < 0 {
|
|
reason = fmt.Sprintf("function too complex: cost %d exceeds budget %d", inlineMaxBudget-visitor.budget, inlineMaxBudget)
|
|
return
|
|
}
|
|
|
|
n.Func.Inl = &Inline{
|
|
Cost: inlineMaxBudget - visitor.budget,
|
|
Dcl: inlcopylist(pruneUnusedAutos(n.Name.Defn.Func.Dcl, &visitor)),
|
|
Body: inlcopylist(fn.Nbody.Slice()),
|
|
}
|
|
|
|
// hack, TODO, check for better way to link method nodes back to the thing with the ->inl
|
|
// this is so export can find the body of a method
|
|
fn.Type.FuncType().Nname = asTypesNode(n)
|
|
|
|
if Debug['m'] > 1 {
|
|
fmt.Printf("%v: can inline %#v with cost %d as: %#v { %#v }\n", fn.Line(), n, inlineMaxBudget-visitor.budget, fn.Type, asNodes(n.Func.Inl.Body))
|
|
} else if Debug['m'] != 0 {
|
|
fmt.Printf("%v: can inline %v\n", fn.Line(), n)
|
|
}
|
|
if logopt.Enabled() {
|
|
logopt.LogOpt(fn.Pos, "canInlineFunction", "inline", fn.funcname(), fmt.Sprintf("cost: %d", inlineMaxBudget-visitor.budget))
|
|
}
|
|
}
|
|
|
|
// inlFlood marks n's inline body for export and recursively ensures
|
|
// all called functions are marked too.
|
|
func inlFlood(n *Node) {
|
|
if n == nil {
|
|
return
|
|
}
|
|
if n.Op != ONAME || n.Class() != PFUNC {
|
|
Fatalf("inlFlood: unexpected %v, %v, %v", n, n.Op, n.Class())
|
|
}
|
|
if n.Func == nil {
|
|
Fatalf("inlFlood: missing Func on %v", n)
|
|
}
|
|
if n.Func.Inl == nil {
|
|
return
|
|
}
|
|
|
|
if n.Func.ExportInline() {
|
|
return
|
|
}
|
|
n.Func.SetExportInline(true)
|
|
|
|
typecheckinl(n)
|
|
|
|
inspectList(asNodes(n.Func.Inl.Body), func(n *Node) bool {
|
|
switch n.Op {
|
|
case ONAME:
|
|
// Mark any referenced global variables or
|
|
// functions for reexport. Skip methods,
|
|
// because they're reexported alongside their
|
|
// receiver type.
|
|
if n.Class() == PEXTERN || n.Class() == PFUNC && !n.isMethodExpression() {
|
|
exportsym(n)
|
|
}
|
|
|
|
case OCALLFUNC, OCALLMETH:
|
|
// Recursively flood any functions called by
|
|
// this one.
|
|
inlFlood(asNode(n.Left.Type.Nname()))
|
|
}
|
|
return true
|
|
})
|
|
}
|
|
|
|
// hairyVisitor visits a function body to determine its inlining
|
|
// hairiness and whether or not it can be inlined.
|
|
type hairyVisitor struct {
|
|
budget int32
|
|
reason string
|
|
extraCallCost int32
|
|
usedLocals map[*Node]bool
|
|
}
|
|
|
|
// Look for anything we want to punt on.
|
|
func (v *hairyVisitor) visitList(ll Nodes) bool {
|
|
for _, n := range ll.Slice() {
|
|
if v.visit(n) {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
func (v *hairyVisitor) visit(n *Node) bool {
|
|
if n == nil {
|
|
return false
|
|
}
|
|
|
|
switch n.Op {
|
|
// Call is okay if inlinable and we have the budget for the body.
|
|
case OCALLFUNC:
|
|
// Functions that call runtime.getcaller{pc,sp} can not be inlined
|
|
// because getcaller{pc,sp} expect a pointer to the caller's first argument.
|
|
//
|
|
// runtime.throw is a "cheap call" like panic in normal code.
|
|
if n.Left.Op == ONAME && n.Left.Class() == PFUNC && isRuntimePkg(n.Left.Sym.Pkg) {
|
|
fn := n.Left.Sym.Name
|
|
if fn == "getcallerpc" || fn == "getcallersp" {
|
|
v.reason = "call to " + fn
|
|
return true
|
|
}
|
|
if fn == "throw" {
|
|
v.budget -= inlineExtraThrowCost
|
|
break
|
|
}
|
|
}
|
|
|
|
if isIntrinsicCall(n) {
|
|
// Treat like any other node.
|
|
break
|
|
}
|
|
|
|
if fn := n.Left.Func; fn != nil && fn.Inl != nil {
|
|
v.budget -= fn.Inl.Cost
|
|
break
|
|
}
|
|
if n.Left.isMethodExpression() {
|
|
if d := asNode(n.Left.Sym.Def); d != nil && d.Func.Inl != nil {
|
|
v.budget -= d.Func.Inl.Cost
|
|
break
|
|
}
|
|
}
|
|
// TODO(mdempsky): Budget for OCLOSURE calls if we
|
|
// ever allow that. See #15561 and #23093.
|
|
|
|
// Call cost for non-leaf inlining.
|
|
v.budget -= v.extraCallCost
|
|
|
|
// Call is okay if inlinable and we have the budget for the body.
|
|
case OCALLMETH:
|
|
t := n.Left.Type
|
|
if t == nil {
|
|
Fatalf("no function type for [%p] %+v\n", n.Left, n.Left)
|
|
}
|
|
if t.Nname() == nil {
|
|
Fatalf("no function definition for [%p] %+v\n", t, t)
|
|
}
|
|
if isRuntimePkg(n.Left.Sym.Pkg) {
|
|
fn := n.Left.Sym.Name
|
|
if fn == "heapBits.nextArena" {
|
|
// Special case: explicitly allow
|
|
// mid-stack inlining of
|
|
// runtime.heapBits.next even though
|
|
// it calls slow-path
|
|
// runtime.heapBits.nextArena.
