Cherry Mui c4772d30bf cmd/link: disallow pull-only linknames
As mentioned in CL 584598, linkname is a mechanism that, when
abused, can break API integrity and even safety of Go programs.
CL 584598 is a first step to restrict the use of linknames, by
implementing a blocklist. This CL takes a step further, tightening
up the restriction by allowing linkname references ("pull") only
when the definition side explicitly opts into it, by having a
linkname on the definition (possibly to itself). This way, it is at
least clear on the definition side that the symbol, despite being
unexported, is accessed outside of the package. Unexported symbols
without linkname can now be actually private. This is similar to
the symbol visibility rule used by gccgo for years (which defines
unexported non-linknamed symbols as C static symbols).

As there can be pull-only linknames in the wild that may be broken
by this change, we currently only enforce this rule for symbols
defined in the standard library. Push linknames are added in the
standard library to allow things build.

Linkname references to external (non-Go) symbols are still allowed,
as their visibility is controlled by the C symbol visibility rules
and enforced by the C (static or dynamic) linker.

Assembly symbols are treated similar to linknamed symbols.

This is controlled by -checklinkname linker flag, currently not
enabled by default. A follow-up CL will enable it by default.

Change-Id: I07344f5c7a02124dbbef0fbc8fec3b666a4b2b0e
Reviewed-on: https://go-review.googlesource.com/c/go/+/585358
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
Reviewed-by: Than McIntosh <thanm@google.com>
Reviewed-by: Russ Cox <rsc@golang.org>
2024-05-15 19:57:43 +00:00

2745 lines
81 KiB
Go

// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package loader
import (
"bytes"
"cmd/internal/bio"
"cmd/internal/goobj"
"cmd/internal/obj"
"cmd/internal/objabi"
"cmd/internal/sys"
"cmd/link/internal/sym"
"debug/elf"
"fmt"
"internal/abi"
"io"
"log"
"math/bits"
"os"
"sort"
"strings"
)
var _ = fmt.Print
// Sym encapsulates a global symbol index, used to identify a specific
// Go symbol. The 0-valued Sym is corresponds to an invalid symbol.
type Sym = sym.LoaderSym
// Relocs encapsulates the set of relocations on a given symbol; an
// instance of this type is returned by the Loader Relocs() method.
type Relocs struct {
rs []goobj.Reloc
li uint32 // local index of symbol whose relocs we're examining
r *oReader // object reader for containing package
l *Loader // loader
}
// ExtReloc contains the payload for an external relocation.
type ExtReloc struct {
Xsym Sym
Xadd int64
Type objabi.RelocType
Size uint8
}
// Reloc holds a "handle" to access a relocation record from an
// object file.
type Reloc struct {
*goobj.Reloc
r *oReader
l *Loader
}
func (rel Reloc) Type() objabi.RelocType { return objabi.RelocType(rel.Reloc.Type()) &^ objabi.R_WEAK }
func (rel Reloc) Weak() bool { return objabi.RelocType(rel.Reloc.Type())&objabi.R_WEAK != 0 }
func (rel Reloc) SetType(t objabi.RelocType) { rel.Reloc.SetType(uint16(t)) }
func (rel Reloc) Sym() Sym { return rel.l.resolve(rel.r, rel.Reloc.Sym()) }
func (rel Reloc) SetSym(s Sym) { rel.Reloc.SetSym(goobj.SymRef{PkgIdx: 0, SymIdx: uint32(s)}) }
func (rel Reloc) IsMarker() bool { return rel.Siz() == 0 }
// Aux holds a "handle" to access an aux symbol record from an
// object file.
type Aux struct {
*goobj.Aux
r *oReader
l *Loader
}
func (a Aux) Sym() Sym { return a.l.resolve(a.r, a.Aux.Sym()) }
// oReader is a wrapper type of obj.Reader, along with some
// extra information.
type oReader struct {
*goobj.Reader
unit *sym.CompilationUnit
version int // version of static symbol
pkgprefix string
syms []Sym // Sym's global index, indexed by local index
pkg []uint32 // indices of referenced package by PkgIdx (index into loader.objs array)
ndef int // cache goobj.Reader.NSym()
nhashed64def int // cache goobj.Reader.NHashed64Def()
nhasheddef int // cache goobj.Reader.NHashedDef()
objidx uint32 // index of this reader in the objs slice
}
// Total number of defined symbols (package symbols, hashed symbols, and
// non-package symbols).
func (r *oReader) NAlldef() int { return r.ndef + r.nhashed64def + r.nhasheddef + r.NNonpkgdef() }
// objSym represents a symbol in an object file. It is a tuple of
// the object and the symbol's local index.
// For external symbols, objidx is the index of l.extReader (extObj),
// s is its index into the payload array.
// {0, 0} represents the nil symbol.
type objSym struct {
objidx uint32 // index of the object (in l.objs array)
s uint32 // local index
}
type nameVer struct {
name string
v int
}
type Bitmap []uint32
// set the i-th bit.
func (bm Bitmap) Set(i Sym) {
n, r := uint(i)/32, uint(i)%32
bm[n] |= 1 << r
}
// unset the i-th bit.
func (bm Bitmap) Unset(i Sym) {
n, r := uint(i)/32, uint(i)%32
bm[n] &^= (1 << r)
}
// whether the i-th bit is set.
func (bm Bitmap) Has(i Sym) bool {
n, r := uint(i)/32, uint(i)%32
return bm[n]&(1<<r) != 0
}
// return current length of bitmap in bits.
func (bm Bitmap) Len() int {
return len(bm) * 32
}
// return the number of bits set.
func (bm Bitmap) Count() int {
s := 0
for _, x := range bm {
s += bits.OnesCount32(x)
}
return s
}
func MakeBitmap(n int) Bitmap {
return make(Bitmap, (n+31)/32)
}
// growBitmap insures that the specified bitmap has enough capacity,
// reallocating (doubling the size) if needed.
func growBitmap(reqLen int, b Bitmap) Bitmap {
curLen := b.Len()
if reqLen > curLen {
b = append(b, MakeBitmap(reqLen+1-curLen)...)
}
return b
}
type symAndSize struct {
sym Sym
size uint32
}
// A Loader loads new object files and resolves indexed symbol references.
//
// Notes on the layout of global symbol index space:
//
// - Go object files are read before host object files; each Go object
// read adds its defined package symbols to the global index space.
// Nonpackage symbols are not yet added.
//
// - In loader.LoadNonpkgSyms, add non-package defined symbols and
// references in all object files to the global index space.
//
// - Host object file loading happens; the host object loader does a
// name/version lookup for each symbol it finds; this can wind up
// extending the external symbol index space range. The host object
// loader stores symbol payloads in loader.payloads using SymbolBuilder.
//
// - Each symbol gets a unique global index. For duplicated and
// overwriting/overwritten symbols, the second (or later) appearance
// of the symbol gets the same global index as the first appearance.
type Loader struct {
objs []*oReader
extStart Sym // from this index on, the symbols are externally defined
builtinSyms []Sym // global index of builtin symbols
objSyms []objSym // global index mapping to local index
symsByName [2]map[string]Sym // map symbol name to index, two maps are for ABI0 and ABIInternal
extStaticSyms map[nameVer]Sym // externally defined static symbols, keyed by name
extReader *oReader // a dummy oReader, for external symbols
payloadBatch []extSymPayload
payloads []*extSymPayload // contents of linker-materialized external syms
values []int64 // symbol values, indexed by global sym index
sects []*sym.Section // sections
symSects []uint16 // symbol's section, index to sects array
align []uint8 // symbol 2^N alignment, indexed by global index
deferReturnTramp map[Sym]bool // whether the symbol is a trampoline of a deferreturn call
objByPkg map[string]uint32 // map package path to the index of its Go object reader
anonVersion int // most recently assigned ext static sym pseudo-version
// Bitmaps and other side structures used to store data used to store
// symbol flags/attributes; these are to be accessed via the
// corresponding loader "AttrXXX" and "SetAttrXXX" methods. Please
// visit the comments on these methods for more details on the
// semantics / interpretation of the specific flags or attribute.
attrReachable Bitmap // reachable symbols, indexed by global index
attrOnList Bitmap // "on list" symbols, indexed by global index
attrLocal Bitmap // "local" symbols, indexed by global index
attrNotInSymbolTable Bitmap // "not in symtab" symbols, indexed by global idx
attrUsedInIface Bitmap // "used in interface" symbols, indexed by global idx
attrSpecial Bitmap // "special" frame symbols, indexed by global idx
attrVisibilityHidden Bitmap // hidden symbols, indexed by ext sym index
attrDuplicateOK Bitmap // dupOK symbols, indexed by ext sym index
attrShared Bitmap // shared symbols, indexed by ext sym index
attrExternal Bitmap // external symbols, indexed by ext sym index
generatedSyms Bitmap // symbols that generate their content, indexed by ext sym idx
attrReadOnly map[Sym]bool // readonly data for this sym
attrCgoExportDynamic map[Sym]struct{} // "cgo_export_dynamic" symbols
attrCgoExportStatic map[Sym]struct{} // "cgo_export_static" symbols
// Outer and Sub relations for symbols.
outer []Sym // indexed by global index
sub map[Sym]Sym
dynimplib map[Sym]string // stores Dynimplib symbol attribute
dynimpvers map[Sym]string // stores Dynimpvers symbol attribute
localentry map[Sym]uint8 // stores Localentry symbol attribute
extname map[Sym]string // stores Extname symbol attribute
elfType map[Sym]elf.SymType // stores elf type symbol property
elfSym map[Sym]int32 // stores elf sym symbol property
localElfSym map[Sym]int32 // stores "local" elf sym symbol property
symPkg map[Sym]string // stores package for symbol, or library for shlib-derived syms
plt map[Sym]int32 // stores dynimport for pe objects
got map[Sym]int32 // stores got for pe objects
dynid map[Sym]int32 // stores Dynid for symbol
relocVariant map[relocId]sym.RelocVariant // stores variant relocs
// Used to implement field tracking; created during deadcode if
// field tracking is enabled. Reachparent[K] contains the index of
// the symbol that triggered the marking of symbol K as live.
Reachparent []Sym
// CgoExports records cgo-exported symbols by SymName.
CgoExports map[string]Sym
flags uint32
strictDupMsgs int // number of strict-dup warning/errors, when FlagStrictDups is enabled
errorReporter *ErrorReporter
npkgsyms int // number of package symbols, for accounting
nhashedsyms int // number of hashed symbols, for accounting
}
const (
pkgDef = iota
hashed64Def
hashedDef
nonPkgDef
nonPkgRef
)
// objidx
const (
nilObj = iota
extObj
goObjStart
)
// extSymPayload holds the payload (data + relocations) for linker-synthesized
// external symbols (note that symbol value is stored in a separate slice).
type extSymPayload struct {
name string // TODO: would this be better as offset into str table?
size int64
ver int
kind sym.SymKind
objidx uint32 // index of original object if sym made by cloneToExternal
relocs []goobj.Reloc
data []byte
auxs []goobj.Aux
}
const (
// Loader.flags
FlagStrictDups = 1 << iota
FlagCheckLinkname
)
func NewLoader(flags uint32, reporter *ErrorReporter) *Loader {
nbuiltin := goobj.NBuiltin()
extReader := &oReader{objidx: extObj}
ldr := &Loader{
objs: []*oReader{nil, extReader}, // reserve index 0 for nil symbol, 1 for external symbols
objSyms: make([]objSym, 1, 1), // This will get overwritten later.
extReader: extReader,
symsByName: [2]map[string]Sym{make(map[string]Sym, 80000), make(map[string]Sym, 50000)}, // preallocate ~2MB for ABI0 and ~1MB for ABI1 symbols
objByPkg: make(map[string]uint32),
sub: make(map[Sym]Sym),
dynimplib: make(map[Sym]string),
dynimpvers: make(map[Sym]string),
localentry: make(map[Sym]uint8),
extname: make(map[Sym]string),
attrReadOnly: make(map[Sym]bool),
elfType: make(map[Sym]elf.SymType),
elfSym: make(map[Sym]int32),
localElfSym: make(map[Sym]int32),
symPkg: make(map[Sym]string),
plt: make(map[Sym]int32),
got: make(map[Sym]int32),
dynid: make(map[Sym]int32),
attrCgoExportDynamic: make(map[Sym]struct{}),
attrCgoExportStatic: make(map[Sym]struct{}),
deferReturnTramp: make(map[Sym]bool),
extStaticSyms: make(map[nameVer]Sym),
builtinSyms: make([]Sym, nbuiltin),
flags: flags,
errorReporter: reporter,
sects: []*sym.Section{nil}, // reserve index 0 for nil section
}
reporter.ldr = ldr
return ldr
}
// Add object file r
func (l *Loader) addObj(pkg string, r *oReader) {
pkg = objabi.PathToPrefix(pkg) // the object file contains escaped package path
if _, ok := l.objByPkg[pkg]; !ok {
l.objByPkg[pkg] = r.objidx
}
l.objs = append(l.objs, r)
}
// Add a symbol from an object file, return the global index.
