Daniel Morsing c31b6dd0be [dev.ssa] initial implementation of PAUTO|PHEAP variables
Call to the runtime to generate escaping variables and use the returned
address when accessing these variables.

Fix a couple of errors on the way. The rule for CALLstatic was missed
during the Aux refactor and OCONVNOP wasn't converted.

Change-Id: I2096beff92cca92d648bfb6e8ec0b120f02f44af
Reviewed-on: https://go-review.googlesource.com/11072
Reviewed-by: Keith Randall <khr@golang.org>
2015-06-14 20:01:03 +00:00

1251 lines
33 KiB
Go

// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"log"
"cmd/compile/internal/ssa"
"cmd/internal/obj"
"cmd/internal/obj/x86" // TODO: remove
)
func buildssa(fn *Node) *ssa.Func {
dumplist("buildssa-enter", fn.Func.Enter)
dumplist("buildssa-body", fn.Nbody)
var s state
s.pushLine(fn.Lineno)
defer s.popLine()
// TODO(khr): build config just once at the start of the compiler binary
s.config = ssa.NewConfig(Thearch.Thestring, ssaExport{})
s.f = s.config.NewFunc()
s.f.Name = fn.Func.Nname.Sym.Name
// We construct SSA using an algorithm similar to
// Brau, Buchwald, Hack, Leißa, Mallon, and Zwinkau
// http://pp.info.uni-karlsruhe.de/uploads/publikationen/braun13cc.pdf
// TODO: check this comment
// Allocate starting block
s.f.Entry = s.f.NewBlock(ssa.BlockPlain)
// Allocate exit block
s.exit = s.f.NewBlock(ssa.BlockExit)
// Allocate starting values
s.startmem = s.entryNewValue0(ssa.OpArg, ssa.TypeMem)
s.fp = s.entryNewValue0(ssa.OpFP, s.config.Uintptr) // TODO: use generic pointer type (unsafe.Pointer?) instead
s.sp = s.entryNewValue0(ssa.OpSP, s.config.Uintptr)
s.vars = map[string]*ssa.Value{}
s.labels = map[string]*ssa.Block{}
s.argOffsets = map[string]int64{}
// Convert the AST-based IR to the SSA-based IR
s.startBlock(s.f.Entry)
s.stmtList(fn.Func.Enter)
s.stmtList(fn.Nbody)
// fallthrough to exit
if b := s.endBlock(); b != nil {
addEdge(b, s.exit)
}
// Finish up exit block
s.startBlock(s.exit)
s.exit.Control = s.mem()
s.endBlock()
// Link up variable uses to variable definitions
s.linkForwardReferences()
// Main call to ssa package to compile function
ssa.Compile(s.f)
return s.f
}
type state struct {
// configuration (arch) information
config *ssa.Config
// function we're building
f *ssa.Func
// exit block that "return" jumps to (and panics jump to)
exit *ssa.Block
// the target block for each label in f
labels map[string]*ssa.Block
// current location where we're interpreting the AST
curBlock *ssa.Block
// variable assignments in the current block (map from variable name to ssa value)
vars map[string]*ssa.Value
// all defined variables at the end of each block. Indexed by block ID.
defvars []map[string]*ssa.Value
// offsets of argument slots
// unnamed and unused args are not listed.
argOffsets map[string]int64
// starting values. Memory, frame pointer, and stack pointer
startmem *ssa.Value
fp *ssa.Value
sp *ssa.Value
// line number stack. The current line number is top of stack
line []int32
}
// startBlock sets the current block we're generating code in to b.
func (s *state) startBlock(b *ssa.Block) {
if s.curBlock != nil {
log.Fatalf("starting block %v when block %v has not ended", b, s.curBlock)
}
s.curBlock = b
s.vars = map[string]*ssa.Value{}
}
// endBlock marks the end of generating code for the current block.
// Returns the (former) current block. Returns nil if there is no current
// block, i.e. if no code flows to the current execution point.
func (s *state) endBlock() *ssa.Block {
b := s.curBlock
if b == nil {
return nil
}
for len(s.defvars) <= int(b.ID) {
s.defvars = append(s.defvars, nil)
}
s.defvars[b.ID] = s.vars
s.curBlock = nil
s.vars = nil
b.Line = s.peekLine()
return b
}
// pushLine pushes a line number on the line number stack.
func (s *state) pushLine(line int32) {
s.line = append(s.line, line)
}
// popLine pops the top of the line number stack.
func (s *state) popLine() {
s.line = s.line[:len(s.line)-1]
}
// peekLine peek the top of the line number stack.
func (s *state) peekLine() int32 {
return s.line[len(s.line)-1]
}
// newValue0 adds a new value with no arguments to the current block.
func (s *state) newValue0(op ssa.Op, t ssa.Type) *ssa.Value {
return s.curBlock.NewValue0(s.peekLine(), op, t)
}
// newValue0A adds a new value with no arguments and an aux value to the current block.
func (s *state) newValue0A(op ssa.Op, t ssa.Type, aux interface{}) *ssa.Value {
return s.curBlock.NewValue0A(s.peekLine(), op, t, aux)
}
// newValue1 adds a new value with one argument to the current block.