|
|
break
|
|
}
|
|
}
|
|
if inlfn := asNode(t.FuncType().Nname).Func; inlfn.Inl != nil {
|
|
v.budget -= inlfn.Inl.Cost
|
|
break
|
|
}
|
|
// Call cost for non-leaf inlining.
|
|
v.budget -= v.extraCallCost
|
|
|
|
// Things that are too hairy, irrespective of the budget
|
|
case OCALL, OCALLINTER:
|
|
// Call cost for non-leaf inlining.
|
|
v.budget -= v.extraCallCost
|
|
|
|
case OPANIC:
|
|
v.budget -= inlineExtraPanicCost
|
|
|
|
case ORECOVER:
|
|
// recover matches the argument frame pointer to find
|
|
// the right panic value, so it needs an argument frame.
|
|
v.reason = "call to recover"
|
|
return true
|
|
|
|
case OCLOSURE,
|
|
OCALLPART,
|
|
ORANGE,
|
|
OFOR,
|
|
OFORUNTIL,
|
|
OSELECT,
|
|
OTYPESW,
|
|
OGO,
|
|
ODEFER,
|
|
ODCLTYPE, // can't print yet
|
|
OBREAK,
|
|
ORETJMP:
|
|
v.reason = "unhandled op " + n.Op.String()
|
|
return true
|
|
|
|
case OAPPEND:
|
|
v.budget -= inlineExtraAppendCost
|
|
|
|
case ODCLCONST, OEMPTY, OFALL, OLABEL:
|
|
// These nodes don't produce code; omit from inlining budget.
|
|
return false
|
|
|
|
case OIF:
|
|
if Isconst(n.Left, CTBOOL) {
|
|
// This if and the condition cost nothing.
|
|
return v.visitList(n.Ninit) || v.visitList(n.Nbody) ||
|
|
v.visitList(n.Rlist)
|
|
}
|
|
|
|
case ONAME:
|
|
if n.Class() == PAUTO {
|
|
v.usedLocals[n] = true
|
|
}
|
|
|
|
}
|
|
|
|
v.budget--
|
|
|
|
// When debugging, don't stop early, to get full cost of inlining this function
|
|
if v.budget < 0 && Debug['m'] < 2 && !logopt.Enabled() {
|
|
return true
|
|
}
|
|
|
|
return v.visit(n.Left) || v.visit(n.Right) ||
|
|
v.visitList(n.List) || v.visitList(n.Rlist) ||
|
|
v.visitList(n.Ninit) || v.visitList(n.Nbody)
|
|
}
|
|
|
|
// Inlcopy and inlcopylist recursively copy the body of a function.
|
|
// Any name-like node of non-local class is marked for re-export by adding it to
|
|
// the exportlist.
|
|
func inlcopylist(ll []*Node) []*Node {
|
|
s := make([]*Node, 0, len(ll))
|
|
for _, n := range ll {
|
|
s = append(s, inlcopy(n))
|
|
}
|
|
return s
|
|
}
|
|
|
|
func inlcopy(n *Node) *Node {
|
|
if n == nil {
|
|
return nil
|
|
}
|
|
|
|
switch n.Op {
|
|
case ONAME, OTYPE, OLITERAL:
|
|
return n
|
|
}
|
|
|
|
m := n.copy()
|
|
if m.Func != nil {
|
|
Fatalf("unexpected Func: %v", m)
|
|
}
|
|
m.Left = inlcopy(n.Left)
|
|
m.Right = inlcopy(n.Right)
|
|
m.List.Set(inlcopylist(n.List.Slice()))
|
|
m.Rlist.Set(inlcopylist(n.Rlist.Slice()))
|
|
m.Ninit.Set(inlcopylist(n.Ninit.Slice()))
|
|
m.Nbody.Set(inlcopylist(n.Nbody.Slice()))
|
|
|
|
return m
|
|
}
|
|
|
|
func countNodes(n *Node) int {
|
|
if n == nil {
|
|
return 0
|
|
}
|
|
cnt := 1
|
|
cnt += countNodes(n.Left)
|
|
cnt += countNodes(n.Right)
|
|
for _, n1 := range n.Ninit.Slice() {
|
|
cnt += countNodes(n1)
|
|
}
|
|
for _, n1 := range n.Nbody.Slice() {
|
|
cnt += countNodes(n1)
|
|
}
|
|
for _, n1 := range n.List.Slice() {
|
|
cnt += countNodes(n1)
|
|
}
|
|
for _, n1 := range n.Rlist.Slice() {
|
|
cnt += countNodes(n1)
|
|
}
|
|
return cnt
|
|
}
|
|
|
|
// Inlcalls/nodelist/node walks fn's statements and expressions and substitutes any
|
|
// calls made to inlineable functions. This is the external entry point.
|
|
func inlcalls(fn *Node) {
|
|
savefn := Curfn
|
|
Curfn = fn
|
|
maxCost := int32(inlineMaxBudget)
|
|
if countNodes(fn) >= inlineBigFunctionNodes {
|
|
maxCost = inlineBigFunctionMaxCost
|
|
}
|
|
// Map to keep track of functions that have been inlined at a particular
|
|
// call site, in order to stop inlining when we reach the beginning of a
|
|
// recursion cycle again. We don't inline immediately recursive functions,
|
|
// but allow inlining if there is a recursion cycle of many functions.
|
|
// Most likely, the inlining will stop before we even hit the beginning of
|
|
// the cycle again, but the map catches the unusual case.
|
|
inlMap := make(map[*Node]bool)
|
|
fn = inlnode(fn, maxCost, inlMap)
|
|
if fn != Curfn {
|
|
Fatalf("inlnode replaced curfn")
|
|
}
|
|
Curfn = savefn
|
|
}
|
|
|
|
// Turn an OINLCALL into a statement.
|
|
func inlconv2stmt(n *Node) {
|
|
n.Op = OBLOCK
|
|
|
|
// n->ninit stays
|
|
n.List.Set(n.Nbody.Slice())
|
|
|
|
n.Nbody.Set(nil)
|
|
n.Rlist.Set(nil)
|
|
}
|
|
|
|
// Turn an OINLCALL into a single valued expression.