// If the symbol already exist, it returns the index of that symbol.
func (st *loadState) addSym(name string, ver int, r *oReader, li uint32, kind int, osym *goobj.Sym) Sym {
l := st.l
if l.extStart != 0 {
panic("addSym called after external symbol is created")
}
i := Sym(len(l.objSyms))
if int(i) != len(l.objSyms) { // overflow
panic("too many symbols")
}
addToGlobal := func() {
l.objSyms = append(l.objSyms, objSym{r.objidx, li})
}
if name == "" && kind != hashed64Def && kind != hashedDef {
addToGlobal()
return i // unnamed aux symbol
}
if ver == r.version {
// Static symbol. Add its global index but don't
// add to name lookup table, as it cannot be
// referenced by name.
addToGlobal()
return i
}
switch kind {
case pkgDef:
// Defined package symbols cannot be dup to each other.
// We load all the package symbols first, so we don't need
// to check dup here.
// We still add it to the lookup table, as it may still be
// referenced by name (e.g. through linkname).
l.symsByName[ver][name] = i
addToGlobal()
return i
case hashed64Def, hashedDef:
// Hashed (content-addressable) symbol. Check the hash
// but don't add to name lookup table, as they are not
// referenced by name. Also no need to do overwriting
// check, as same hash indicates same content.
var checkHash func() (symAndSize, bool)
var addToHashMap func(symAndSize)
var h64 uint64 // only used for hashed64Def
var h *goobj.HashType // only used for hashedDef
if kind == hashed64Def {
checkHash = func() (symAndSize, bool) {
h64 = r.Hash64(li - uint32(r.ndef))
s, existed := st.hashed64Syms[h64]
return s, existed
}
addToHashMap = func(ss symAndSize) { st.hashed64Syms[h64] = ss }
} else {
checkHash = func() (symAndSize, bool) {
h = r.Hash(li - uint32(r.ndef+r.nhashed64def))
s, existed := st.hashedSyms[*h]
return s, existed
}
addToHashMap = func(ss symAndSize) { st.hashedSyms[*h] = ss }
}
siz := osym.Siz()
if s, existed := checkHash(); existed {
// The content hash is built from symbol data and relocations. In the
// object file, the symbol data may not always contain trailing zeros,
// e.g. for [5]int{1,2,3} and [100]int{1,2,3}, the data is same
// (although the size is different).
// Also, for short symbols, the content hash is the identity function of
// the 8 bytes, and trailing zeros doesn't change the hash value, e.g.
// hash("A") == hash("A\0\0\0").
// So when two symbols have the same hash, we need to use the one with
// larger size.
if siz > s.size {
// New symbol has larger size, use the new one. Rewrite the index mapping.
l.objSyms[s.sym] = objSym{r.objidx, li}
addToHashMap(symAndSize{s.sym, siz})
}
return s.sym
}
addToHashMap(symAndSize{i, siz})
addToGlobal()
return i
}
// Non-package (named) symbol.
// Check if it already exists.
oldi, existed := l.symsByName[ver][name]
if !existed {
l.symsByName[ver][name] = i
addToGlobal()
return i
}
// symbol already exists
if osym.Dupok() {
if l.flags&FlagStrictDups != 0 {
l.checkdup(name, r, li, oldi)
}
// Fix for issue #47185 -- given two dupok symbols with
// different sizes, favor symbol with larger size. See
// also issue #46653.
szdup := l.SymSize(oldi)
sz := int64(r.Sym(li).Siz())
if szdup < sz {
// new symbol overwrites old symbol.
l.objSyms[oldi] = objSym{r.objidx, li}
}
return oldi
}
oldr, oldli := l.toLocal(oldi)
oldsym := oldr.Sym(oldli)
if oldsym.Dupok() {
return oldi
}
overwrite := r.DataSize(li) != 0
if overwrite {
// new symbol overwrites old symbol.
oldtyp := sym.AbiSymKindToSymKind[objabi.SymKind(oldsym.Type())]
if !(oldtyp.IsData() && oldr.DataSize(oldli) == 0) {
log.Fatalf("duplicated definition of symbol %s, from %s and %s", name, r.unit.Lib.Pkg, oldr.unit.Lib.Pkg)
}
l.objSyms[oldi] = objSym{r.objidx, li}
} else {
// old symbol overwrites new symbol.
typ := sym.AbiSymKindToSymKind[objabi.SymKind(oldsym.Type())]
if !typ.IsData() { // only allow overwriting data symbol
log.Fatalf("duplicated definition of symbol %s, from %s and %s", name, r.unit.Lib.Pkg, oldr.unit.Lib.Pkg)
}
}
return oldi
}
// newExtSym creates a new external sym with the specified
// name/version.
func (l *Loader) newExtSym(name string, ver int) Sym {
i := Sym(len(l.objSyms))
if int(i) != len(l.objSyms) { // overflow
panic("too many symbols")
}
if l.extStart == 0 {
l.extStart = i
}
l.growValues(int(i) + 1)
l.growOuter(int(i) + 1)
l.growAttrBitmaps(int(i) + 1)
pi := l.newPayload(name, ver)
l.objSyms = append(l.objSyms, objSym{l.extReader.objidx, uint32(pi)})
l.extReader.syms = append(l.extReader.syms, i)
return i
}
// LookupOrCreateSym looks up the symbol with the specified name/version,
// returning its Sym index if found. If the lookup fails, a new external
// Sym will be created, entered into the lookup tables, and returned.
func (l *Loader) LookupOrCreateSym(name string, ver int) Sym {
i := l.Lookup(name, ver)
if i != 0 {
return i
}
i = l.newExtSym(name, ver)
static := ver >= sym.SymVerStatic || ver < 0
if static {
l.extStaticSyms[nameVer{name, ver}] = i
} else {
l.symsByName[ver][name] = i
}
return i
}
// AddCgoExport records a cgo-exported symbol in l.CgoExports.
// This table is used to identify the correct Go symbol ABI to use
// to resolve references from host objects (which don't have ABIs).
func (l *Loader) AddCgoExport(s Sym) {
if l.CgoExports == nil {
l.CgoExports = make(map[string]Sym)
}
l.CgoExports[l.SymName(s)] = s
}
// LookupOrCreateCgoExport is like LookupOrCreateSym, but if ver
// indicates a global symbol, it uses the CgoExport table to determine
// the appropriate symbol version (ABI) to use. ver must be either 0
// or a static symbol version.
func (l *Loader) LookupOrCreateCgoExport(name string, ver int) Sym {
if ver >= sym.SymVerStatic {
return l.LookupOrCreateSym(name, ver)
}
if ver != 0 {
panic("ver must be 0 or a static version")
}
// Look for a cgo-exported symbol from Go.
if s, ok := l.CgoExports[name]; ok {
return s
}
// Otherwise, this must just be a symbol in the host object.
// Create a version 0 symbol for it.
return l.LookupOrCreateSym(name, 0)
}
func (l *Loader) IsExternal(i Sym) bool {
r, _ := l.toLocal(i)
return l.isExtReader(r)
}
func (l *Loader) isExtReader(r *oReader) bool {
return r == l.extReader
}
// For external symbol, return its index in the payloads array.
// XXX result is actually not a global index. We (ab)use the Sym type
// so we don't need conversion for accessing bitmaps.
func (l *Loader) extIndex(i Sym) Sym {
_, li := l.toLocal(i)
return Sym(li)
}
// Get a new payload for external symbol, return its index in
// the payloads array.
func (l *Loader) newPayload(name string, ver int) int {
pi := len(l.payloads)
pp := l.allocPayload()
pp.name = name
pp.ver = ver
l.payloads = append(l.payloads, pp)
l.growExtAttrBitmaps()
return pi
}
// getPayload returns a pointer to the extSymPayload struct for an
// external symbol if the symbol has a payload. Will panic if the
// symbol in question is bogus (zero or not an external sym).
func (l *Loader) getPayload(i Sym) *extSymPayload {
if !l.IsExternal(i) {
panic(fmt.Sprintf("bogus symbol index %d in getPayload", i))
}
pi := l.extIndex(i)
return l.payloads[pi]
}
// allocPayload allocates a new payload.
func (l *Loader) allocPayload() *extSymPayload {
batch := l.payloadBatch
if len(batch) == 0 {
batch = make([]extSymPayload, 1000)
}
p := &batch[0]
l.payloadBatch = batch[1:]
return p
}
func (ms *extSymPayload) Grow(siz int64) {
if int64(int(siz)) != siz {
log.Fatalf("symgrow size %d too long", siz)
}
if int64(len(ms.data)) >= siz {
return
}
if cap(ms.data) < int(siz) {
cl := len(ms.data)
ms.data = append(ms.data, make([]byte, int(siz)+1-cl)...)
ms.data = ms.data[0:cl]
}
ms.data = ms.data[:siz]
}
// Convert a local index to a global index.
func (l *Loader) toGlobal(r *oReader, i uint32) Sym {
return r.syms[i]
}
// Convert a global index to a local index.
func (l *Loader) toLocal(i Sym) (*oReader, uint32) {
return l.objs[l.objSyms[i].objidx], l.objSyms[i].s
}
// Resolve a local symbol reference. Return global index.
func (l *Loader) resolve(r *oReader, s goobj.SymRef) Sym {
var rr *oReader
switch p := s.PkgIdx; p {
case goobj.PkgIdxInvalid:
// {0, X} with non-zero X is never a valid sym reference from a Go object.
// We steal this space for symbol references from external objects.
// In this case, X is just the global index.
if l.isExtReader(r) {
return Sym(s.SymIdx)
}
if s.SymIdx != 0 {
panic("bad sym ref")
}
return 0
case goobj.PkgIdxHashed64:
i := int(s.SymIdx) + r.ndef
return r.syms[i]
case goobj.PkgIdxHashed:
i := int(s.SymIdx) + r.ndef + r.nhashed64def
return r.syms[i]
case goobj.PkgIdxNone:
i := int(s.SymIdx) + r.ndef + r.nhashed64def + r.nhasheddef
return r.syms[i]
case goobj.PkgIdxBuiltin:
if bi := l.builtinSyms[s.SymIdx]; bi != 0 {
return bi
}
l.reportMissingBuiltin(int(s.SymIdx), r.unit.Lib.Pkg)
return 0
case goobj.PkgIdxSelf:
rr = r
default:
rr = l.objs[r.pkg[p]]
}
return l.toGlobal(rr, s.SymIdx)
}
// reportMissingBuiltin issues an error in the case where we have a
// relocation against a runtime builtin whose definition is not found
// when the runtime package is built. The canonical example is
// "runtime.racefuncenter" -- currently if you do something like
//
// go build -gcflags=-race myprogram.go
//
// the compiler will insert calls to the builtin runtime.racefuncenter,
// but the version of the runtime used for linkage won't actually contain
// definitions of that symbol. See issue #42396 for details.