func (s *state) newValue1(op ssa.Op, t ssa.Type, arg *ssa.Value) *ssa.Value {
return s.curBlock.NewValue1(s.peekLine(), op, t, arg)
}
// newValue1A adds a new value with one argument and an aux value to the current block.
func (s *state) newValue1A(op ssa.Op, t ssa.Type, aux interface{}, arg *ssa.Value) *ssa.Value {
return s.curBlock.NewValue1A(s.peekLine(), op, t, aux, arg)
}
// newValue2 adds a new value with two arguments to the current block.
func (s *state) newValue2(op ssa.Op, t ssa.Type, arg0, arg1 *ssa.Value) *ssa.Value {
return s.curBlock.NewValue2(s.peekLine(), op, t, arg0, arg1)
}
// newValue3 adds a new value with three arguments to the current block.
func (s *state) newValue3(op ssa.Op, t ssa.Type, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
return s.curBlock.NewValue3(s.peekLine(), op, t, arg0, arg1, arg2)
}
// entryNewValue adds a new value with no arguments to the entry block.
func (s *state) entryNewValue0(op ssa.Op, t ssa.Type) *ssa.Value {
return s.f.Entry.NewValue0(s.peekLine(), op, t)
}
// entryNewValue adds a new value with no arguments and an aux value to the entry block.
func (s *state) entryNewValue0A(op ssa.Op, t ssa.Type, aux interface{}) *ssa.Value {
return s.f.Entry.NewValue0A(s.peekLine(), op, t, aux)
}
// entryNewValue1 adds a new value with one argument to the entry block.
func (s *state) entryNewValue1(op ssa.Op, t ssa.Type, arg *ssa.Value) *ssa.Value {
return s.f.Entry.NewValue1(s.peekLine(), op, t, arg)
}
// entryNewValue1 adds a new value with one argument and an auxint value to the entry block.
func (s *state) entryNewValue1I(op ssa.Op, t ssa.Type, auxint int64, arg *ssa.Value) *ssa.Value {
return s.f.Entry.NewValue1I(s.peekLine(), op, t, auxint, arg)
}
// entryNewValue2 adds a new value with two arguments to the entry block.
func (s *state) entryNewValue2(op ssa.Op, t ssa.Type, arg0, arg1 *ssa.Value) *ssa.Value {
return s.f.Entry.NewValue2(s.peekLine(), op, t, arg0, arg1)
}
// constInt adds a new const int value to the entry block.
func (s *state) constInt(t ssa.Type, c int64) *ssa.Value {
return s.f.ConstInt(s.peekLine(), t, c)
}
// ssaStmtList converts the statement n to SSA and adds it to s.
func (s *state) stmtList(l *NodeList) {
for ; l != nil; l = l.Next {
s.stmt(l.N)
}
}
// ssaStmt converts the statement n to SSA and adds it to s.
func (s *state) stmt(n *Node) {
s.pushLine(n.Lineno)
defer s.popLine()
s.stmtList(n.Ninit)
switch n.Op {
case OBLOCK:
s.stmtList(n.List)
case ODCL:
if n.Left.Class&PHEAP == 0 {
return
}
if compiling_runtime != 0 {
log.Fatalf("%v escapes to heap, not allowed in runtime.", n)
}
// TODO: the old pass hides the details of PHEAP
// variables behind ONAME nodes. Figure out if it's better
// to rewrite the tree and make the heapaddr construct explicit
// or to keep this detail hidden behind the scenes.
palloc := prealloc[n.Left]
if palloc == nil {
palloc = callnew(n.Left.Type)
prealloc[n.Left] = palloc
}
s.assign(OAS, n.Left.Name.Heapaddr, palloc)
case OLABEL, OGOTO:
// get block at label, or make one
t := s.labels[n.Left.Sym.Name]
if t == nil {
t = s.f.NewBlock(ssa.BlockPlain)
s.labels[n.Left.Sym.Name] = t
}
// go to that label (we pretend "label:" is preceded by "goto label")
if b := s.endBlock(); b != nil {
addEdge(b, t)
}
if n.Op == OLABEL {
// next we work on the label's target block
s.startBlock(t)
}
case OAS, OASWB:
s.assign(n.Op, n.Left, n.Right)
case OIF:
cond := s.expr(n.Left)
b := s.endBlock()
b.Kind = ssa.BlockIf
b.Control = cond
// TODO(khr): likely direction
bThen := s.f.NewBlock(ssa.BlockPlain)
bEnd := s.f.NewBlock(ssa.BlockPlain)
var bElse *ssa.Block
if n.Rlist == nil {
addEdge(b, bThen)
addEdge(b, bEnd)
} else {
bElse = s.f.NewBlock(ssa.BlockPlain)
addEdge(b, bThen)
addEdge(b, bElse)
}
s.startBlock(bThen)
s.stmtList(n.Nbody)
b = s.endBlock()
if b != nil {
addEdge(b, bEnd)
}
if n.Rlist != nil {
s.startBlock(bElse)
s.stmtList(n.Rlist)
b = s.endBlock()
if b != nil {
addEdge(b, bEnd)
}
}
s.startBlock(bEnd)
case ORETURN:
s.stmtList(n.List)
b := s.endBlock()
addEdge(b, s.exit)
case OFOR:
bCond := s.f.NewBlock(ssa.BlockPlain)
bBody := s.f.NewBlock(ssa.BlockPlain)
bEnd := s.f.NewBlock(ssa.BlockPlain)
// first, jump to condition test
b := s.endBlock()
addEdge(b, bCond)
// generate code to test condition
// TODO(khr): Left == nil exception
s.startBlock(bCond)
cond := s.expr(n.Left)
b = s.endBlock()
b.Kind = ssa.BlockIf
b.Control = cond
// TODO(khr): likely direction
addEdge(b, bBody)
addEdge(b, bEnd)
// generate body
s.startBlock(bBody)
s.stmtList(n.Nbody)
s.stmt(n.Right)
b = s.endBlock()
addEdge(b, bCond)
s.startBlock(bEnd)
case OVARKILL:
// TODO(khr): ??? anything to do here? Only for addrtaken variables?