|
|
// The result of inlconv2expr MUST be assigned back to n, e.g.
|
|
// n.Left = inlconv2expr(n.Left)
|
|
func inlconv2expr(n *Node) *Node {
|
|
r := n.Rlist.First()
|
|
return addinit(r, append(n.Ninit.Slice(), n.Nbody.Slice()...))
|
|
}
|
|
|
|
// Turn the rlist (with the return values) of the OINLCALL in
|
|
// n into an expression list lumping the ninit and body
|
|
// containing the inlined statements on the first list element so
|
|
// order will be preserved Used in return, oas2func and call
|
|
// statements.
|
|
func inlconv2list(n *Node) []*Node {
|
|
if n.Op != OINLCALL || n.Rlist.Len() == 0 {
|
|
Fatalf("inlconv2list %+v\n", n)
|
|
}
|
|
|
|
s := n.Rlist.Slice()
|
|
s[0] = addinit(s[0], append(n.Ninit.Slice(), n.Nbody.Slice()...))
|
|
return s
|
|
}
|
|
|
|
func inlnodelist(l Nodes, maxCost int32, inlMap map[*Node]bool) {
|
|
s := l.Slice()
|
|
for i := range s {
|
|
s[i] = inlnode(s[i], maxCost, inlMap)
|
|
}
|
|
}
|
|
|
|
// inlnode recurses over the tree to find inlineable calls, which will
|
|
// be turned into OINLCALLs by mkinlcall. When the recursion comes
|
|
// back up will examine left, right, list, rlist, ninit, ntest, nincr,
|
|
// nbody and nelse and use one of the 4 inlconv/glue functions above
|
|
// to turn the OINLCALL into an expression, a statement, or patch it
|
|
// in to this nodes list or rlist as appropriate.
|
|
// NOTE it makes no sense to pass the glue functions down the
|
|
// recursion to the level where the OINLCALL gets created because they
|
|
// have to edit /this/ n, so you'd have to push that one down as well,
|
|
// but then you may as well do it here. so this is cleaner and
|
|
// shorter and less complicated.
|
|
// The result of inlnode MUST be assigned back to n, e.g.
|
|
// n.Left = inlnode(n.Left)
|
|
func inlnode(n *Node, maxCost int32, inlMap map[*Node]bool) *Node {
|
|
if n == nil {
|
|
return n
|
|
}
|
|
|
|
switch n.Op {
|
|
// inhibit inlining of their argument
|
|
case ODEFER, OGO:
|
|
switch n.Left.Op {
|
|
case OCALLFUNC, OCALLMETH:
|
|
n.Left.SetNoInline(true)
|
|
}
|
|
return n
|
|
|
|
// TODO do them here (or earlier),
|
|
// so escape analysis can avoid more heapmoves.
|
|
case OCLOSURE:
|
|
return n
|
|
case OCALLMETH:
|
|
// Prevent inlining some reflect.Value methods when using checkptr,
|
|
// even when package reflect was compiled without it (#35073).
|
|
if s := n.Left.Sym; Debug_checkptr != 0 && isReflectPkg(s.Pkg) && (s.Name == "Value.UnsafeAddr" || s.Name == "Value.Pointer") {
|
|
return n
|
|
}
|
|
}
|
|
|
|
lno := setlineno(n)
|
|
|
|
inlnodelist(n.Ninit, maxCost, inlMap)
|
|
for _, n1 := range n.Ninit.Slice() {
|
|
if n1.Op == OINLCALL {
|
|
inlconv2stmt(n1)
|
|
}
|
|
}
|
|
|
|
n.Left = inlnode(n.Left, maxCost, inlMap)
|
|
if n.Left != nil && n.Left.Op == OINLCALL {
|
|
n.Left = inlconv2expr(n.Left)
|
|
}
|
|
|
|
n.Right = inlnode(n.Right, maxCost, inlMap)
|
|
if n.Right != nil && n.Right.Op == OINLCALL {
|
|
if n.Op == OFOR || n.Op == OFORUNTIL {
|
|
inlconv2stmt(n.Right)
|
|
} else if n.Op == OAS2FUNC {
|
|
n.Rlist.Set(inlconv2list(n.Right))
|
|
n.Right = nil
|
|
n.Op = OAS2
|
|
n.SetTypecheck(0)
|
|
n = typecheck(n, ctxStmt)
|
|
} else {
|
|
n.Right = inlconv2expr(n.Right)
|
|
}
|
|
}
|
|
|
|
inlnodelist(n.List, maxCost, inlMap)
|
|
if n.Op == OBLOCK {
|
|
for _, n2 := range n.List.Slice() {
|
|
if n2.Op == OINLCALL {
|
|
inlconv2stmt(n2)
|
|
}
|
|
}
|
|
} else {
|
|
s := n.List.Slice()
|
|
for i1, n1 := range s {
|
|
if n1 != nil && n1.Op == OINLCALL {
|
|
s[i1] = inlconv2expr(s[i1])
|
|
}
|
|
}
|
|
}
|
|
|
|
inlnodelist(n.Rlist, maxCost, inlMap)
|
|
s := n.Rlist.Slice()
|
|
for i1, n1 := range s {
|
|
if n1.Op == OINLCALL {
|
|
if n.Op == OIF {
|
|
inlconv2stmt(n1)
|
|
} else {
|
|
s[i1] = inlconv2expr(s[i1])
|
|
}
|
|
}
|
|
}
|
|
|
|
inlnodelist(n.Nbody, maxCost, inlMap)
|
|
for _, n := range n.Nbody.Slice() {
|
|
if n.Op == OINLCALL {
|
|
inlconv2stmt(n)
|
|
}
|
|
}
|
|
|
|
// with all the branches out of the way, it is now time to
|
|
// transmogrify this node itself unless inhibited by the
|
|
// switch at the top of this function.