//
// As currently implemented, this is a fatal error. This has drawbacks
// in that if there are multiple missing builtins, the error will only
// cite the first one. On the plus side, terminating the link here has
// advantages in that we won't run the risk of panics or crashes later
// on in the linker due to R_CALL relocations with 0-valued target
// symbols.
func (l *Loader) reportMissingBuiltin(bsym int, reflib string) {
bname, _ := goobj.BuiltinName(bsym)
log.Fatalf("reference to undefined builtin %q from package %q",
bname, reflib)
}
// Look up a symbol by name, return global index, or 0 if not found.
// This is more like Syms.ROLookup than Lookup -- it doesn't create
// new symbol.
func (l *Loader) Lookup(name string, ver int) Sym {
if ver >= sym.SymVerStatic || ver < 0 {
return l.extStaticSyms[nameVer{name, ver}]
}
return l.symsByName[ver][name]
}
// Check that duplicate symbols have same contents.
func (l *Loader) checkdup(name string, r *oReader, li uint32, dup Sym) {
p := r.Data(li)
rdup, ldup := l.toLocal(dup)
pdup := rdup.Data(ldup)
reason := "same length but different contents"
if len(p) != len(pdup) {
reason = fmt.Sprintf("new length %d != old length %d", len(p), len(pdup))
} else if bytes.Equal(p, pdup) {
// For BSS symbols, we need to check size as well, see issue 46653.
szdup := l.SymSize(dup)
sz := int64(r.Sym(li).Siz())
if szdup == sz {
return
}
reason = fmt.Sprintf("different sizes: new size %d != old size %d",
sz, szdup)
}
fmt.Fprintf(os.Stderr, "cmd/link: while reading object for '%v': duplicate symbol '%s', previous def at '%v', with mismatched payload: %s\n", r.unit.Lib, name, rdup.unit.Lib, reason)
// For the moment, allow DWARF subprogram DIEs for
// auto-generated wrapper functions. What seems to happen
// here is that we get different line numbers on formal
// params; I am guessing that the pos is being inherited
// from the spot where the wrapper is needed.
allowed := strings.HasPrefix(name, "go:info.go.interface") ||
strings.HasPrefix(name, "go:info.go.builtin") ||
strings.HasPrefix(name, "go:debuglines")
if !allowed {
l.strictDupMsgs++
}
}
func (l *Loader) NStrictDupMsgs() int { return l.strictDupMsgs }
// Number of total symbols.
func (l *Loader) NSym() int {
return len(l.objSyms)
}
// Number of defined Go symbols.
func (l *Loader) NDef() int {
return int(l.extStart)
}
// Number of reachable symbols.
func (l *Loader) NReachableSym() int {
return l.attrReachable.Count()
}
// Returns the name of the i-th symbol.
func (l *Loader) SymName(i Sym) string {
if l.IsExternal(i) {
pp := l.getPayload(i)
return pp.name
}
r, li := l.toLocal(i)
if r == nil {
return "?"
}
return r.Sym(li).Name(r.Reader)
}
// Returns the version of the i-th symbol.
func (l *Loader) SymVersion(i Sym) int {
if l.IsExternal(i) {
pp := l.getPayload(i)
return pp.ver
}
r, li := l.toLocal(i)
return int(abiToVer(r.Sym(li).ABI(), r.version))
}
func (l *Loader) IsFileLocal(i Sym) bool {
return l.SymVersion(i) >= sym.SymVerStatic
}
// IsFromAssembly returns true if this symbol is derived from an
// object file generated by the Go assembler.
func (l *Loader) IsFromAssembly(i Sym) bool {
if l.IsExternal(i) {
return false
}
r, _ := l.toLocal(i)
return r.FromAssembly()
}
// Returns the type of the i-th symbol.
func (l *Loader) SymType(i Sym) sym.SymKind {
if l.IsExternal(i) {
pp := l.getPayload(i)
if pp != nil {
return pp.kind
}
return 0
}
r, li := l.toLocal(i)
return sym.AbiSymKindToSymKind[objabi.SymKind(r.Sym(li).Type())]
}
// Returns the attributes of the i-th symbol.
func (l *Loader) SymAttr(i Sym) uint8 {
if l.IsExternal(i) {
// TODO: do something? External symbols have different representation of attributes.
// For now, ReflectMethod, NoSplit, GoType, and Typelink are used and they cannot be
// set by external symbol.
return 0
}
r, li := l.toLocal(i)
return r.Sym(li).Flag()
}
// Returns the size of the i-th symbol.
func (l *Loader) SymSize(i Sym) int64 {
if l.IsExternal(i) {
pp := l.getPayload(i)
return pp.size
}
r, li := l.toLocal(i)
return int64(r.Sym(li).Siz())
}
// AttrReachable returns true for symbols that are transitively
// referenced from the entry points. Unreachable symbols are not
// written to the output.
func (l *Loader) AttrReachable(i Sym) bool {
return l.attrReachable.Has(i)
}
// SetAttrReachable sets the reachability property for a symbol (see
// AttrReachable).
func (l *Loader) SetAttrReachable(i Sym, v bool) {
if v {
l.attrReachable.Set(i)
} else {
l.attrReachable.Unset(i)
}
}
// AttrOnList returns true for symbols that are on some list (such as
// the list of all text symbols, or one of the lists of data symbols)
// and is consulted to avoid bugs where a symbol is put on a list
// twice.
func (l *Loader) AttrOnList(i Sym) bool {
return l.attrOnList.Has(i)
}
// SetAttrOnList sets the "on list" property for a symbol (see
// AttrOnList).
func (l *Loader) SetAttrOnList(i Sym, v bool) {
if v {
l.attrOnList.Set(i)
} else {
l.attrOnList.Unset(i)
}
}
// AttrLocal returns true for symbols that are only visible within the
// module (executable or shared library) being linked. This attribute
// is applied to thunks and certain other linker-generated symbols.
func (l *Loader) AttrLocal(i Sym) bool {
return l.attrLocal.Has(i)
}
// SetAttrLocal the "local" property for a symbol (see AttrLocal above).
func (l *Loader) SetAttrLocal(i Sym, v bool) {
if v {
l.attrLocal.Set(i)
} else {
l.attrLocal.Unset(i)
}
}
// AttrUsedInIface returns true for a type symbol that is used in
// an interface.
func (l *Loader) AttrUsedInIface(i Sym) bool {
return l.attrUsedInIface.Has(i)
}
func (l *Loader) SetAttrUsedInIface(i Sym, v bool) {
if v {
l.attrUsedInIface.Set(i)
} else {
l.attrUsedInIface.Unset(i)
}
}
// SymAddr checks that a symbol is reachable, and returns its value.
func (l *Loader) SymAddr(i Sym) int64 {
if !l.AttrReachable(i) {
panic("unreachable symbol in symaddr")
}
return l.values[i]
}
// AttrNotInSymbolTable returns true for symbols that should not be
// added to the symbol table of the final generated load module.
func (l *Loader) AttrNotInSymbolTable(i Sym) bool {
return l.attrNotInSymbolTable.Has(i)
}
// SetAttrNotInSymbolTable the "not in symtab" property for a symbol
// (see AttrNotInSymbolTable above).
func (l *Loader) SetAttrNotInSymbolTable(i Sym, v bool) {
if v {
l.attrNotInSymbolTable.Set(i)
} else {
l.attrNotInSymbolTable.Unset(i)
}
}
// AttrVisibilityHidden symbols returns true for ELF symbols with
// visibility set to STV_HIDDEN. They become local symbols in
// the final executable. Only relevant when internally linking
// on an ELF platform.
func (l *Loader) AttrVisibilityHidden(i Sym) bool {
if !l.IsExternal(i) {
return false
}
return l.attrVisibilityHidden.Has(l.extIndex(i))
}
// SetAttrVisibilityHidden sets the "hidden visibility" property for a
// symbol (see AttrVisibilityHidden).
func (l *Loader) SetAttrVisibilityHidden(i Sym, v bool) {
if !l.IsExternal(i) {
panic("tried to set visibility attr on non-external symbol")
}
if v {
l.attrVisibilityHidden.Set(l.extIndex(i))
} else {
l.attrVisibilityHidden.Unset(l.extIndex(i))
}
}
// AttrDuplicateOK returns true for a symbol that can be present in
// multiple object files.
func (l *Loader) AttrDuplicateOK(i Sym) bool {
if !l.IsExternal(i) {
// TODO: if this path winds up being taken frequently, it
// might make more sense to copy the flag value out of the object
// into a larger bitmap during preload.
r, li := l.toLocal(i)
return r.Sym(li).Dupok()
}
return l.attrDuplicateOK.Has(l.extIndex(i))
}
// SetAttrDuplicateOK sets the "duplicate OK" property for an external
// symbol (see AttrDuplicateOK).
func (l *Loader) SetAttrDuplicateOK(i Sym, v bool) {
if !l.IsExternal(i) {
panic("tried to set dupok attr on non-external symbol")
}
if v {
l.attrDuplicateOK.Set(l.extIndex(i))
} else {
l.attrDuplicateOK.Unset(l.extIndex(i))
}
}
// AttrShared returns true for symbols compiled with the -shared option.
func (l *Loader) AttrShared(i Sym) bool {
if !l.IsExternal(i) {
// TODO: if this path winds up being taken frequently, it
// might make more sense to copy the flag value out of the
// object into a larger bitmap during preload.
r, _ := l.toLocal(i)
return r.Shared()
}
return l.attrShared.Has(l.extIndex(i))
}
// SetAttrShared sets the "shared" property for an external
// symbol (see AttrShared).
func (l *Loader) SetAttrShared(i Sym, v bool) {
if !l.IsExternal(i) {
panic(fmt.Sprintf("tried to set shared attr on non-external symbol %d %s", i, l.SymName(i)))
}
if v {
l.attrShared.Set(l.extIndex(i))
} else {
l.attrShared.Unset(l.extIndex(i))
}
}
// AttrExternal returns true for function symbols loaded from host
// object files.
func (l *Loader) AttrExternal(i Sym) bool {
if !l.IsExternal(i) {
return false
}
return l.attrExternal.Has(l.extIndex(i))
}
// SetAttrExternal sets the "external" property for a host object
// symbol (see AttrExternal).
func (l *Loader) SetAttrExternal(i Sym, v bool) {
if !l.IsExternal(i) {
panic(fmt.Sprintf("tried to set external attr on non-external symbol %q", l.SymName(i)))
}
if v {
l.attrExternal.Set(l.extIndex(i))
} else {
l.attrExternal.Unset(l.extIndex(i))
}
}
// AttrSpecial returns true for a symbols that do not have their
// address (i.e. Value) computed by the usual mechanism of
// data.go:dodata() & data.go:address().
func (l *Loader) AttrSpecial(i Sym) bool {
return l.attrSpecial.Has(i)
}
// SetAttrSpecial sets the "special" property for a symbol (see
// AttrSpecial).
func (l *Loader) SetAttrSpecial(i Sym, v bool) {
if v {
l.attrSpecial.Set(i)
} else {
l.attrSpecial.Unset(i)
}
}
// AttrCgoExportDynamic returns true for a symbol that has been
// specially marked via the "cgo_export_dynamic" compiler directive
// written by cgo (in response to //export directives in the source).