// Maybe just link it in the store chain?
default:
log.Fatalf("unhandled stmt %s", opnames[n.Op])
}
}
// expr converts the expression n to ssa, adds it to s and returns the ssa result.
func (s *state) expr(n *Node) *ssa.Value {
s.pushLine(n.Lineno)
defer s.popLine()
switch n.Op {
case ONAME:
if n.Class == PFUNC {
// "value" of a function is the address of the function's closure
return s.entryNewValue0A(ssa.OpGlobal, Ptrto(n.Type), funcsym(n.Sym))
}
s.argOffsets[n.Sym.Name] = n.Xoffset // TODO: remember this another way?
if canSSA(n) {
return s.variable(n.Sym.Name, n.Type)
}
addr := s.addr(n)
return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
case OLITERAL:
switch n.Val().Ctype() {
case CTINT:
return s.constInt(n.Type, Mpgetfix(n.Val().U.(*Mpint)))
case CTSTR:
return s.entryNewValue0A(ssa.OpConst, n.Type, n.Val().U)
default:
log.Fatalf("unhandled OLITERAL %v", n.Val().Ctype())
return nil
}
case OCONVNOP:
x := s.expr(n.Left)
return s.newValue1(ssa.OpConvNop, n.Type, x)
// binary ops
case OLT:
a := s.expr(n.Left)
b := s.expr(n.Right)
return s.newValue2(ssa.OpLess, ssa.TypeBool, a, b)
case OADD:
a := s.expr(n.Left)
b := s.expr(n.Right)
return s.newValue2(ssa.OpAdd, a.Type, a, b)
case OSUB:
// TODO:(khr) fold code for all binary ops together somehow
a := s.expr(n.Left)
b := s.expr(n.Right)
return s.newValue2(ssa.OpSub, a.Type, a, b)
case OLSH:
a := s.expr(n.Left)
b := s.expr(n.Right)
return s.newValue2(ssa.OpLsh, a.Type, a, b)
case ORSH:
a := s.expr(n.Left)
b := s.expr(n.Right)
return s.newValue2(ssa.OpRsh, a.Type, a, b)
case OADDR:
return s.addr(n.Left)
case OIND:
p := s.expr(n.Left)
s.nilCheck(p)
return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
case ODOTPTR:
p := s.expr(n.Left)
s.nilCheck(p)
p = s.newValue2(ssa.OpAdd, p.Type, p, s.constInt(s.config.Uintptr, n.Xoffset))
return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
case OINDEX:
if n.Left.Type.Bound >= 0 { // array or string
a := s.expr(n.Left)
i := s.expr(n.Right)
var elemtype *Type
var len *ssa.Value
if n.Left.Type.IsString() {
len = s.newValue1(ssa.OpStringLen, s.config.Uintptr, a)
elemtype = Types[TUINT8]
} else {
len = s.constInt(s.config.Uintptr, n.Left.Type.Bound)
elemtype = n.Left.Type.Type
}
s.boundsCheck(i, len)
return s.newValue2(ssa.OpArrayIndex, elemtype, a, i)
} else { // slice
p := s.addr(n)
return s.newValue2(ssa.OpLoad, n.Left.Type.Type, p, s.mem())
}
case OCALLFUNC:
static := n.Left.Op == ONAME && n.Left.Class == PFUNC
// evaluate closure
var closure *ssa.Value
if !static {
closure = s.expr(n.Left)
}
// run all argument assignments
s.stmtList(n.List)
bNext := s.f.NewBlock(ssa.BlockPlain)
var call *ssa.Value
if static {
call = s.newValue1A(ssa.OpStaticCall, ssa.TypeMem, n.Left.Sym, s.mem())
} else {
entry := s.newValue2(ssa.OpLoad, s.config.Uintptr, closure, s.mem())
call = s.newValue3(ssa.OpClosureCall, ssa.TypeMem, entry, closure, s.mem())
}
b := s.endBlock()
b.Kind = ssa.BlockCall
b.Control = call
addEdge(b, bNext)
addEdge(b, s.exit)
// read result from stack at the start of the fallthrough block
s.startBlock(bNext)
var titer Iter
fp := Structfirst(&titer, Getoutarg(n.Left.Type))
a := s.entryNewValue1I(ssa.OpOffPtr, Ptrto(fp.Type), fp.Width, s.sp)
return s.newValue2(ssa.OpLoad, fp.Type, a, call)
default:
log.Fatalf("unhandled expr %s", opnames[n.Op])
return nil
}
}
func (s *state) assign(op uint8, left *Node, right *Node) {
// TODO: do write barrier
// if op == OASWB
var val *ssa.Value
if right == nil {
// right == nil means use the zero value of the assigned type.