|
|
switch n.Op {
|
|
case OCALLFUNC, OCALLMETH:
|
|
if n.NoInline() {
|
|
return n
|
|
}
|
|
}
|
|
|
|
switch n.Op {
|
|
case OCALLFUNC:
|
|
if Debug['m'] > 3 {
|
|
fmt.Printf("%v:call to func %+v\n", n.Line(), n.Left)
|
|
}
|
|
if n.Left.Func != nil && n.Left.Func.Inl != nil && !isIntrinsicCall(n) { // normal case
|
|
n = mkinlcall(n, n.Left, maxCost, inlMap)
|
|
} else if n.Left.isMethodExpression() && asNode(n.Left.Sym.Def) != nil {
|
|
n = mkinlcall(n, asNode(n.Left.Sym.Def), maxCost, inlMap)
|
|
} else if n.Left.Op == OCLOSURE {
|
|
if f := inlinableClosure(n.Left); f != nil {
|
|
n = mkinlcall(n, f, maxCost, inlMap)
|
|
}
|
|
} else if n.Left.Op == ONAME && n.Left.Name != nil && n.Left.Name.Defn != nil {
|
|
if d := n.Left.Name.Defn; d.Op == OAS && d.Right.Op == OCLOSURE {
|
|
if f := inlinableClosure(d.Right); f != nil {
|
|
// NB: this check is necessary to prevent indirect re-assignment of the variable
|
|
// having the address taken after the invocation or only used for reads is actually fine
|
|
// but we have no easy way to distinguish the safe cases
|
|
if d.Left.Name.Addrtaken() {
|
|
if Debug['m'] > 1 {
|
|
fmt.Printf("%v: cannot inline escaping closure variable %v\n", n.Line(), n.Left)
|
|
}
|
|
if logopt.Enabled() {
|
|
logopt.LogOpt(n.Pos, "cannotInlineCall", "inline", Curfn.funcname(),
|
|
fmt.Sprintf("%v cannot be inlined (escaping closure variable)", n.Left))
|
|
}
|
|
break
|
|
}
|
|
|
|
// ensure the variable is never re-assigned
|
|
if unsafe, a := reassigned(n.Left); unsafe {
|
|
if Debug['m'] > 1 {
|
|
if a != nil {
|
|
fmt.Printf("%v: cannot inline re-assigned closure variable at %v: %v\n", n.Line(), a.Line(), a)
|
|
if logopt.Enabled() {
|
|
logopt.LogOpt(n.Pos, "cannotInlineCall", "inline", Curfn.funcname(),
|
|
fmt.Sprintf("%v cannot be inlined (re-assigned closure variable)", a))
|
|
}
|
|
} else {
|
|
fmt.Printf("%v: cannot inline global closure variable %v\n", n.Line(), n.Left)
|
|
if logopt.Enabled() {
|
|
logopt.LogOpt(n.Pos, "cannotInlineCall", "inline", Curfn.funcname(),
|
|
fmt.Sprintf("%v cannot be inlined (global closure variable)", n.Left))
|
|
}
|
|
}
|
|
}
|
|
break
|
|
}
|
|
n = mkinlcall(n, f, maxCost, inlMap)
|
|
}
|
|
}
|
|
}
|
|
|
|
case OCALLMETH:
|
|
if Debug['m'] > 3 {
|
|
fmt.Printf("%v:call to meth %L\n", n.Line(), n.Left.Right)
|
|
}
|
|
|
|
// typecheck should have resolved ODOTMETH->type, whose nname points to the actual function.
|
|
if n.Left.Type == nil {
|
|
Fatalf("no function type for [%p] %+v\n", n.Left, n.Left)
|
|
}
|
|
|
|
if n.Left.Type.Nname() == nil {
|
|
Fatalf("no function definition for [%p] %+v\n", n.Left.Type, n.Left.Type)
|
|
}
|
|
|
|
n = mkinlcall(n, asNode(n.Left.Type.FuncType().Nname), maxCost, inlMap)
|
|
}
|
|
|
|
lineno = lno
|
|
return n
|
|
}
|
|
|
|
// inlinableClosure takes an OCLOSURE node and follows linkage to the matching ONAME with
|
|
// the inlinable body. Returns nil if the function is not inlinable.
|
|
func inlinableClosure(n *Node) *Node {
|
|
c := n.Func.Closure
|
|
caninl(c)
|
|
f := c.Func.Nname
|
|
if f == nil || f.Func.Inl == nil {
|
|
return nil
|
|
}
|
|
return f
|
|
}
|
|
|
|
func staticValue(n *Node) *Node {
|
|
for {
|
|
n1 := staticValue1(n)
|
|
if n1 == nil {
|
|
return n
|
|
}
|
|
n = n1
|
|
}
|
|
}
|
|
|
|
// staticValue1 implements a simple SSA-like optimization.
|
|
func staticValue1(n *Node) *Node {
|
|
if n.Op != ONAME || n.Class() != PAUTO || n.Name.Addrtaken() {
|
|
return nil
|
|
}
|
|
|
|
defn := n.Name.Defn
|
|
if defn == nil {
|
|
return nil
|
|
}
|
|
|
|
var rhs *Node
|
|
FindRHS:
|
|
switch defn.Op {
|
|
case OAS:
|
|
rhs = defn.Right
|
|
case OAS2:
|
|
for i, lhs := range defn.List.Slice() {
|
|
if lhs == n {
|
|
rhs = defn.Rlist.Index(i)
|
|
break FindRHS
|
|
}
|
|
}
|
|
Fatalf("%v missing from LHS of %v", n, defn)
|
|
default:
|
|
return nil
|
|
}
|
|
if rhs == nil {
|
|
Fatalf("RHS is nil: %v", defn)
|
|
}
|
|
|
|
unsafe, _ := reassigned(n)
|
|
if unsafe {
|
|
return nil
|
|
}
|
|
|
|
return rhs
|
|
}
|
|
|
|
// reassigned takes an ONAME node, walks the function in which it is defined, and returns a boolean
|
|
// indicating whether the name has any assignments other than its declaration.