func (l *Loader) AttrCgoExportDynamic(i Sym) bool {
_, ok := l.attrCgoExportDynamic[i]
return ok
}
// SetAttrCgoExportDynamic sets the "cgo_export_dynamic" for a symbol
// (see AttrCgoExportDynamic).
func (l *Loader) SetAttrCgoExportDynamic(i Sym, v bool) {
if v {
l.attrCgoExportDynamic[i] = struct{}{}
} else {
delete(l.attrCgoExportDynamic, i)
}
}
// ForAllCgoExportDynamic calls f for every symbol that has been
// marked with the "cgo_export_dynamic" compiler directive.
func (l *Loader) ForAllCgoExportDynamic(f func(Sym)) {
for s := range l.attrCgoExportDynamic {
f(s)
}
}
// AttrCgoExportStatic returns true for a symbol that has been
// specially marked via the "cgo_export_static" directive
// written by cgo.
func (l *Loader) AttrCgoExportStatic(i Sym) bool {
_, ok := l.attrCgoExportStatic[i]
return ok
}
// SetAttrCgoExportStatic sets the "cgo_export_static" for a symbol
// (see AttrCgoExportStatic).
func (l *Loader) SetAttrCgoExportStatic(i Sym, v bool) {
if v {
l.attrCgoExportStatic[i] = struct{}{}
} else {
delete(l.attrCgoExportStatic, i)
}
}
// IsGeneratedSym returns true if a symbol's been previously marked as a
// generator symbol through the SetIsGeneratedSym. The functions for generator
// symbols are kept in the Link context.
func (l *Loader) IsGeneratedSym(i Sym) bool {
if !l.IsExternal(i) {
return false
}
return l.generatedSyms.Has(l.extIndex(i))
}
// SetIsGeneratedSym marks symbols as generated symbols. Data shouldn't be
// stored in generated symbols, and a function is registered and called for
// each of these symbols.
func (l *Loader) SetIsGeneratedSym(i Sym, v bool) {
if !l.IsExternal(i) {
panic("only external symbols can be generated")
}
if v {
l.generatedSyms.Set(l.extIndex(i))
} else {
l.generatedSyms.Unset(l.extIndex(i))
}
}
func (l *Loader) AttrCgoExport(i Sym) bool {
return l.AttrCgoExportDynamic(i) || l.AttrCgoExportStatic(i)
}
// AttrReadOnly returns true for a symbol whose underlying data
// is stored via a read-only mmap.
func (l *Loader) AttrReadOnly(i Sym) bool {
if v, ok := l.attrReadOnly[i]; ok {
return v
}
if l.IsExternal(i) {
pp := l.getPayload(i)
if pp.objidx != 0 {
return l.objs[pp.objidx].ReadOnly()
}
return false
}
r, _ := l.toLocal(i)
return r.ReadOnly()
}
// SetAttrReadOnly sets the "data is read only" property for a symbol
// (see AttrReadOnly).
func (l *Loader) SetAttrReadOnly(i Sym, v bool) {
l.attrReadOnly[i] = v
}
// AttrSubSymbol returns true for symbols that are listed as a
// sub-symbol of some other outer symbol. The sub/outer mechanism is
// used when loading host objects (sections from the host object
// become regular linker symbols and symbols go on the Sub list of
// their section) and for constructing the global offset table when
// internally linking a dynamic executable.
//
// Note that in later stages of the linker, we set Outer(S) to some
// container symbol C, but don't set Sub(C). Thus we have two
// distinct scenarios:
//
// - Outer symbol covers the address ranges of its sub-symbols.
// Outer.Sub is set in this case.
// - Outer symbol doesn't cover the address ranges. It is zero-sized
// and doesn't have sub-symbols. In the case, the inner symbol is
// not actually a "SubSymbol". (Tricky!)
//
// This method returns TRUE only for sub-symbols in the first scenario.
//
// FIXME: would be better to do away with this and have a better way
// to represent container symbols.
func (l *Loader) AttrSubSymbol(i Sym) bool {
// we don't explicitly store this attribute any more -- return
// a value based on the sub-symbol setting.
o := l.OuterSym(i)
if o == 0 {
return false
}
return l.SubSym(o) != 0
}
// Note that we don't have a 'SetAttrSubSymbol' method in the loader;
// clients should instead use the AddInteriorSym method to establish
// containment relationships for host object symbols.
// Returns whether the i-th symbol has ReflectMethod attribute set.
func (l *Loader) IsReflectMethod(i Sym) bool {
return l.SymAttr(i)&goobj.SymFlagReflectMethod != 0
}
// Returns whether the i-th symbol is nosplit.
func (l *Loader) IsNoSplit(i Sym) bool {
return l.SymAttr(i)&goobj.SymFlagNoSplit != 0
}
// Returns whether this is a Go type symbol.
func (l *Loader) IsGoType(i Sym) bool {
return l.SymAttr(i)&goobj.SymFlagGoType != 0
}
// Returns whether this symbol should be included in typelink.
func (l *Loader) IsTypelink(i Sym) bool {
return l.SymAttr(i)&goobj.SymFlagTypelink != 0
}
// Returns whether this symbol is an itab symbol.
func (l *Loader) IsItab(i Sym) bool {
if l.IsExternal(i) {
return false
}
r, li := l.toLocal(i)
return r.Sym(li).IsItab()
}
// Returns whether this symbol is a dictionary symbol.
func (l *Loader) IsDict(i Sym) bool {
if l.IsExternal(i) {
return false
}
r, li := l.toLocal(i)
return r.Sym(li).IsDict()
}
// Returns whether this symbol is a compiler-generated package init func.
func (l *Loader) IsPkgInit(i Sym) bool {
if l.IsExternal(i) {
return false
}
r, li := l.toLocal(i)
return r.Sym(li).IsPkgInit()
}
// Return whether this is a trampoline of a deferreturn call.
func (l *Loader) IsDeferReturnTramp(i Sym) bool {
return l.deferReturnTramp[i]
}
// Set that i is a trampoline of a deferreturn call.
func (l *Loader) SetIsDeferReturnTramp(i Sym, v bool) {
l.deferReturnTramp[i] = v
}
// growValues grows the slice used to store symbol values.
func (l *Loader) growValues(reqLen int) {
curLen := len(l.values)
if reqLen > curLen {
l.values = append(l.values, make([]int64, reqLen+1-curLen)...)
}
}
// SymValue returns the value of the i-th symbol. i is global index.
func (l *Loader) SymValue(i Sym) int64 {
return l.values[i]
}
// SetSymValue sets the value of the i-th symbol. i is global index.
func (l *Loader) SetSymValue(i Sym, val int64) {
l.values[i] = val
}
// AddToSymValue adds to the value of the i-th symbol. i is the global index.
func (l *Loader) AddToSymValue(i Sym, val int64) {
l.values[i] += val
}
// Returns the symbol content of the i-th symbol. i is global index.
func (l *Loader) Data(i Sym) []byte {
if l.IsExternal(i) {
pp := l.getPayload(i)
if pp != nil {
return pp.data
}
return nil
}
r, li := l.toLocal(i)
return r.Data(li)
}
// Returns the symbol content of the i-th symbol as a string. i is global index.
func (l *Loader) DataString(i Sym) string {
if l.IsExternal(i) {
pp := l.getPayload(i)
return string(pp.data)
}
r, li := l.toLocal(i)
return r.DataString(li)
}
// FreeData clears the symbol data of an external symbol, allowing the memory
// to be freed earlier. No-op for non-external symbols.
// i is global index.
func (l *Loader) FreeData(i Sym) {
if l.IsExternal(i) {
pp := l.getPayload(i)
if pp != nil {
pp.data = nil
}
}
}
// SymAlign returns the alignment for a symbol.
func (l *Loader) SymAlign(i Sym) int32 {
if int(i) >= len(l.align) {
// align is extended lazily -- it the sym in question is
// outside the range of the existing slice, then we assume its
// alignment has not yet been set.
return 0
}
// TODO: would it make sense to return an arch-specific
// alignment depending on section type? E.g. STEXT => 32,
// SDATA => 1, etc?
abits := l.align[i]
if abits == 0 {
return 0
}
return int32(1 << (abits - 1))
}
// SetSymAlign sets the alignment for a symbol.
func (l *Loader) SetSymAlign(i Sym, align int32) {
// Reject nonsense alignments.
if align < 0 || align&(align-1) != 0 {
panic("bad alignment value")
}
if int(i) >= len(l.align) {
l.align = append(l.align, make([]uint8, l.NSym()-len(l.align))...)
}
if align == 0 {
l.align[i] = 0
}
l.align[i] = uint8(bits.Len32(uint32(align)))
}
// SymSect returns the section of the i-th symbol. i is global index.
func (l *Loader) SymSect(i Sym) *sym.Section {
if int(i) >= len(l.symSects) {
// symSects is extended lazily -- it the sym in question is
// outside the range of the existing slice, then we assume its
// section has not yet been set.
return nil
}
return l.sects[l.symSects[i]]
}
// SetSymSect sets the section of the i-th symbol. i is global index.
func (l *Loader) SetSymSect(i Sym, sect *sym.Section) {
if int(i) >= len(l.symSects) {
l.symSects = append(l.symSects, make([]uint16, l.NSym()-len(l.symSects))...)
}
l.symSects[i] = sect.Index
}
// NewSection creates a new (output) section.
func (l *Loader) NewSection() *sym.Section {
sect := new(sym.Section)
idx := len(l.sects)
if idx != int(uint16(idx)) {
panic("too many sections created")
}
sect.Index = uint16(idx)
l.sects = append(l.sects, sect)
return sect
}
// SymDynimplib returns the "dynimplib" attribute for the specified
// symbol, making up a portion of the info for a symbol specified
// on a "cgo_import_dynamic" compiler directive.
func (l *Loader) SymDynimplib(i Sym) string {
return l.dynimplib[i]
}
// SetSymDynimplib sets the "dynimplib" attribute for a symbol.
func (l *Loader) SetSymDynimplib(i Sym, value string) {
// reject bad symbols
if i >= Sym(len(l.objSyms)) || i == 0 {
panic("bad symbol index in SetDynimplib")
}
if value == "" {
delete(l.dynimplib, i)
} else {
l.dynimplib[i] = value
}
}
// SymDynimpvers returns the "dynimpvers" attribute for the specified
// symbol, making up a portion of the info for a symbol specified
// on a "cgo_import_dynamic" compiler directive.
func (l *Loader) SymDynimpvers(i Sym) string {
return l.dynimpvers[i]
}
// SetSymDynimpvers sets the "dynimpvers" attribute for a symbol.
func (l *Loader) SetSymDynimpvers(i Sym, value string) {
// reject bad symbols
if i >= Sym(len(l.objSyms)) || i == 0 {
panic("bad symbol index in SetDynimpvers")
}
if value == "" {
delete(l.dynimpvers, i)
} else {
l.dynimpvers[i] = value
}
}
// SymExtname returns the "extname" value for the specified
// symbol.
func (l *Loader) SymExtname(i Sym) string {
if s, ok := l.extname[i]; ok {
return s
}
return l.SymName(i)
}
// SetSymExtname sets the "extname" attribute for a symbol.
func (l *Loader) SetSymExtname(i Sym, value string) {
// reject bad symbols
if i >= Sym(len(l.objSyms)) || i == 0 {
panic("bad symbol index in SetExtname")
}
if value == "" {
delete(l.extname, i)
} else {
l.extname[i] = value
}
}
// SymElfType returns the previously recorded ELF type for a symbol
// (used only for symbols read from shared libraries by ldshlibsyms).