t := left.Type
switch {
case t.IsString():
val = s.entryNewValue0(ssa.OpConst, left.Type)
case t.IsInteger():
val = s.entryNewValue0(ssa.OpConst, left.Type)
case t.IsBoolean():
val = s.entryNewValue0A(ssa.OpConst, left.Type, false) // TODO: store bools as 0/1 in AuxInt?
default:
log.Fatalf("zero for type %v not implemented", t)
}
} else {
val = s.expr(right)
}
if left.Op == ONAME && canSSA(left) {
// Update variable assignment.
s.vars[left.Sym.Name] = val
return
}
// not ssa-able. Treat as a store.
addr := s.addr(left)
s.vars[".mem"] = s.newValue3(ssa.OpStore, ssa.TypeMem, addr, val, s.mem())
}
// addr converts the address of the expression n to SSA, adds it to s and returns the SSA result.
func (s *state) addr(n *Node) *ssa.Value {
switch n.Op {
case ONAME:
switch n.Class {
case PEXTERN:
// global variable
return s.entryNewValue0A(ssa.OpGlobal, Ptrto(n.Type), n.Sym)
case PPARAMOUT:
// store to parameter slot
return s.entryNewValue1I(ssa.OpOffPtr, Ptrto(n.Type), n.Xoffset, s.fp)
case PAUTO | PHEAP:
return s.expr(n.Name.Heapaddr)
default:
// TODO: address of locals
log.Fatalf("variable address of %v not implemented", n)
return nil
}
case OINDREG:
// indirect off a register (TODO: always SP?)
// used for storing/loading arguments/returns to/from callees
return s.entryNewValue1I(ssa.OpOffPtr, Ptrto(n.Type), n.Xoffset, s.sp)
case OINDEX:
if n.Left.Type.Bound >= 0 { // array
a := s.addr(n.Left)
i := s.expr(n.Right)
len := s.constInt(s.config.Uintptr, n.Left.Type.Bound)
s.boundsCheck(i, len)
return s.newValue2(ssa.OpPtrIndex, Ptrto(n.Left.Type.Type), a, i)
} else { // slice
a := s.expr(n.Left)
i := s.expr(n.Right)
len := s.newValue1(ssa.OpSliceLen, s.config.Uintptr, a)
s.boundsCheck(i, len)
p := s.newValue1(ssa.OpSlicePtr, Ptrto(n.Left.Type.Type), a)
return s.newValue2(ssa.OpPtrIndex, Ptrto(n.Left.Type.Type), p, i)
}
default:
log.Fatalf("addr: bad op %v", Oconv(int(n.Op), 0))
return nil
}
}
// canSSA reports whether n is SSA-able.
// n must be an ONAME.
func canSSA(n *Node) bool {
if n.Op != ONAME {
log.Fatalf("canSSA passed a non-ONAME %s %v", Oconv(int(n.Op), 0), n)
}
if n.Addrtaken {
return false
}
if n.Class&PHEAP != 0 {
return false
}
if n.Class == PEXTERN {
return false
}
if n.Class == PPARAMOUT {
return false
}
return true
// TODO: try to make more variables SSAable.
}
// nilCheck generates nil pointer checking code.
// Starts a new block on return.
func (s *state) nilCheck(ptr *ssa.Value) {
c := s.newValue1(ssa.OpIsNonNil, ssa.TypeBool, ptr)
b := s.endBlock()
b.Kind = ssa.BlockIf
b.Control = c
bNext := s.f.NewBlock(ssa.BlockPlain)
addEdge(b, bNext)
addEdge(b, s.exit)
s.startBlock(bNext)
// TODO(khr): Don't go directly to exit. Go to a stub that calls panicmem first.
// TODO: implicit nil checks somehow?
}
// boundsCheck generates bounds checking code. Checks if 0 <= idx < len, branches to exit if not.
// Starts a new block on return.
func (s *state) boundsCheck(idx, len *ssa.Value) {
// TODO: convert index to full width?
// TODO: if index is 64-bit and we're compiling to 32-bit, check that high 32 bits are zero.
// bounds check
cmp := s.newValue2(ssa.OpIsInBounds, ssa.TypeBool, idx, len)
b := s.endBlock()
b.Kind = ssa.BlockIf
b.Control = cmp
bNext := s.f.NewBlock(ssa.BlockPlain)
addEdge(b, bNext)
addEdge(b, s.exit)
// TODO: don't go directly to s.exit. Go to a stub that calls panicindex first.
s.startBlock(bNext)
}
// variable returns the value of a variable at the current location.
func (s *state) variable(name string, t ssa.Type) *ssa.Value {
if s.curBlock == nil {
log.Fatalf("nil curblock!")