|
|
// The second return value is the first such assignment encountered in the walk, if any. It is mostly
|
|
// useful for -m output documenting the reason for inhibited optimizations.
|
|
// NB: global variables are always considered to be re-assigned.
|
|
// TODO: handle initial declaration not including an assignment and followed by a single assignment?
|
|
func reassigned(n *Node) (bool, *Node) {
|
|
if n.Op != ONAME {
|
|
Fatalf("reassigned %v", n)
|
|
}
|
|
// no way to reliably check for no-reassignment of globals, assume it can be
|
|
if n.Name.Curfn == nil {
|
|
return true, nil
|
|
}
|
|
f := n.Name.Curfn
|
|
// There just might be a good reason for this although this can be pretty surprising:
|
|
// local variables inside a closure have Curfn pointing to the OCLOSURE node instead
|
|
// of the corresponding ODCLFUNC.
|
|
// We need to walk the function body to check for reassignments so we follow the
|
|
// linkage to the ODCLFUNC node as that is where body is held.
|
|
if f.Op == OCLOSURE {
|
|
f = f.Func.Closure
|
|
}
|
|
v := reassignVisitor{name: n}
|
|
a := v.visitList(f.Nbody)
|
|
return a != nil, a
|
|
}
|
|
|
|
type reassignVisitor struct {
|
|
name *Node
|
|
}
|
|
|
|
func (v *reassignVisitor) visit(n *Node) *Node {
|
|
if n == nil {
|
|
return nil
|
|
}
|
|
switch n.Op {
|
|
case OAS:
|
|
if n.Left == v.name && n != v.name.Name.Defn {
|
|
return n
|
|
}
|
|
return nil
|
|
case OAS2, OAS2FUNC, OAS2MAPR, OAS2DOTTYPE:
|
|
for _, p := range n.List.Slice() {
|
|
if p == v.name && n != v.name.Name.Defn {
|
|
return n
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
if a := v.visit(n.Left); a != nil {
|
|
return a
|
|
}
|
|
if a := v.visit(n.Right); a != nil {
|
|
return a
|
|
}
|
|
if a := v.visitList(n.List); a != nil {
|
|
return a
|
|
}
|
|
if a := v.visitList(n.Rlist); a != nil {
|
|
return a
|
|
}
|
|
if a := v.visitList(n.Ninit); a != nil {
|
|
return a
|
|
}
|
|
if a := v.visitList(n.Nbody); a != nil {
|
|
return a
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func (v *reassignVisitor) visitList(l Nodes) *Node {
|
|
for _, n := range l.Slice() {
|
|
if a := v.visit(n); a != nil {
|
|
return a
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func inlParam(t *types.Field, as *Node, inlvars map[*Node]*Node) *Node {
|
|
n := asNode(t.Nname)
|
|
if n == nil || n.isBlank() {
|
|
return nblank
|
|
}
|
|
|
|
inlvar := inlvars[n]
|
|
if inlvar == nil {
|
|
Fatalf("missing inlvar for %v", n)
|
|
}
|
|
as.Ninit.Append(nod(ODCL, inlvar, nil))
|
|
inlvar.Name.Defn = as
|
|
return inlvar
|
|
}
|
|
|
|
var inlgen int
|
|
|
|
// If n is a call, and fn is a function with an inlinable body,
|
|
// return an OINLCALL.
|
|
// On return ninit has the parameter assignments, the nbody is the
|
|
// inlined function body and list, rlist contain the input, output
|
|
// parameters.
|
|
// The result of mkinlcall MUST be assigned back to n, e.g.
|
|
// n.Left = mkinlcall(n.Left, fn, isddd)
|
|
func mkinlcall(n, fn *Node, maxCost int32, inlMap map[*Node]bool) *Node {
|
|
if fn.Func.Inl == nil {
|
|
if logopt.Enabled() {
|
|
logopt.LogOpt(n.Pos, "cannotInlineCall", "inline", Curfn.funcname(),
|
|
fmt.Sprintf("%s cannot be inlined", fn.pkgFuncName()))
|
|
}
|
|
return n
|
|
}
|
|
if fn.Func.Inl.Cost > maxCost {
|
|
// The inlined function body is too big. Typically we use this check to restrict
|
|
// inlining into very big functions. See issue 26546 and 17566.
|
|
if logopt.Enabled() {
|
|
logopt.LogOpt(n.Pos, "cannotInlineCall", "inline", Curfn.funcname(),
|
|
fmt.Sprintf("cost %d of %s exceeds max large caller cost %d", fn.Func.Inl.Cost, fn.pkgFuncName(), maxCost))
|
|
}
|
|
return n
|
|
}
|
|
|
|
if fn == Curfn || fn.Name.Defn == Curfn {
|
|
// Can't recursively inline a function into itself.
|
|
if logopt.Enabled() {
|
|
logopt.LogOpt(n.Pos, "cannotInlineCall", "inline", fmt.Sprintf("recursive call to %s", Curfn.funcname()))
|
|
}
|
|
return n
|
|
}
|
|
|
|
if instrumenting && isRuntimePkg(fn.Sym.Pkg) {
|
|
// Runtime package must not be instrumented.
|
|
// Instrument skips runtime package. However, some runtime code can be
|
|
// inlined into other packages and instrumented there. To avoid this,
|
|
// we disable inlining of runtime functions when instrumenting.
|
|
// The example that we observed is inlining of LockOSThread,
|
|
// which lead to false race reports on m contents.
|
|
return n
|
|
}
|
|
|
|
if inlMap[fn] {
|
|
if Debug['m'] > 1 {
|
|
fmt.Printf("%v: cannot inline %v into %v: repeated recursive cycle\n", n.Line(), fn, Curfn.funcname())
|
|
}
|
|
return n
|
|
}
|
|
inlMap[fn] = true
|
|
defer func() {
|
|
inlMap[fn] = false
|
|
}()
|
|
if Debug_typecheckinl == 0 {
|
|
typecheckinl(fn)
|
|
}
|
|
|
|
// We have a function node, and it has an inlineable body.