// It is not set for symbols defined by the packages being linked or
// by symbols read by ldelf (and so is left as elf.STT_NOTYPE).
func (l *Loader) SymElfType(i Sym) elf.SymType {
if et, ok := l.elfType[i]; ok {
return et
}
return elf.STT_NOTYPE
}
// SetSymElfType sets the elf type attribute for a symbol.
func (l *Loader) SetSymElfType(i Sym, et elf.SymType) {
// reject bad symbols
if i >= Sym(len(l.objSyms)) || i == 0 {
panic("bad symbol index in SetSymElfType")
}
if et == elf.STT_NOTYPE {
delete(l.elfType, i)
} else {
l.elfType[i] = et
}
}
// SymElfSym returns the ELF symbol index for a given loader
// symbol, assigned during ELF symtab generation.
func (l *Loader) SymElfSym(i Sym) int32 {
return l.elfSym[i]
}
// SetSymElfSym sets the elf symbol index for a symbol.
func (l *Loader) SetSymElfSym(i Sym, es int32) {
if i == 0 {
panic("bad sym index")
}
if es == 0 {
delete(l.elfSym, i)
} else {
l.elfSym[i] = es
}
}
// SymLocalElfSym returns the "local" ELF symbol index for a given loader
// symbol, assigned during ELF symtab generation.
func (l *Loader) SymLocalElfSym(i Sym) int32 {
return l.localElfSym[i]
}
// SetSymLocalElfSym sets the "local" elf symbol index for a symbol.
func (l *Loader) SetSymLocalElfSym(i Sym, es int32) {
if i == 0 {
panic("bad sym index")
}
if es == 0 {
delete(l.localElfSym, i)
} else {
l.localElfSym[i] = es
}
}
// SymPlt returns the PLT offset of symbol s.
func (l *Loader) SymPlt(s Sym) int32 {
if v, ok := l.plt[s]; ok {
return v
}
return -1
}
// SetPlt sets the PLT offset of symbol i.
func (l *Loader) SetPlt(i Sym, v int32) {
if i >= Sym(len(l.objSyms)) || i == 0 {
panic("bad symbol for SetPlt")
}
if v == -1 {
delete(l.plt, i)
} else {
l.plt[i] = v
}
}
// SymGot returns the GOT offset of symbol s.
func (l *Loader) SymGot(s Sym) int32 {
if v, ok := l.got[s]; ok {
return v
}
return -1
}
// SetGot sets the GOT offset of symbol i.
func (l *Loader) SetGot(i Sym, v int32) {
if i >= Sym(len(l.objSyms)) || i == 0 {
panic("bad symbol for SetGot")
}
if v == -1 {
delete(l.got, i)
} else {
l.got[i] = v
}
}
// SymDynid returns the "dynid" property for the specified symbol.
func (l *Loader) SymDynid(i Sym) int32 {
if s, ok := l.dynid[i]; ok {
return s
}
return -1
}
// SetSymDynid sets the "dynid" property for a symbol.
func (l *Loader) SetSymDynid(i Sym, val int32) {
// reject bad symbols
if i >= Sym(len(l.objSyms)) || i == 0 {
panic("bad symbol index in SetSymDynid")
}
if val == -1 {
delete(l.dynid, i)
} else {
l.dynid[i] = val
}
}
// DynidSyms returns the set of symbols for which dynID is set to an
// interesting (non-default) value. This is expected to be a fairly
// small set.
func (l *Loader) DynidSyms() []Sym {
sl := make([]Sym, 0, len(l.dynid))
for s := range l.dynid {
sl = append(sl, s)
}
sort.Slice(sl, func(i, j int) bool { return sl[i] < sl[j] })
return sl
}
// SymGoType returns the 'Gotype' property for a given symbol (set by
// the Go compiler for variable symbols). This version relies on
// reading aux symbols for the target sym -- it could be that a faster
// approach would be to check for gotype during preload and copy the
// results in to a map (might want to try this at some point and see
// if it helps speed things up).
func (l *Loader) SymGoType(i Sym) Sym { return l.aux1(i, goobj.AuxGotype) }
// SymUnit returns the compilation unit for a given symbol (which will
// typically be nil for external or linker-manufactured symbols).
func (l *Loader) SymUnit(i Sym) *sym.CompilationUnit {
if l.IsExternal(i) {
pp := l.getPayload(i)
if pp.objidx != 0 {
r := l.objs[pp.objidx]
return r.unit
}
return nil
}
r, _ := l.toLocal(i)
return r.unit
}
// SymPkg returns the package where the symbol came from (for
// regular compiler-generated Go symbols), but in the case of
// building with "-linkshared" (when a symbol is read from a
// shared library), will hold the library name.
// NOTE: this corresponds to sym.Symbol.File field.
func (l *Loader) SymPkg(i Sym) string {
if f, ok := l.symPkg[i]; ok {
return f
}
if l.IsExternal(i) {
pp := l.getPayload(i)
if pp.objidx != 0 {
r := l.objs[pp.objidx]
return r.unit.Lib.Pkg
}
return ""
}
r, _ := l.toLocal(i)
return r.unit.Lib.Pkg
}
// SetSymPkg sets the package/library for a symbol. This is
// needed mainly for external symbols, specifically those imported
// from shared libraries.
func (l *Loader) SetSymPkg(i Sym, pkg string) {
// reject bad symbols
if i >= Sym(len(l.objSyms)) || i == 0 {
panic("bad symbol index in SetSymPkg")
}
l.symPkg[i] = pkg
}
// SymLocalentry returns an offset in bytes of the "local entry" of a symbol.
//
// On PPC64, a value of 1 indicates the symbol does not use or preserve a TOC
// pointer in R2, nor does it have a distinct local entry.
func (l *Loader) SymLocalentry(i Sym) uint8 {
return l.localentry[i]
}
// SetSymLocalentry sets the "local entry" offset attribute for a symbol.
func (l *Loader) SetSymLocalentry(i Sym, value uint8) {
// reject bad symbols
if i >= Sym(len(l.objSyms)) || i == 0 {
panic("bad symbol index in SetSymLocalentry")
}
if value == 0 {
delete(l.localentry, i)
} else {
l.localentry[i] = value
}
}
// Returns the number of aux symbols given a global index.
func (l *Loader) NAux(i Sym) int {
if l.IsExternal(i) {
return 0
}
r, li := l.toLocal(i)
return r.NAux(li)
}
// Returns the "handle" to the j-th aux symbol of the i-th symbol.
func (l *Loader) Aux(i Sym, j int) Aux {
if l.IsExternal(i) {
return Aux{}
}
r, li := l.toLocal(i)
if j >= r.NAux(li) {
return Aux{}
}
return Aux{r.Aux(li, j), r, l}
}
// WasmImportSym returns the auxiliary WebAssembly import symbol associated with
// a given function symbol. The aux sym only exists for Go function stubs that
// have been annotated with the //go:wasmimport directive. The aux sym
// contains the information necessary for the linker to add a WebAssembly
// import statement.
// (https://webassembly.github.io/spec/core/syntax/modules.html#imports)
func (l *Loader) WasmImportSym(fnSymIdx Sym) (Sym, bool) {
if l.SymType(fnSymIdx) != sym.STEXT {
log.Fatalf("error: non-function sym %d/%s t=%s passed to WasmImportSym", fnSymIdx, l.SymName(fnSymIdx), l.SymType(fnSymIdx).String())
}
r, li := l.toLocal(fnSymIdx)
auxs := r.Auxs(li)
for i := range auxs {
a := &auxs[i]
switch a.Type() {
case goobj.AuxWasmImport:
return l.resolve(r, a.Sym()), true
}
}
return 0, false
}
// SEHUnwindSym returns the auxiliary SEH unwind symbol associated with
// a given function symbol.
func (l *Loader) SEHUnwindSym(fnSymIdx Sym) Sym {
if l.SymType(fnSymIdx) != sym.STEXT {
log.Fatalf("error: non-function sym %d/%s t=%s passed to SEHUnwindSym", fnSymIdx, l.SymName(fnSymIdx), l.SymType(fnSymIdx).String())
}
return l.aux1(fnSymIdx, goobj.AuxSehUnwindInfo)
}
// GetFuncDwarfAuxSyms collects and returns the auxiliary DWARF
// symbols associated with a given function symbol. Prior to the
// introduction of the loader, this was done purely using name
// lookups, e.f. for function with name XYZ we would then look up
// go.info.XYZ, etc.
func (l *Loader) GetFuncDwarfAuxSyms(fnSymIdx Sym) (auxDwarfInfo, auxDwarfLoc, auxDwarfRanges, auxDwarfLines Sym) {
if l.SymType(fnSymIdx) != sym.STEXT {
log.Fatalf("error: non-function sym %d/%s t=%s passed to GetFuncDwarfAuxSyms", fnSymIdx, l.SymName(fnSymIdx), l.SymType(fnSymIdx).String())
}
r, auxs := l.auxs(fnSymIdx)
for i := range auxs {
a := &auxs[i]
switch a.Type() {
case goobj.AuxDwarfInfo:
auxDwarfInfo = l.resolve(r, a.Sym())
if l.SymType(auxDwarfInfo) != sym.SDWARFFCN {
panic("aux dwarf info sym with wrong type")
}
case goobj.AuxDwarfLoc:
auxDwarfLoc = l.resolve(r, a.Sym())
if l.SymType(auxDwarfLoc) != sym.SDWARFLOC {
panic("aux dwarf loc sym with wrong type")
}
case goobj.AuxDwarfRanges:
auxDwarfRanges = l.resolve(r, a.Sym())
if l.SymType(auxDwarfRanges) != sym.SDWARFRANGE {
panic("aux dwarf ranges sym with wrong type")
}
case goobj.AuxDwarfLines:
auxDwarfLines = l.resolve(r, a.Sym())
if l.SymType(auxDwarfLines) != sym.SDWARFLINES {
panic("aux dwarf lines sym with wrong type")
}
}
}
return
}
func (l *Loader) GetVarDwarfAuxSym(i Sym) Sym {
aux := l.aux1(i, goobj.AuxDwarfInfo)
if aux != 0 && l.SymType(aux) != sym.SDWARFVAR {
fmt.Println(l.SymName(i), l.SymType(i), l.SymType(aux), sym.SDWARFVAR)
panic("aux dwarf info sym with wrong type")
}
return aux
}
// AddInteriorSym sets up 'interior' as an interior symbol of
// container/payload symbol 'container'. An interior symbol does not
// itself have data, but gives a name to a subrange of the data in its
// container symbol. The container itself may or may not have a name.
// This method is intended primarily for use in the host object
// loaders, to capture the semantics of symbols and sections in an
// object file. When reading a host object file, we'll typically
// encounter a static section symbol (ex: ".text") containing content
// for a collection of functions, then a series of ELF (or macho, etc)
// symbol table entries each of which points into a sub-section
// (offset and length) of its corresponding container symbol. Within
// the go linker we create a loader.Sym for the container (which is
// expected to have the actual content/payload) and then a set of
// interior loader.Sym's that point into a portion of the container.
func (l *Loader) AddInteriorSym(container Sym, interior Sym) {
// Container symbols are expected to have content/data.