}
v := s.vars[name]
if v == nil {
// TODO: get type? Take Sym as arg?
v = s.newValue0A(ssa.OpFwdRef, t, name)
s.vars[name] = v
}
return v
}
func (s *state) mem() *ssa.Value {
return s.variable(".mem", ssa.TypeMem)
}
func (s *state) linkForwardReferences() {
// Build ssa graph. Each variable on its first use in a basic block
// leaves a FwdRef in that block representing the incoming value
// of that variable. This function links that ref up with possible definitions,
// inserting Phi values as needed. This is essentially the algorithm
// described by Brau, Buchwald, Hack, Leißa, Mallon, and Zwinkau:
// http://pp.info.uni-karlsruhe.de/uploads/publikationen/braun13cc.pdf
for _, b := range s.f.Blocks {
for _, v := range b.Values {
if v.Op != ssa.OpFwdRef {
continue
}
name := v.Aux.(string)
v.Op = ssa.OpCopy
v.Aux = nil
v.SetArgs1(s.lookupVarIncoming(b, v.Type, name))
}
}
}
// lookupVarIncoming finds the variable's value at the start of block b.
func (s *state) lookupVarIncoming(b *ssa.Block, t ssa.Type, name string) *ssa.Value {
// TODO(khr): have lookupVarIncoming overwrite the fwdRef or copy it
// will be used in, instead of having the result used in a copy value.
if b == s.f.Entry {
if name == ".mem" {
return s.startmem
}
// variable is live at the entry block. Load it.
addr := s.entryNewValue1I(ssa.OpOffPtr, Ptrto(t.(*Type)), s.argOffsets[name], s.fp)
return s.entryNewValue2(ssa.OpLoad, t, addr, s.startmem)
}
var vals []*ssa.Value
for _, p := range b.Preds {
vals = append(vals, s.lookupVarOutgoing(p, t, name))
}
v0 := vals[0]
for i := 1; i < len(vals); i++ {
if vals[i] != v0 {
// need a phi value
v := b.NewValue0(s.peekLine(), ssa.OpPhi, t)
v.AddArgs(vals...)
return v
}
}
return v0
}
// lookupVarOutgoing finds the variable's value at the end of block b.
func (s *state) lookupVarOutgoing(b *ssa.Block, t ssa.Type, name string) *ssa.Value {
m := s.defvars[b.ID]
if v, ok := m[name]; ok {
return v
}
// The variable is not defined by b and we haven't
// looked it up yet. Generate v, a copy value which
// will be the outgoing value of the variable. Then
// look up w, the incoming value of the variable.
// Make v = copy(w). We need the extra copy to
// prevent infinite recursion when looking up the
// incoming value of the variable.
v := b.NewValue0(s.peekLine(), ssa.OpCopy, t)
m[name] = v
v.AddArg(s.lookupVarIncoming(b, t, name))
return v
}
// TODO: the above mutually recursive functions can lead to very deep stacks. Fix that.
// addEdge adds an edge from b to c.
func addEdge(b, c *ssa.Block) {
b.Succs = append(b.Succs, c)
c.Preds = append(c.Preds, b)
}
// an unresolved branch
type branch struct {
p *obj.Prog // branch instruction
b *ssa.Block // target
}
// genssa appends entries to ptxt for each instruction in f.
// gcargs and gclocals are filled in with pointer maps for the frame.
func genssa(f *ssa.Func, ptxt *obj.Prog, gcargs, gclocals *Sym) {
// TODO: line numbers
if f.FrameSize > 1<<31 {
Yyerror("stack frame too large (>2GB)")
return
}
ptxt.To.Type = obj.TYPE_TEXTSIZE
ptxt.To.Val = int32(Rnd(Curfn.Type.Argwid, int64(Widthptr))) // arg size
ptxt.To.Offset = f.FrameSize - 8 // TODO: arch-dependent
// Remember where each block starts.
bstart := make([]*obj.Prog, f.NumBlocks())
// Remember all the branch instructions we've seen
// and where they would like to go
var branches []branch
// Emit basic blocks
for i, b := range f.Blocks {
bstart[b.ID] = Pc
// Emit values in block
for _, v := range b.Values {
genValue(v)
}
// Emit control flow instructions for block
var next *ssa.Block
if i < len(f.Blocks)-1 {
next = f.Blocks[i+1]
}
branches = genBlock(b, next, branches)
}
// Resolve branches
for _, br := range branches {
br.p.To.Val = bstart[br.b.ID]
}
Pc.As = obj.ARET // overwrite AEND
// TODO: liveness
// TODO: gcargs
// TODO: gclocals
// TODO: dump frame if -f
// Emit garbage collection symbols. TODO: put something in them
//liveness(Curfn, ptxt, gcargs, gclocals)
duint32(gcargs, 0, 0)
ggloblsym(gcargs, 4, obj.RODATA|obj.DUPOK)
duint32(gclocals, 0, 0)
ggloblsym(gclocals, 4, obj.RODATA|obj.DUPOK)
}
func genValue(v *ssa.Value) {
lineno = v.Line
switch v.Op {
case ssa.OpAMD64ADDQ:
// TODO: use addq instead of leaq if target is in the right register.