|
|
if Debug['m'] > 1 {
|
|
fmt.Printf("%v: inlining call to %v %#v { %#v }\n", n.Line(), fn.Sym, fn.Type, asNodes(fn.Func.Inl.Body))
|
|
} else if Debug['m'] != 0 {
|
|
fmt.Printf("%v: inlining call to %v\n", n.Line(), fn)
|
|
}
|
|
if Debug['m'] > 2 {
|
|
fmt.Printf("%v: Before inlining: %+v\n", n.Line(), n)
|
|
}
|
|
|
|
if ssaDump != "" && ssaDump == Curfn.funcname() {
|
|
ssaDumpInlined = append(ssaDumpInlined, fn)
|
|
}
|
|
|
|
ninit := n.Ninit
|
|
|
|
// Make temp names to use instead of the originals.
|
|
inlvars := make(map[*Node]*Node)
|
|
|
|
// record formals/locals for later post-processing
|
|
var inlfvars []*Node
|
|
|
|
// Handle captured variables when inlining closures.
|
|
if fn.Name.Defn != nil {
|
|
if c := fn.Name.Defn.Func.Closure; c != nil {
|
|
for _, v := range c.Func.Closure.Func.Cvars.Slice() {
|
|
if v.Op == OXXX {
|
|
continue
|
|
}
|
|
|
|
o := v.Name.Param.Outer
|
|
// make sure the outer param matches the inlining location
|
|
// NB: if we enabled inlining of functions containing OCLOSURE or refined
|
|
// the reassigned check via some sort of copy propagation this would most
|
|
// likely need to be changed to a loop to walk up to the correct Param
|
|
if o == nil || (o.Name.Curfn != Curfn && o.Name.Curfn.Func.Closure != Curfn) {
|
|
Fatalf("%v: unresolvable capture %v %v\n", n.Line(), fn, v)
|
|
}
|
|
|
|
if v.Name.Byval() {
|
|
iv := typecheck(inlvar(v), ctxExpr)
|
|
ninit.Append(nod(ODCL, iv, nil))
|
|
ninit.Append(typecheck(nod(OAS, iv, o), ctxStmt))
|
|
inlvars[v] = iv
|
|
} else {
|
|
addr := newname(lookup("&" + v.Sym.Name))
|
|
addr.Type = types.NewPtr(v.Type)
|
|
ia := typecheck(inlvar(addr), ctxExpr)
|
|
ninit.Append(nod(ODCL, ia, nil))
|
|
ninit.Append(typecheck(nod(OAS, ia, nod(OADDR, o, nil)), ctxStmt))
|
|
inlvars[addr] = ia
|
|
|
|
// When capturing by reference, all occurrence of the captured var
|
|
// must be substituted with dereference of the temporary address
|
|
inlvars[v] = typecheck(nod(ODEREF, ia, nil), ctxExpr)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for _, ln := range fn.Func.Inl.Dcl {
|
|
if ln.Op != ONAME {
|
|
continue
|
|
}
|
|
if ln.Class() == PPARAMOUT { // return values handled below.
|
|
continue
|
|
}
|
|
if ln.isParamStackCopy() { // ignore the on-stack copy of a parameter that moved to the heap
|
|
// TODO(mdempsky): Remove once I'm confident
|
|
// this never actually happens. We currently
|
|
// perform inlining before escape analysis, so
|
|
// nothing should have moved to the heap yet.
|
|
Fatalf("impossible: %v", ln)
|
|
}
|
|
inlf := typecheck(inlvar(ln), ctxExpr)
|
|
inlvars[ln] = inlf
|
|
if genDwarfInline > 0 {
|
|
if ln.Class() == PPARAM {
|
|
inlf.Name.SetInlFormal(true)
|
|
} else {
|
|
inlf.Name.SetInlLocal(true)
|
|
}
|
|
inlf.Pos = ln.Pos
|
|
inlfvars = append(inlfvars, inlf)
|
|
}
|
|
}
|
|
|
|
// temporaries for return values.
|
|
var retvars []*Node
|
|
for i, t := range fn.Type.Results().Fields().Slice() {
|
|
var m *Node
|
|
mpos := t.Pos
|
|
if n := asNode(t.Nname); n != nil && !n.isBlank() {
|
|
m = inlvar(n)
|
|
m = typecheck(m, ctxExpr)
|
|
inlvars[n] = m
|
|
} else {
|
|
// anonymous return values, synthesize names for use in assignment that replaces return
|
|
m = retvar(t, i)
|
|
}
|
|
|
|
if genDwarfInline > 0 {
|
|
// Don't update the src.Pos on a return variable if it
|
|
// was manufactured by the inliner (e.g. "~R2"); such vars
|
|
// were not part of the original callee.
|
|
if !strings.HasPrefix(m.Sym.Name, "~R") {
|
|
m.Name.SetInlFormal(true)
|
|
m.Pos = mpos
|
|
inlfvars = append(inlfvars, m)
|
|
}
|
|
}
|
|
|
|
ninit.Append(nod(ODCL, m, nil))
|
|
retvars = append(retvars, m)
|
|
}
|
|
|
|
// Assign arguments to the parameters' temp names.
|
|
as := nod(OAS2, nil, nil)
|
|
as.SetColas(true)
|
|
if n.Op == OCALLMETH {
|
|
if n.Left.Left == nil {
|
|
Fatalf("method call without receiver: %+v", n)
|
|
}
|
|
as.Rlist.Append(n.Left.Left)
|
|
}
|
|
as.Rlist.Append(n.List.Slice()...)
|
|
|
|
// For non-dotted calls to variadic functions, we assign the
|
|
// variadic parameter's temp name separately.
|
|
var vas *Node
|
|
|
|
if recv := fn.Type.Recv(); recv != nil {
|
|
as.List.Append(inlParam(recv, as, inlvars))
|
|
}
|
|
for _, param := range fn.Type.Params().Fields().Slice() {
|
|
// For ordinary parameters or variadic parameters in
|
|
// dotted calls, just add the variable to the
|
|
// assignment list, and we're done.