// NB: this restriction may turn out to be too strict (it's possible
// to imagine a zero-sized container with an interior symbol pointing
// into it); it's ok to relax or remove it if we counter an
// oddball host object that triggers this.
if l.SymSize(container) == 0 && len(l.Data(container)) == 0 {
panic("unexpected empty container symbol")
}
// The interior symbols for a container are not expected to have
// content/data or relocations.
if len(l.Data(interior)) != 0 {
panic("unexpected non-empty interior symbol")
}
// Interior symbol is expected to be in the symbol table.
if l.AttrNotInSymbolTable(interior) {
panic("interior symbol must be in symtab")
}
// Only a single level of containment is allowed.
if l.OuterSym(container) != 0 {
panic("outer has outer itself")
}
// Interior sym should not already have a sibling.
if l.SubSym(interior) != 0 {
panic("sub set for subsym")
}
// Interior sym should not already point at a container.
if l.OuterSym(interior) != 0 {
panic("outer already set for subsym")
}
l.sub[interior] = l.sub[container]
l.sub[container] = interior
l.outer[interior] = container
}
// OuterSym gets the outer/container symbol.
func (l *Loader) OuterSym(i Sym) Sym {
return l.outer[i]
}
// SubSym gets the subsymbol for host object loaded symbols.
func (l *Loader) SubSym(i Sym) Sym {
return l.sub[i]
}
// growOuter grows the slice used to store outer symbol.
func (l *Loader) growOuter(reqLen int) {
curLen := len(l.outer)
if reqLen > curLen {
l.outer = append(l.outer, make([]Sym, reqLen-curLen)...)
}
}
// SetCarrierSym declares that 'c' is the carrier or container symbol
// for 's'. Carrier symbols are used in the linker to as a container
// for a collection of sub-symbols where the content of the
// sub-symbols is effectively concatenated to form the content of the
// carrier. The carrier is given a name in the output symbol table
// while the sub-symbol names are not. For example, the Go compiler
// emits named string symbols (type SGOSTRING) when compiling a
// package; after being deduplicated, these symbols are collected into
// a single unit by assigning them a new carrier symbol named
// "go:string.*" (which appears in the final symbol table for the
// output load module).
func (l *Loader) SetCarrierSym(s Sym, c Sym) {
if c == 0 {
panic("invalid carrier in SetCarrierSym")
}
if s == 0 {
panic("invalid sub-symbol in SetCarrierSym")
}
// Carrier symbols are not expected to have content/data. It is
// ok for them to have non-zero size (to allow for use of generator
// symbols).
if len(l.Data(c)) != 0 {
panic("unexpected non-empty carrier symbol")
}
l.outer[s] = c
// relocsym's foldSubSymbolOffset requires that we only
// have a single level of containment-- enforce here.
if l.outer[c] != 0 {
panic("invalid nested carrier sym")
}
}
// Initialize Reachable bitmap and its siblings for running deadcode pass.
func (l *Loader) InitReachable() {
l.growAttrBitmaps(l.NSym() + 1)
}
type symWithVal struct {
s Sym
v int64
}
type bySymValue []symWithVal
func (s bySymValue) Len() int { return len(s) }
func (s bySymValue) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
func (s bySymValue) Less(i, j int) bool { return s[i].v < s[j].v }
// SortSub walks through the sub-symbols for 's' and sorts them
// in place by increasing value. Return value is the new
// sub symbol for the specified outer symbol.
func (l *Loader) SortSub(s Sym) Sym {
if s == 0 || l.sub[s] == 0 {
return s
}
// Sort symbols using a slice first. Use a stable sort on the off
// chance that there's more than once symbol with the same value,
// so as to preserve reproducible builds.
sl := []symWithVal{}
for ss := l.sub[s]; ss != 0; ss = l.sub[ss] {
sl = append(sl, symWithVal{s: ss, v: l.SymValue(ss)})
}
sort.Stable(bySymValue(sl))
// Then apply any changes needed to the sub map.
ns := Sym(0)
for i := len(sl) - 1; i >= 0; i-- {
s := sl[i].s
l.sub[s] = ns
ns = s
}
// Update sub for outer symbol, then return
l.sub[s] = sl[0].s
return sl[0].s
}
// SortSyms sorts a list of symbols by their value.
func (l *Loader) SortSyms(ss []Sym) {
sort.SliceStable(ss, func(i, j int) bool { return l.SymValue(ss[i]) < l.SymValue(ss[j]) })
}
// Insure that reachable bitmap and its siblings have enough size.
func (l *Loader) growAttrBitmaps(reqLen int) {
if reqLen > l.attrReachable.Len() {
// These are indexed by global symbol
l.attrReachable = growBitmap(reqLen, l.attrReachable)
l.attrOnList = growBitmap(reqLen, l.attrOnList)
l.attrLocal = growBitmap(reqLen, l.attrLocal)
l.attrNotInSymbolTable = growBitmap(reqLen, l.attrNotInSymbolTable)
l.attrUsedInIface = growBitmap(reqLen, l.attrUsedInIface)
l.attrSpecial = growBitmap(reqLen, l.attrSpecial)
}
l.growExtAttrBitmaps()
}
func (l *Loader) growExtAttrBitmaps() {
// These are indexed by external symbol index (e.g. l.extIndex(i))
extReqLen := len(l.payloads)
if extReqLen > l.attrVisibilityHidden.Len() {
l.attrVisibilityHidden = growBitmap(extReqLen, l.attrVisibilityHidden)
l.attrDuplicateOK = growBitmap(extReqLen, l.attrDuplicateOK)
l.attrShared = growBitmap(extReqLen, l.attrShared)
l.attrExternal = growBitmap(extReqLen, l.attrExternal)
l.generatedSyms = growBitmap(extReqLen, l.generatedSyms)
}
}
func (relocs *Relocs) Count() int { return len(relocs.rs) }
// At returns the j-th reloc for a global symbol.
func (relocs *Relocs) At(j int) Reloc {
if relocs.l.isExtReader(relocs.r) {
return Reloc{&relocs.rs[j], relocs.r, relocs.l}
}
return Reloc{&relocs.rs[j], relocs.r, relocs.l}
}
// Relocs returns a Relocs object for the given global sym.
func (l *Loader) Relocs(i Sym) Relocs {
r, li := l.toLocal(i)
if r == nil {
panic(fmt.Sprintf("trying to get oreader for invalid sym %d\n\n", i))
}
return l.relocs(r, li)
}
// relocs returns a Relocs object given a local sym index and reader.
func (l *Loader) relocs(r *oReader, li uint32) Relocs {
var rs []goobj.Reloc
if l.isExtReader(r) {
pp := l.payloads[li]
rs = pp.relocs
} else {
rs = r.Relocs(li)
}
return Relocs{
rs: rs,
li: li,
r: r,
l: l,
}
}
func (l *Loader) auxs(i Sym) (*oReader, []goobj.Aux) {
if l.IsExternal(i) {
pp := l.getPayload(i)
return l.objs[pp.objidx], pp.auxs
} else {
r, li := l.toLocal(i)
return r, r.Auxs(li)
}
}
// Returns a specific aux symbol of type t for symbol i.
func (l *Loader) aux1(i Sym, t uint8) Sym {
r, auxs := l.auxs(i)
for j := range auxs {
a := &auxs[j]
if a.Type() == t {
return l.resolve(r, a.Sym())
}
}
return 0
}
func (l *Loader) Pcsp(i Sym) Sym { return l.aux1(i, goobj.AuxPcsp) }
// Returns all aux symbols of per-PC data for symbol i.
// tmp is a scratch space for the pcdata slice.
func (l *Loader) PcdataAuxs(i Sym, tmp []Sym) (pcsp, pcfile, pcline, pcinline Sym, pcdata []Sym) {
pcdata = tmp[:0]
r, auxs := l.auxs(i)
for j := range auxs {
a := &auxs[j]
switch a.Type() {
case goobj.AuxPcsp:
pcsp = l.resolve(r, a.Sym())
case goobj.AuxPcline:
pcline = l.resolve(r, a.Sym())
case goobj.AuxPcfile:
pcfile = l.resolve(r, a.Sym())
case goobj.AuxPcinline:
pcinline = l.resolve(r, a.Sym())
case goobj.AuxPcdata:
pcdata = append(pcdata, l.resolve(r, a.Sym()))
}
}
return
}
// Returns the number of pcdata for symbol i.
func (l *Loader) NumPcdata(i Sym) int {
n := 0
_, auxs := l.auxs(i)
for j := range auxs {
a := &auxs[j]
if a.Type() == goobj.AuxPcdata {
n++
}
}
return n
}
// Returns all funcdata symbols of symbol i.
// tmp is a scratch space.
func (l *Loader) Funcdata(i Sym, tmp []Sym) []Sym {
fd := tmp[:0]
r, auxs := l.auxs(i)
for j := range auxs {
a := &auxs[j]
if a.Type() == goobj.AuxFuncdata {
fd = append(fd, l.resolve(r, a.Sym()))
}
}
return fd
}
// Returns the number of funcdata for symbol i.
func (l *Loader) NumFuncdata(i Sym) int {
n := 0
_, auxs := l.auxs(i)
for j := range auxs {
a := &auxs[j]
if a.Type() == goobj.AuxFuncdata {
n++
}
}
return n
}
// FuncInfo provides hooks to access goobj.FuncInfo in the objects.
type FuncInfo struct {
l *Loader
r *oReader
data []byte
lengths goobj.FuncInfoLengths
}
func (fi *FuncInfo) Valid() bool { return fi.r != nil }
func (fi *FuncInfo) Args() int {
return int((*goobj.FuncInfo)(nil).ReadArgs(fi.data))
}
func (fi *FuncInfo) Locals() int {
return int((*goobj.FuncInfo)(nil).ReadLocals(fi.data))
}
func (fi *FuncInfo) FuncID() abi.FuncID {
return (*goobj.FuncInfo)(nil).ReadFuncID(fi.data)
}
func (fi *FuncInfo) FuncFlag() abi.FuncFlag {
return (*goobj.FuncInfo)(nil).ReadFuncFlag(fi.data)
}
func (fi *FuncInfo) StartLine() int32 {
return (*goobj.FuncInfo)(nil).ReadStartLine(fi.data)
}
// Preload has to be called prior to invoking the various methods
// below related to pcdata, funcdataoff, files, and inltree nodes.
func (fi *FuncInfo) Preload() {
fi.lengths = (*goobj.FuncInfo)(nil).ReadFuncInfoLengths(fi.data)
}
func (fi *FuncInfo) NumFile() uint32 {
if !fi.lengths.Initialized {
panic("need to call Preload first")
}
return fi.lengths.NumFile
}
func (fi *FuncInfo) File(k int) goobj.CUFileIndex {
if !fi.lengths.Initialized {
panic("need to call Preload first")
}
return (*goobj.FuncInfo)(nil).ReadFile(fi.data, fi.lengths.FileOff, uint32(k))
}
// TopFrame returns true if the function associated with this FuncInfo
// is an entry point, meaning that unwinders should stop when they hit
// this function.
func (fi *FuncInfo) TopFrame() bool {
return (fi.FuncFlag() & abi.FuncFlagTopFrame) != 0
}
type InlTreeNode struct {
Parent int32
File goobj.CUFileIndex
Line int32
Func Sym
ParentPC int32
}
func (fi *FuncInfo) NumInlTree() uint32 {
if !fi.lengths.Initialized {
panic("need to call Preload first")
}
return fi.lengths.NumInlTree
}
func (fi *FuncInfo) InlTree(k int) InlTreeNode {
if !fi.lengths.Initialized {
panic("need to call Preload first")
}
node := (*goobj.FuncInfo)(nil).ReadInlTree(fi.data, fi.lengths.InlTreeOff, uint32(k))
return InlTreeNode{
Parent: node.Parent,
File: node.File,
Line: node.Line,
Func: fi.l.resolve(fi.r, node.Func),
ParentPC: node.ParentPC,
}
}
func (l *Loader) FuncInfo(i Sym) FuncInfo {
r, auxs := l.auxs(i)
for j := range auxs {
a := &auxs[j]
if a.Type() == goobj.AuxFuncInfo {
b := r.Data(a.Sym().SymIdx)
return FuncInfo{l, r, b, goobj.FuncInfoLengths{}}
}
}
return FuncInfo{}
}
// Preload a package: adds autolib.