p := Prog(x86.ALEAQ)
p.From.Type = obj.TYPE_MEM
p.From.Reg = regnum(v.Args[0])
p.From.Scale = 1
p.From.Index = regnum(v.Args[1])
p.To.Type = obj.TYPE_REG
p.To.Reg = regnum(v)
case ssa.OpAMD64ADDQconst:
// TODO: use addq instead of leaq if target is in the right register.
p := Prog(x86.ALEAQ)
p.From.Type = obj.TYPE_MEM
p.From.Reg = regnum(v.Args[0])
p.From.Offset = v.AuxInt
p.To.Type = obj.TYPE_REG
p.To.Reg = regnum(v)
case ssa.OpAMD64MULQconst:
// TODO: this isn't right. doasm fails on it. I don't think obj
// has ever been taught to compile imul $c, r1, r2.
p := Prog(x86.AIMULQ)
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.From3.Type = obj.TYPE_REG
p.From3.Reg = regnum(v.Args[0])
p.To.Type = obj.TYPE_REG
p.To.Reg = regnum(v)
case ssa.OpAMD64SUBQconst:
// This code compensates for the fact that the register allocator
// doesn't understand 2-address instructions yet. TODO: fix that.
x := regnum(v.Args[0])
r := regnum(v)
if x != r {
p := Prog(x86.AMOVQ)
p.From.Type = obj.TYPE_REG
p.From.Reg = x
p.To.Type = obj.TYPE_REG
p.To.Reg = r
x = r
}
p := Prog(x86.ASUBQ)
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case ssa.OpAMD64SHLQ:
x := regnum(v.Args[0])
r := regnum(v)
if x != r {
if r == x86.REG_CX {
log.Fatalf("can't implement %s, target and shift both in CX", v.LongString())
}
p := Prog(x86.AMOVQ)
p.From.Type = obj.TYPE_REG
p.From.Reg = x
p.To.Type = obj.TYPE_REG
p.To.Reg = r
x = r
}
p := Prog(x86.ASHLQ)
p.From.Type = obj.TYPE_REG
p.From.Reg = regnum(v.Args[1]) // should be CX
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case ssa.OpAMD64SHRQ:
x := regnum(v.Args[0])
r := regnum(v)
if x != r {
if r == x86.REG_CX {
log.Fatalf("can't implement %s, target and shift both in CX", v.LongString())
}
p := Prog(x86.AMOVQ)
p.From.Type = obj.TYPE_REG
p.From.Reg = x
p.To.Type = obj.TYPE_REG
p.To.Reg = r
x = r
}
p := Prog(x86.ASHRQ)
p.From.Type = obj.TYPE_REG
p.From.Reg = regnum(v.Args[1]) // should be CX
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case ssa.OpAMD64SARQ:
x := regnum(v.Args[0])
r := regnum(v)
if x != r {
if r == x86.REG_CX {
log.Fatalf("can't implement %s, target and shift both in CX", v.LongString())
}
p := Prog(x86.AMOVQ)
p.From.Type = obj.TYPE_REG
p.From.Reg = x
p.To.Type = obj.TYPE_REG
p.To.Reg = r
x = r
}
p := Prog(x86.ASARQ)
p.From.Type = obj.TYPE_REG
p.From.Reg = regnum(v.Args[1]) // should be CX
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case ssa.OpAMD64SHLQconst:
x := regnum(v.Args[0])
r := regnum(v)
if x != r {
p := Prog(x86.AMOVQ)
p.From.Type = obj.TYPE_REG
p.From.Reg = x
p.To.Type = obj.TYPE_REG
p.To.Reg = r
x = r
}
p := Prog(x86.ASHLQ)
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case ssa.OpAMD64SHRQconst:
x := regnum(v.Args[0])
r := regnum(v)
if x != r {
p := Prog(x86.AMOVQ)
p.From.Type = obj.TYPE_REG
p.From.Reg = x
p.To.Type = obj.TYPE_REG
p.To.Reg = r
x = r
}
p := Prog(x86.ASHRQ)
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case ssa.OpAMD64SARQconst:
x := regnum(v.Args[0])
r := regnum(v)
if x != r {
p := Prog(x86.AMOVQ)
p.From.Type = obj.TYPE_REG
p.From.Reg = x
p.To.Type = obj.TYPE_REG
p.To.Reg = r
x = r
}
p := Prog(x86.ASARQ)
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case ssa.OpAMD64SBBQcarrymask:
r := regnum(v)
p := Prog(x86.ASBBQ)
p.From.Type = obj.TYPE_REG
p.From.Reg = r
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case ssa.OpAMD64CMOVQCC:
r := regnum(v)
x := regnum(v.Args[1])
y := regnum(v.Args[2])
if x != r && y != r {