|
|
if !param.IsDDD() || n.IsDDD() {
|
|
as.List.Append(inlParam(param, as, inlvars))
|
|
continue
|
|
}
|
|
|
|
// Otherwise, we need to collect the remaining values
|
|
// to pass as a slice.
|
|
|
|
x := as.List.Len()
|
|
for as.List.Len() < as.Rlist.Len() {
|
|
as.List.Append(argvar(param.Type, as.List.Len()))
|
|
}
|
|
varargs := as.List.Slice()[x:]
|
|
|
|
vas = nod(OAS, nil, nil)
|
|
vas.Left = inlParam(param, vas, inlvars)
|
|
if len(varargs) == 0 {
|
|
vas.Right = nodnil()
|
|
vas.Right.Type = param.Type
|
|
} else {
|
|
vas.Right = nod(OCOMPLIT, nil, typenod(param.Type))
|
|
vas.Right.List.Set(varargs)
|
|
}
|
|
}
|
|
|
|
if as.Rlist.Len() != 0 {
|
|
as = typecheck(as, ctxStmt)
|
|
ninit.Append(as)
|
|
}
|
|
|
|
if vas != nil {
|
|
vas = typecheck(vas, ctxStmt)
|
|
ninit.Append(vas)
|
|
}
|
|
|
|
// Zero the return parameters.
|
|
for _, n := range retvars {
|
|
ras := nod(OAS, n, nil)
|
|
ras = typecheck(ras, ctxStmt)
|
|
ninit.Append(ras)
|
|
}
|
|
|
|
retlabel := autolabel(".i")
|
|
|
|
inlgen++
|
|
|
|
parent := -1
|
|
if b := Ctxt.PosTable.Pos(n.Pos).Base(); b != nil {
|
|
parent = b.InliningIndex()
|
|
}
|
|
newIndex := Ctxt.InlTree.Add(parent, n.Pos, fn.Sym.Linksym())
|
|
|
|
// Add an inline mark just before the inlined body.
|
|
// This mark is inline in the code so that it's a reasonable spot
|
|
// to put a breakpoint. Not sure if that's really necessary or not
|
|
// (in which case it could go at the end of the function instead).
|
|
// Note issue 28603.
|
|
inlMark := nod(OINLMARK, nil, nil)
|
|
inlMark.Pos = n.Pos.WithIsStmt()
|
|
inlMark.Xoffset = int64(newIndex)
|
|
ninit.Append(inlMark)
|
|
|
|
if genDwarfInline > 0 {
|
|
if !fn.Sym.Linksym().WasInlined() {
|
|
Ctxt.DwFixups.SetPrecursorFunc(fn.Sym.Linksym(), fn)
|
|
fn.Sym.Linksym().Set(obj.AttrWasInlined, true)
|
|
}
|
|
}
|
|
|
|
subst := inlsubst{
|
|
retlabel: retlabel,
|
|
retvars: retvars,
|
|
inlvars: inlvars,
|
|
bases: make(map[*src.PosBase]*src.PosBase),
|
|
newInlIndex: newIndex,
|
|
}
|
|
|
|
body := subst.list(asNodes(fn.Func.Inl.Body))
|
|
|
|
lab := nodSym(OLABEL, nil, retlabel)
|
|
body = append(body, lab)
|
|
|
|
typecheckslice(body, ctxStmt)
|
|
|
|
if genDwarfInline > 0 {
|
|
for _, v := range inlfvars {
|
|
v.Pos = subst.updatedPos(v.Pos)
|
|
}
|
|
}
|
|
|
|
//dumplist("ninit post", ninit);
|
|
|
|
call := nod(OINLCALL, nil, nil)
|
|
call.Ninit.Set(ninit.Slice())
|
|
call.Nbody.Set(body)
|
|
call.Rlist.Set(retvars)
|
|
call.Type = n.Type
|
|
call.SetTypecheck(1)
|
|
|
|
// transitive inlining
|
|
// might be nice to do this before exporting the body,
|
|
// but can't emit the body with inlining expanded.
|
|
// instead we emit the things that the body needs
|
|
// and each use must redo the inlining.
|
|
// luckily these are small.
|
|
inlnodelist(call.Nbody, maxCost, inlMap)
|
|
for _, n := range call.Nbody.Slice() {
|
|
if n.Op == OINLCALL {
|
|
inlconv2stmt(n)
|
|
}
|
|
}
|
|
|
|
if Debug['m'] > 2 {
|
|
fmt.Printf("%v: After inlining %+v\n\n", call.Line(), call)
|
|
}
|
|
|
|
return call
|
|
}
|
|
|
|
// Every time we expand a function we generate a new set of tmpnames,
|
|
// PAUTO's in the calling functions, and link them off of the
|
|
// PPARAM's, PAUTOS and PPARAMOUTs of the called function.
|
|
func inlvar(var_ *Node) *Node {
|
|
if Debug['m'] > 3 {
|
|
fmt.Printf("inlvar %+v\n", var_)
|
|
}
|
|
|
|
n := newname(var_.Sym)
|
|
n.Type = var_.Type
|
|
n.SetClass(PAUTO)
|
|
n.Name.SetUsed(true)
|
|
n.Name.Curfn = Curfn // the calling function, not the called one
|
|
n.Name.SetAddrtaken(var_.Name.Addrtaken())
|
|
|
|
Curfn.Func.Dcl = append(Curfn.Func.Dcl, n)
|
|
return n
|
|
}
|
|
|
|
// Synthesize a variable to store the inlined function's results in.
|
|
func retvar(t *types.Field, i int) *Node {
|
|
n := newname(lookupN("~R", i))
|
|
n.Type = t.Type
|
|
n.SetClass(PAUTO)
|
|
n.Name.SetUsed(true)
|
|
n.Name.Curfn = Curfn // the calling function, not the called one
|
|
Curfn.Func.Dcl = append(Curfn.Func.Dcl, n)
|
|
return n
|
|
}
|
|
|
|
// Synthesize a variable to store the inlined function's arguments
|
|
// when they come from a multiple return call.