// Does not add defined package or non-packaged symbols to the symbol table.
// These are done in LoadSyms.
// Does not read symbol data.
// Returns the fingerprint of the object.
func (l *Loader) Preload(localSymVersion int, f *bio.Reader, lib *sym.Library, unit *sym.CompilationUnit, length int64) goobj.FingerprintType {
roObject, readonly, err := f.Slice(uint64(length)) // TODO: no need to map blocks that are for tools only (e.g. RefName)
if err != nil {
log.Fatal("cannot read object file:", err)
}
r := goobj.NewReaderFromBytes(roObject, readonly)
if r == nil {
if len(roObject) >= 8 && bytes.Equal(roObject[:8], []byte("\x00go114ld")) {
log.Fatalf("found object file %s in old format", f.File().Name())
}
panic("cannot read object file")
}
pkgprefix := objabi.PathToPrefix(lib.Pkg) + "."
ndef := r.NSym()
nhashed64def := r.NHashed64def()
nhasheddef := r.NHasheddef()
or := &oReader{
Reader: r,
unit: unit,
version: localSymVersion,
pkgprefix: pkgprefix,
syms: make([]Sym, ndef+nhashed64def+nhasheddef+r.NNonpkgdef()+r.NNonpkgref()),
ndef: ndef,
nhasheddef: nhasheddef,
nhashed64def: nhashed64def,
objidx: uint32(len(l.objs)),
}
if r.Unlinkable() {
log.Fatalf("link: unlinkable object (from package %s) - compiler requires -p flag", lib.Pkg)
}
// Autolib
lib.Autolib = append(lib.Autolib, r.Autolib()...)
// DWARF file table
nfile := r.NFile()
unit.FileTable = make([]string, nfile)
for i := range unit.FileTable {
unit.FileTable[i] = r.File(i)
}
l.addObj(lib.Pkg, or)
// The caller expects us consuming all the data
f.MustSeek(length, io.SeekCurrent)
return r.Fingerprint()
}
// Holds the loader along with temporary states for loading symbols.
type loadState struct {
l *Loader
hashed64Syms map[uint64]symAndSize // short hashed (content-addressable) symbols, keyed by content hash
hashedSyms map[goobj.HashType]symAndSize // hashed (content-addressable) symbols, keyed by content hash
linknameVarRefs []linknameVarRef // linknamed var refererces
}
type linknameVarRef struct {
pkg string // package of reference (not definition)
name string
sym Sym
}
// Preload symbols of given kind from an object.
func (st *loadState) preloadSyms(r *oReader, kind int) {
l := st.l
var start, end uint32
switch kind {
case pkgDef:
start = 0
end = uint32(r.ndef)
case hashed64Def:
start = uint32(r.ndef)
end = uint32(r.ndef + r.nhashed64def)
case hashedDef:
start = uint32(r.ndef + r.nhashed64def)
end = uint32(r.ndef + r.nhashed64def + r.nhasheddef)
case nonPkgDef:
start = uint32(r.ndef + r.nhashed64def + r.nhasheddef)
end = uint32(r.ndef + r.nhashed64def + r.nhasheddef + r.NNonpkgdef())
default:
panic("preloadSyms: bad kind")
}
l.growAttrBitmaps(len(l.objSyms) + int(end-start))
loadingRuntimePkg := r.unit.Lib.Pkg == "runtime"
for i := start; i < end; i++ {
osym := r.Sym(i)
var name string
var v int
if kind != hashed64Def && kind != hashedDef { // we don't need the name, etc. for hashed symbols
name = osym.Name(r.Reader)
v = abiToVer(osym.ABI(), r.version)
}
gi := st.addSym(name, v, r, i, kind, osym)
r.syms[i] = gi
if kind == nonPkgDef && osym.IsLinkname() && r.DataSize(i) == 0 && strings.Contains(name, ".") {
// This is a linknamed "var" "reference" (var x T with no data and //go:linkname x).
// We want to check if a linkname reference is allowed. Here we haven't loaded all
// symbol definitions, so we don't yet know all the push linknames. So we add to a
// list and check later after all symbol defs are loaded. Linknamed vars are rare,
// so this list won't be long.
// Only check references (pull), not definitions (push, with non-zero size),
// so push is always allowed.
// This use of linkname is usually for referencing C symbols, so allow symbols
// with no "." in its name (not a regular Go symbol).
// Linkname is always a non-package reference.
st.linknameVarRefs = append(st.linknameVarRefs, linknameVarRef{r.unit.Lib.Pkg, name, gi})
}
if osym.Local() {
l.SetAttrLocal(gi, true)
}
if osym.UsedInIface() {
l.SetAttrUsedInIface(gi, true)
}
if strings.HasPrefix(name, "runtime.") ||
(loadingRuntimePkg && strings.HasPrefix(name, "type:")) {
if bi := goobj.BuiltinIdx(name, int(osym.ABI())); bi != -1 {
// This is a definition of a builtin symbol. Record where it is.
l.builtinSyms[bi] = gi
}
}
if a := int32(osym.Align()); a != 0 && a > l.SymAlign(gi) {
l.SetSymAlign(gi, a)
}
}
}
// Add syms, hashed (content-addressable) symbols, non-package symbols, and
// references to external symbols (which are always named).
func (l *Loader) LoadSyms(arch *sys.Arch) {
// Allocate space for symbols, making a guess as to how much space we need.
// This function was determined empirically by looking at the cmd/compile on
// Darwin, and picking factors for hashed and hashed64 syms.
var symSize, hashedSize, hashed64Size int
for _, r := range l.objs[goObjStart:] {
symSize += r.ndef + r.nhasheddef/2 + r.nhashed64def/2 + r.NNonpkgdef()
hashedSize += r.nhasheddef / 2
hashed64Size += r.nhashed64def / 2
}
// Index 0 is invalid for symbols.
l.objSyms = make([]objSym, 1, symSize)
st := loadState{
l: l,
hashed64Syms: make(map[uint64]symAndSize, hashed64Size),
hashedSyms: make(map[goobj.HashType]symAndSize, hashedSize),
}
for _, r := range l.objs[goObjStart:] {
st.preloadSyms(r, pkgDef)
}
l.npkgsyms = l.NSym()
for _, r := range l.objs[goObjStart:] {
st.preloadSyms(r, hashed64Def)
st.preloadSyms(r, hashedDef)
st.preloadSyms(r, nonPkgDef)
}
for _, vr := range st.linknameVarRefs {
l.checkLinkname(vr.pkg, vr.name, vr.sym)
}
l.nhashedsyms = len(st.hashed64Syms) + len(st.hashedSyms)
for _, r := range l.objs[goObjStart:] {
loadObjRefs(l, r, arch)
}
l.values = make([]int64, l.NSym(), l.NSym()+1000) // +1000 make some room for external symbols
l.outer = make([]Sym, l.NSym(), l.NSym()+1000)
}
func loadObjRefs(l *Loader, r *oReader, arch *sys.Arch) {
// load non-package refs
ndef := uint32(r.NAlldef())
for i, n := uint32(0), uint32(r.NNonpkgref()); i < n; i++ {
osym := r.Sym(ndef + i)
name := osym.Name(r.Reader)
v := abiToVer(osym.ABI(), r.version)
gi := l.LookupOrCreateSym(name, v)
r.syms[ndef+i] = gi
if osym.IsLinkname() {
// Check if a linkname reference is allowed.
// Only check references (pull), not definitions (push),
// so push is always allowed.
// Linkname is always a non-package reference.
l.checkLinkname(r.unit.Lib.Pkg, name, gi)
}
if osym.Local() {
l.SetAttrLocal(gi, true)
}
if osym.UsedInIface() {
l.SetAttrUsedInIface(gi, true)
}
}
// referenced packages
npkg := r.NPkg()
r.pkg = make([]uint32, npkg)
for i := 1; i < npkg; i++ { // PkgIdx 0 is a dummy invalid package
pkg := r.Pkg(i)
objidx, ok := l.objByPkg[pkg]
if !ok {
log.Fatalf("%v: reference to nonexistent package %s", r.unit.Lib, pkg)
}
r.pkg[i] = objidx
}
// load flags of package refs
for i, n := 0, r.NRefFlags(); i < n; i++ {
rf := r.RefFlags(i)
gi := l.resolve(r, rf.Sym())
if rf.Flag2()&goobj.SymFlagUsedInIface != 0 {
l.SetAttrUsedInIface(gi, true)
}
}
}
func abiToVer(abi uint16, localSymVersion int) int {
var v int
if abi == goobj.SymABIstatic {
// Static
v = localSymVersion
} else if abiver := sym.ABIToVersion(obj.ABI(abi)); abiver != -1 {
// Note that data symbols are "ABI0", which maps to version 0.
v = abiver
} else {
log.Fatalf("invalid symbol ABI: %d", abi)
}
return v
}
// A list of blocked linknames. Some linknames are allowed only
// in specific packages. This maps symbol names to allowed packages.
// If a name is not in this map, it is allowed iff the definition
// has a linkname (push).
// If a name is in this map, it is allowed only in listed packages,
// even if it has a linknamed definition.
var blockedLinknames = map[string][]string{
// coroutines
"runtime.coroswitch": {"iter"},
"runtime.newcoro": {"iter"},
// weak references
"internal/weak.runtime_registerWeakPointer": {"internal/weak"},
"internal/weak.runtime_makeStrongFromWeak": {"internal/weak"},
}
// check if a linkname reference to symbol s from pkg is allowed
func (l *Loader) checkLinkname(pkg, name string, s Sym) {
if l.flags&FlagCheckLinkname == 0 {
return
}
error := func() {
log.Fatalf("%s: invalid reference to %s", pkg, name)
}
pkgs, ok := blockedLinknames[name]
if ok {
for _, p := range pkgs {
if pkg == p {
return // pkg is allowed
}
}
error()
}
r, li := l.toLocal(s)
if r == l.extReader { // referencing external symbol is okay
return
}
if !r.Std() { // For now, only check for symbols defined in std
return
}
if r.unit.Lib.Pkg == pkg { // assembly reference from same package
return
}
osym := r.Sym(li)
if osym.IsLinkname() || osym.ABIWrapper() {
// Allow if the def has a linkname (push).
// ABI wrapper usually wraps an assembly symbol, a linknamed symbol,
// or an external symbol, or provide access of a Go symbol to assembly.
// For now, allow ABI wrappers.
// TODO: check the wrapped symbol?
return
}
error()
}
// TopLevelSym tests a symbol (by name and kind) to determine whether
// the symbol first class sym (participating in the link) or is an
// anonymous aux or sub-symbol containing some sub-part or payload of
// another symbol.
func (l *Loader) TopLevelSym(s Sym) bool {
return topLevelSym(l.SymName(s), l.SymType(s))
}
// topLevelSym tests a symbol name and kind to determine whether
// the symbol first class sym (participating in the link) or is an
// anonymous aux or sub-symbol containing some sub-part or payload of
// another symbol.
func topLevelSym(sname string, skind sym.SymKind) bool {
if sname != "" {
return true
}
switch skind {
case sym.SDWARFFCN, sym.SDWARFABSFCN, sym.SDWARFTYPE, sym.SDWARFCONST, sym.SDWARFCUINFO, sym.SDWARFRANGE, sym.SDWARFLOC, sym.SDWARFLINES, sym.SGOFUNC:
return true
default:
return false
}
}
// cloneToExternal takes the existing object file symbol (symIdx)
// and creates a new external symbol payload that is a clone with
// respect to name, version, type, relocations, etc. The idea here
// is that if the linker decides it wants to update the contents of
// a symbol originally discovered as part of an object file, it's
// easier to do this if we make the updates to an external symbol
// payload.
func (l *Loader) cloneToExternal(symIdx Sym) {
if l.IsExternal(symIdx) {
panic("sym is already external, no need for clone")
}
// Read the particulars from object.
r, li := l.toLocal(symIdx)
osym := r.Sym(li)
sname := osym.Name(r.Reader)
sver := abiToVer(osym.ABI(), r.version)
skind := sym.AbiSymKindToSymKind[objabi.SymKind(osym.Type())]
// Create new symbol, update version and kind.
pi := l.newPayload(sname, sver)
pp := l.payloads[pi]
pp.kind = skind
pp.ver = sver
pp.size = int64(osym.Siz())
pp.objidx = r.objidx
// If this is a def, then copy the guts. We expect this case
// to be very rare (one case it may come up is with -X).
if li < uint32(r.NAlldef()) {
// Copy relocations
relocs := l.Relocs(symIdx)
pp.relocs = make([]goobj.Reloc, relocs.Count())
for i := range pp.relocs {
// Copy the relocs slice.