p := Prog(x86.AMOVQ)
p.From.Type = obj.TYPE_REG
p.From.Reg = x
p.To.Type = obj.TYPE_REG
p.To.Reg = r
x = r
}
var p *obj.Prog
if x == r {
p = Prog(x86.ACMOVQCS)
p.From.Reg = y
} else {
p = Prog(x86.ACMOVQCC)
p.From.Reg = x
}
p.From.Type = obj.TYPE_REG
p.To.Type = obj.TYPE_REG
p.To.Reg = r
case ssa.OpAMD64ANDQ:
r := regnum(v)
x := regnum(v.Args[0])
y := regnum(v.Args[1])
if x != r && y != r {
p := Prog(x86.AMOVQ)
p.From.Type = obj.TYPE_REG
p.From.Reg = x
p.To.Type = obj.TYPE_REG
p.To.Reg = r
x = r
}
p := Prog(x86.AANDQ)
p.From.Type = obj.TYPE_REG
p.To.Type = obj.TYPE_REG
p.To.Reg = r
if x == r {
p.From.Reg = y
} else {
p.From.Reg = x
}
case ssa.OpAMD64LEAQ:
p := Prog(x86.ALEAQ)
p.From.Type = obj.TYPE_MEM
p.From.Reg = regnum(v.Args[0])
p.From.Scale = 1
p.From.Index = regnum(v.Args[1])
p.From.Offset = v.AuxInt
p.To.Type = obj.TYPE_REG
p.To.Reg = regnum(v)
case ssa.OpAMD64CMPQ:
p := Prog(x86.ACMPQ)
p.From.Type = obj.TYPE_REG
p.From.Reg = regnum(v.Args[0])
p.To.Type = obj.TYPE_REG
p.To.Reg = regnum(v.Args[1])
case ssa.OpAMD64CMPQconst:
p := Prog(x86.ACMPQ)
p.From.Type = obj.TYPE_REG
p.From.Reg = regnum(v.Args[0])
p.To.Type = obj.TYPE_CONST
p.To.Offset = v.AuxInt
case ssa.OpAMD64TESTB:
p := Prog(x86.ATESTB)
p.From.Type = obj.TYPE_REG
p.From.Reg = regnum(v.Args[0])
p.To.Type = obj.TYPE_REG
p.To.Reg = regnum(v.Args[1])
case ssa.OpAMD64TESTQ:
p := Prog(x86.ATESTQ)
p.From.Type = obj.TYPE_REG
p.From.Reg = regnum(v.Args[0])
p.To.Type = obj.TYPE_REG
p.To.Reg = regnum(v.Args[1])
case ssa.OpAMD64MOVQconst:
x := regnum(v)
p := Prog(x86.AMOVQ)
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.To.Type = obj.TYPE_REG
p.To.Reg = x
case ssa.OpAMD64MOVQload:
p := Prog(x86.AMOVQ)
p.From.Type = obj.TYPE_MEM
p.From.Reg = regnum(v.Args[0])
p.From.Offset = v.AuxInt
p.To.Type = obj.TYPE_REG
p.To.Reg = regnum(v)
case ssa.OpAMD64MOVBload:
p := Prog(x86.AMOVB)
p.From.Type = obj.TYPE_MEM
p.From.Reg = regnum(v.Args[0])
p.From.Offset = v.AuxInt
p.To.Type = obj.TYPE_REG
p.To.Reg = regnum(v)
case ssa.OpAMD64MOVQloadidx8:
p := Prog(x86.AMOVQ)
p.From.Type = obj.TYPE_MEM
p.From.Reg = regnum(v.Args[0])
p.From.Offset = v.AuxInt
p.From.Scale = 8
p.From.Index = regnum(v.Args[1])
p.To.Type = obj.TYPE_REG
p.To.Reg = regnum(v)
case ssa.OpAMD64MOVQstore:
p := Prog(x86.AMOVQ)
p.From.Type = obj.TYPE_REG
p.From.Reg = regnum(v.Args[1])
p.To.Type = obj.TYPE_MEM
p.To.Reg = regnum(v.Args[0])
p.To.Offset = v.AuxInt
case ssa.OpCopy: // TODO: lower to MOVQ earlier?
if v.Type.IsMemory() {
return
}
x := regnum(v.Args[0])
y := regnum(v)
if x != y {
p := Prog(x86.AMOVQ)
p.From.Type = obj.TYPE_REG
p.From.Reg = x
p.To.Type = obj.TYPE_REG
p.To.Reg = y
}
case ssa.OpLoadReg8:
p := Prog(x86.AMOVQ)
p.From.Type = obj.TYPE_MEM
p.From.Reg = x86.REG_SP
p.From.Offset = localOffset(v.Args[0])
p.To.Type = obj.TYPE_REG
p.To.Reg = regnum(v)
case ssa.OpStoreReg8:
p := Prog(x86.AMOVQ)
p.From.Type = obj.TYPE_REG
p.From.Reg = regnum(v.Args[0])
p.To.Type = obj.TYPE_MEM
p.To.Reg = x86.REG_SP
p.To.Offset = localOffset(v)
case ssa.OpPhi:
// just check to make sure regalloc did it right
f := v.Block.Func
loc := f.RegAlloc[v.ID]
for _, a := range v.Args {
if f.RegAlloc[a.ID] != loc { // TODO: .Equal() instead?
log.Fatalf("phi arg at different location than phi %v %v %v %v", v, loc, a, f.RegAlloc[a.ID])
}
}
case ssa.OpConst:
if v.Block.Func.RegAlloc[v.ID] != nil {
log.Fatalf("const value %v shouldn't have a location", v)
}
case ssa.OpArg:
// memory arg needs no code
// TODO: check that only mem arg goes here.