|
|
func argvar(t *types.Type, i int) *Node {
|
|
n := newname(lookupN("~arg", i))
|
|
n.Type = t.Elem()
|
|
n.SetClass(PAUTO)
|
|
n.Name.SetUsed(true)
|
|
n.Name.Curfn = Curfn // the calling function, not the called one
|
|
Curfn.Func.Dcl = append(Curfn.Func.Dcl, n)
|
|
return n
|
|
}
|
|
|
|
// The inlsubst type implements the actual inlining of a single
|
|
// function call.
|
|
type inlsubst struct {
|
|
// Target of the goto substituted in place of a return.
|
|
retlabel *types.Sym
|
|
|
|
// Temporary result variables.
|
|
retvars []*Node
|
|
|
|
inlvars map[*Node]*Node
|
|
|
|
// bases maps from original PosBase to PosBase with an extra
|
|
// inlined call frame.
|
|
bases map[*src.PosBase]*src.PosBase
|
|
|
|
// newInlIndex is the index of the inlined call frame to
|
|
// insert for inlined nodes.
|
|
newInlIndex int
|
|
}
|
|
|
|
// list inlines a list of nodes.
|
|
func (subst *inlsubst) list(ll Nodes) []*Node {
|
|
s := make([]*Node, 0, ll.Len())
|
|
for _, n := range ll.Slice() {
|
|
s = append(s, subst.node(n))
|
|
}
|
|
return s
|
|
}
|
|
|
|
// node recursively copies a node from the saved pristine body of the
|
|
// inlined function, substituting references to input/output
|
|
// parameters with ones to the tmpnames, and substituting returns with
|
|
// assignments to the output.
|
|
func (subst *inlsubst) node(n *Node) *Node {
|
|
if n == nil {
|
|
return nil
|
|
}
|
|
|
|
switch n.Op {
|
|
case ONAME:
|
|
if inlvar := subst.inlvars[n]; inlvar != nil { // These will be set during inlnode
|
|
if Debug['m'] > 2 {
|
|
fmt.Printf("substituting name %+v -> %+v\n", n, inlvar)
|
|
}
|
|
return inlvar
|
|
}
|
|
|
|
if Debug['m'] > 2 {
|
|
fmt.Printf("not substituting name %+v\n", n)
|
|
}
|
|
return n
|
|
|
|
case OLITERAL, OTYPE:
|
|
// If n is a named constant or type, we can continue
|
|
// using it in the inline copy. Otherwise, make a copy
|
|
// so we can update the line number.
|
|
if n.Sym != nil {
|
|
return n
|
|
}
|
|
|
|
// Since we don't handle bodies with closures, this return is guaranteed to belong to the current inlined function.
|
|
|
|
// dump("Return before substitution", n);
|
|
case ORETURN:
|
|
m := nodSym(OGOTO, nil, subst.retlabel)
|
|
m.Ninit.Set(subst.list(n.Ninit))
|
|
|
|
if len(subst.retvars) != 0 && n.List.Len() != 0 {
|
|
as := nod(OAS2, nil, nil)
|
|
|
|
// Make a shallow copy of retvars.
|
|
// Otherwise OINLCALL.Rlist will be the same list,
|
|
// and later walk and typecheck may clobber it.
|
|
for _, n := range subst.retvars {
|
|
as.List.Append(n)
|
|
}
|
|
as.Rlist.Set(subst.list(n.List))
|
|
as = typecheck(as, ctxStmt)
|
|
m.Ninit.Append(as)
|
|
}
|
|
|
|
typecheckslice(m.Ninit.Slice(), ctxStmt)
|
|
m = typecheck(m, ctxStmt)
|
|
|
|
// dump("Return after substitution", m);
|
|
return m
|
|
|
|
case OGOTO, OLABEL:
|
|
m := n.copy()
|
|
m.Pos = subst.updatedPos(m.Pos)
|
|
m.Ninit.Set(nil)
|
|
p := fmt.Sprintf("%s·%d", n.Sym.Name, inlgen)
|
|
m.Sym = lookup(p)
|
|
|
|
return m
|
|
}
|
|
|
|
m := n.copy()
|
|
m.Pos = subst.updatedPos(m.Pos)
|
|
m.Ninit.Set(nil)
|
|
|
|
if n.Op == OCLOSURE {
|
|
Fatalf("cannot inline function containing closure: %+v", n)
|
|
}
|
|
|
|
m.Left = subst.node(n.Left)
|
|
m.Right = subst.node(n.Right)
|
|
m.List.Set(subst.list(n.List))
|
|
m.Rlist.Set(subst.list(n.Rlist))
|
|
m.Ninit.Set(append(m.Ninit.Slice(), subst.list(n.Ninit)...))
|
|
m.Nbody.Set(subst.list(n.Nbody))
|
|
|
|
return m
|
|
}
|
|
|
|
func (subst *inlsubst) updatedPos(xpos src.XPos) src.XPos {
|
|
pos := Ctxt.PosTable.Pos(xpos)
|
|
oldbase := pos.Base() // can be nil
|
|
newbase := subst.bases[oldbase]
|
|
if newbase == nil {
|
|
newbase = src.NewInliningBase(oldbase, subst.newInlIndex)
|
|
subst.bases[oldbase] = newbase
|
|
}
|
|
pos.SetBase(newbase)
|
|
return Ctxt.PosTable.XPos(pos)
|
|
}
|
|
|
|
func pruneUnusedAutos(ll []*Node, vis *hairyVisitor) []*Node {
|
|
s := make([]*Node, 0, len(ll))
|
|
for _, n := range ll {
|
|
if n.Class() == PAUTO {
|
|
if _, found := vis.usedLocals[n]; !found {
|
|
continue
|
|
}
|
|
}
|
|
s = append(s, n)
|
|
}
|
|
return s
|
|
}
|