// Convert local reference to global reference.
rel := relocs.At(i)
pp.relocs[i].Set(rel.Off(), rel.Siz(), uint16(rel.Type()), rel.Add(), goobj.SymRef{PkgIdx: 0, SymIdx: uint32(rel.Sym())})
}
// Copy data
pp.data = r.Data(li)
}
// If we're overriding a data symbol, collect the associated
// Gotype, so as to propagate it to the new symbol.
auxs := r.Auxs(li)
pp.auxs = auxs
// Install new payload to global index space.
// (This needs to happen at the end, as the accessors above
// need to access the old symbol content.)
l.objSyms[symIdx] = objSym{l.extReader.objidx, uint32(pi)}
l.extReader.syms = append(l.extReader.syms, symIdx)
// Some attributes were encoded in the object file. Copy them over.
l.SetAttrDuplicateOK(symIdx, r.Sym(li).Dupok())
l.SetAttrShared(symIdx, r.Shared())
}
// Copy the payload of symbol src to dst. Both src and dst must be external
// symbols.
// The intended use case is that when building/linking against a shared library,
// where we do symbol name mangling, the Go object file may have reference to
// the original symbol name whereas the shared library provides a symbol with
// the mangled name. When we do mangling, we copy payload of mangled to original.
func (l *Loader) CopySym(src, dst Sym) {
if !l.IsExternal(dst) {
panic("dst is not external") //l.newExtSym(l.SymName(dst), l.SymVersion(dst))
}
if !l.IsExternal(src) {
panic("src is not external") //l.cloneToExternal(src)
}
l.payloads[l.extIndex(dst)] = l.payloads[l.extIndex(src)]
l.SetSymPkg(dst, l.SymPkg(src))
// TODO: other attributes?
}
// CreateExtSym creates a new external symbol with the specified name
// without adding it to any lookup tables, returning a Sym index for it.
func (l *Loader) CreateExtSym(name string, ver int) Sym {
return l.newExtSym(name, ver)
}
// CreateStaticSym creates a new static symbol with the specified name
// without adding it to any lookup tables, returning a Sym index for it.
func (l *Loader) CreateStaticSym(name string) Sym {
// Assign a new unique negative version -- this is to mark the
// symbol so that it is not included in the name lookup table.
l.anonVersion--
return l.newExtSym(name, l.anonVersion)
}
func (l *Loader) FreeSym(i Sym) {
if l.IsExternal(i) {
pp := l.getPayload(i)
*pp = extSymPayload{}
}
}
// relocId is essentially a <S,R> tuple identifying the Rth
// relocation of symbol S.
type relocId struct {
sym Sym
ridx int
}
// SetRelocVariant sets the 'variant' property of a relocation on
// some specific symbol.
func (l *Loader) SetRelocVariant(s Sym, ri int, v sym.RelocVariant) {
// sanity check
if relocs := l.Relocs(s); ri >= relocs.Count() {
panic("invalid relocation ID")
}
if l.relocVariant == nil {
l.relocVariant = make(map[relocId]sym.RelocVariant)
}
if v != 0 {
l.relocVariant[relocId{s, ri}] = v
} else {
delete(l.relocVariant, relocId{s, ri})
}
}
// RelocVariant returns the 'variant' property of a relocation on
// some specific symbol.
func (l *Loader) RelocVariant(s Sym, ri int) sym.RelocVariant {
return l.relocVariant[relocId{s, ri}]
}
// UndefinedRelocTargets iterates through the global symbol index
// space, looking for symbols with relocations targeting undefined
// references. The linker's loadlib method uses this to determine if
// there are unresolved references to functions in system libraries
// (for example, libgcc.a), presumably due to CGO code. Return value
// is a pair of lists of loader.Sym's. First list corresponds to the
// corresponding to the undefined symbols themselves, the second list
// is the symbol that is making a reference to the undef. The "limit"
// param controls the maximum number of results returned; if "limit"
// is -1, then all undefs are returned.
func (l *Loader) UndefinedRelocTargets(limit int) ([]Sym, []Sym) {
result, fromr := []Sym{}, []Sym{}
outerloop:
for si := Sym(1); si < Sym(len(l.objSyms)); si++ {
relocs := l.Relocs(si)
for ri := 0; ri < relocs.Count(); ri++ {
r := relocs.At(ri)
rs := r.Sym()
if rs != 0 && l.SymType(rs) == sym.SXREF && l.SymName(rs) != ".got" {
result = append(result, rs)
fromr = append(fromr, si)
if limit != -1 && len(result) >= limit {
break outerloop
}
}
}
}
return result, fromr
}
// AssignTextSymbolOrder populates the Textp slices within each
// library and compilation unit, insuring that packages are laid down
// in dependency order (internal first, then everything else). Return value
// is a slice of all text syms.
func (l *Loader) AssignTextSymbolOrder(libs []*sym.Library, intlibs []bool, extsyms []Sym) []Sym {
// Library Textp lists should be empty at this point.
for _, lib := range libs {
if len(lib.Textp) != 0 {
panic("expected empty Textp slice for library")
}
if len(lib.DupTextSyms) != 0 {
panic("expected empty DupTextSyms slice for library")
}
}
// Used to record which dupok symbol we've assigned to a unit.
// Can't use the onlist attribute here because it will need to
// clear for the later assignment of the sym.Symbol to a unit.
// NB: we can convert to using onList once we no longer have to
// call the regular addToTextp.
assignedToUnit := MakeBitmap(l.NSym() + 1)
// Start off textp with reachable external syms.
textp := []Sym{}
for _, sym := range extsyms {
if !l.attrReachable.Has(sym) {
continue
}
textp = append(textp, sym)
}
// Walk through all text symbols from Go object files and append
// them to their corresponding library's textp list.
for _, r := range l.objs[goObjStart:] {
lib := r.unit.Lib
for i, n := uint32(0), uint32(r.NAlldef()); i < n; i++ {
gi := l.toGlobal(r, i)
if !l.attrReachable.Has(gi) {
continue
}
osym := r.Sym(i)
st := sym.AbiSymKindToSymKind[objabi.SymKind(osym.Type())]
if st != sym.STEXT {
continue
}
dupok := osym.Dupok()
if r2, i2 := l.toLocal(gi); r2 != r || i2 != i {
// A dupok text symbol is resolved to another package.
// We still need to record its presence in the current
// package, as the trampoline pass expects packages
// are laid out in dependency order.
lib.DupTextSyms = append(lib.DupTextSyms, sym.LoaderSym(gi))
continue // symbol in different object
}
if dupok {
lib.DupTextSyms = append(lib.DupTextSyms, sym.LoaderSym(gi))
continue
}
lib.Textp = append(lib.Textp, sym.LoaderSym(gi))
}
}
// Now assemble global textp, and assign text symbols to units.
for _, doInternal := range [2]bool{true, false} {
for idx, lib := range libs {
if intlibs[idx] != doInternal {
continue
}
lists := [2][]sym.LoaderSym{lib.Textp, lib.DupTextSyms}
for i, list := range lists {
for _, s := range list {
sym := Sym(s)
if !assignedToUnit.Has(sym) {
textp = append(textp, sym)
unit := l.SymUnit(sym)
if unit != nil {
unit.Textp = append(unit.Textp, s)
assignedToUnit.Set(sym)
}
// Dupok symbols may be defined in multiple packages; the
// associated package for a dupok sym is chosen sort of
// arbitrarily (the first containing package that the linker
// loads). Canonicalizes its Pkg to the package with which
// it will be laid down in text.
if i == 1 /* DupTextSyms2 */ && l.SymPkg(sym) != lib.Pkg {
l.SetSymPkg(sym, lib.Pkg)
}
}
}
}
lib.Textp = nil
lib.DupTextSyms = nil
}
}
return textp
}
// ErrorReporter is a helper class for reporting errors.
type ErrorReporter struct {
ldr *Loader
AfterErrorAction func()
}
// Errorf method logs an error message.
//
// After each error, the error actions function will be invoked; this
// will either terminate the link immediately (if -h option given)
// or it will keep a count and exit if more than 20 errors have been printed.
//
// Logging an error means that on exit cmd/link will delete any
// output file and return a non-zero error code.
func (reporter *ErrorReporter) Errorf(s Sym, format string, args ...interface{}) {
if s != 0 && reporter.ldr.SymName(s) != "" {
// Note: Replace is needed here because symbol names might have % in them,
// due to the use of LinkString for names of instantiating types.
format = strings.Replace(reporter.ldr.SymName(s), "%", "%%", -1) + ": " + format
} else {
format = fmt.Sprintf("sym %d: %s", s, format)
}
format += "\n"
fmt.Fprintf(os.Stderr, format, args...)
reporter.AfterErrorAction()
}
// GetErrorReporter returns the loader's associated error reporter.
func (l *Loader) GetErrorReporter() *ErrorReporter {
return l.errorReporter
}
// Errorf method logs an error message. See ErrorReporter.Errorf for details.
func (l *Loader) Errorf(s Sym, format string, args ...interface{}) {
l.errorReporter.Errorf(s, format, args...)
}
// Symbol statistics.
func (l *Loader) Stat() string {
s := fmt.Sprintf("%d symbols, %d reachable\n", l.NSym(), l.NReachableSym())
s += fmt.Sprintf("\t%d package symbols, %d hashed symbols, %d non-package symbols, %d external symbols\n",
l.npkgsyms, l.nhashedsyms, int(l.extStart)-l.npkgsyms-l.nhashedsyms, l.NSym()-int(l.extStart))
return s
}
// For debugging.
func (l *Loader) Dump() {
fmt.Println("objs")
for _, r := range l.objs[goObjStart:] {
if r != nil {
fmt.Println(r.unit.Lib)
}
}
fmt.Println("extStart:", l.extStart)
fmt.Println("Nsyms:", len(l.objSyms))
fmt.Println("syms")
for i := Sym(1); i < Sym(len(l.objSyms)); i++ {
pi := ""
if l.IsExternal(i) {
pi = fmt.Sprintf("<ext %d>", l.extIndex(i))
}
sect := ""
if l.SymSect(i) != nil {
sect = l.SymSect(i).Name
}
fmt.Printf("%v %v %v %v %x %v\n", i, l.SymName(i), l.SymType(i), pi, l.SymValue(i), sect)
}
fmt.Println("symsByName")
for name, i := range l.symsByName[0] {
fmt.Println(i, name, 0)
}
for name, i := range l.symsByName[1] {
fmt.Println(i, name, 1)
}
fmt.Println("payloads:")
for i := range l.payloads {
pp := l.payloads[i]
fmt.Println(i, pp.name, pp.ver, pp.kind)
}
}