case ssa.OpAMD64LEAQglobal:
p := Prog(x86.ALEAQ)
p.From.Type = obj.TYPE_MEM
p.From.Name = obj.NAME_EXTERN
p.From.Sym = Linksym(v.Aux.(*Sym))
p.From.Offset = v.AuxInt
p.To.Type = obj.TYPE_REG
p.To.Reg = regnum(v)
case ssa.OpAMD64CALLstatic:
p := Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = Linksym(v.Aux.(*Sym))
case ssa.OpAMD64CALLclosure:
p := Prog(obj.ACALL)
p.To.Type = obj.TYPE_REG
p.To.Reg = regnum(v.Args[0])
case ssa.OpFP, ssa.OpSP:
// nothing to do
default:
log.Fatalf("value %s not implemented", v.LongString())
}
}
func genBlock(b, next *ssa.Block, branches []branch) []branch {
lineno = b.Line
switch b.Kind {
case ssa.BlockPlain:
if b.Succs[0] != next {
p := Prog(obj.AJMP)
p.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{p, b.Succs[0]})
}
case ssa.BlockExit:
Prog(obj.ARET)
case ssa.BlockCall:
if b.Succs[0] != next {
p := Prog(obj.AJMP)
p.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{p, b.Succs[0]})
}
case ssa.BlockAMD64EQ:
if b.Succs[0] == next {
p := Prog(x86.AJNE)
p.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{p, b.Succs[1]})
} else if b.Succs[1] == next {
p := Prog(x86.AJEQ)
p.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{p, b.Succs[0]})
} else {
p := Prog(x86.AJEQ)
p.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{p, b.Succs[0]})
q := Prog(obj.AJMP)
q.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{q, b.Succs[1]})
}
case ssa.BlockAMD64NE:
if b.Succs[0] == next {
p := Prog(x86.AJEQ)
p.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{p, b.Succs[1]})
} else if b.Succs[1] == next {
p := Prog(x86.AJNE)
p.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{p, b.Succs[0]})
} else {
p := Prog(x86.AJNE)
p.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{p, b.Succs[0]})
q := Prog(obj.AJMP)
q.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{q, b.Succs[1]})
}
case ssa.BlockAMD64LT:
if b.Succs[0] == next {
p := Prog(x86.AJGE)
p.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{p, b.Succs[1]})
} else if b.Succs[1] == next {
p := Prog(x86.AJLT)
p.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{p, b.Succs[0]})
} else {
p := Prog(x86.AJLT)
p.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{p, b.Succs[0]})
q := Prog(obj.AJMP)
q.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{q, b.Succs[1]})
}
case ssa.BlockAMD64ULT:
if b.Succs[0] == next {
p := Prog(x86.AJCC)
p.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{p, b.Succs[1]})
} else if b.Succs[1] == next {
p := Prog(x86.AJCS)
p.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{p, b.Succs[0]})
} else {
p := Prog(x86.AJCS)
p.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{p, b.Succs[0]})
q := Prog(obj.AJMP)
q.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{q, b.Succs[1]})
}
case ssa.BlockAMD64UGT:
if b.Succs[0] == next {
p := Prog(x86.AJLS)
p.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{p, b.Succs[1]})
} else if b.Succs[1] == next {
p := Prog(x86.AJHI)
p.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{p, b.Succs[0]})
} else {
p := Prog(x86.AJHI)
p.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{p, b.Succs[0]})
q := Prog(obj.AJMP)
q.To.Type = obj.TYPE_BRANCH
branches = append(branches, branch{q, b.Succs[1]})
}
default:
log.Fatalf("branch %s not implemented", b.LongString())
}
return branches
}
// ssaRegToReg maps ssa register numbers to obj register numbers.
var ssaRegToReg = [...]int16{
x86.REG_AX,
x86.REG_CX,
x86.REG_DX,
x86.REG_BX,
x86.REG_SP,
x86.REG_BP,
x86.REG_SI,
x86.REG_DI,
x86.REG_R8,
x86.REG_R9,
x86.REG_R10,
x86.REG_R11,
x86.REG_R12,
x86.REG_R13,
x86.REG_R14,
x86.REG_R15,
// TODO: more
// TODO: arch-dependent
}
// regnum returns the register (in cmd/internal/obj numbering) to
// which v has been allocated. Panics if v is not assigned to a
// register.
func regnum(v *ssa.Value) int16 {
return ssaRegToReg[v.Block.Func.RegAlloc[v.ID].(*ssa.Register).Num]
}
// localOffset returns the offset below the frame pointer where
// a stack-allocated local has been allocated. Panics if v
// is not assigned to a local slot.
func localOffset(v *ssa.Value) int64 {
return v.Block.Func.RegAlloc[v.ID].(*ssa.LocalSlot).Idx
}
// ssaExport exports a bunch of compiler services for the ssa backend.
type ssaExport struct{}
// StringSym returns a symbol (a *Sym wrapped in an interface) which
// is a global string constant containing s.
func (serv ssaExport) StringSym(s string) interface{} {
return stringsym(s)
}